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What is this talk about?

Journey and lessons learned
from the development of
Machine Learning models for
unravelling LoRa frames under
collision.

DALL-E. OpenAI
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Disclaimer

Exclamation-Triangle
• I’m not a Machine Learning expert.

• Wild math formulas spotted in the area!
• Don’t worry, they are like passing clouds.
• Interesting to glance at, but you don’t need to give

them a second thought.
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Overview of LoRa
Proprietary wireless modulation technique

Long range (up to 15 km)

Low power consumption (mJ)

Low data rate (bytes/s)
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Use Cases

Elf Tracking Naughty or Nice Monitor Reindeer Health Tracking

DALL-E. OpenAI
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Problem Statement

Region Population ( 1
km2 ) 10km-Radius Mean Arrival (1

s )
Paris 21000 18325
London 5518 4815
Berlin 4000 3490

Table: Mean arrival rate of LoRa frames in selected urban areas. Assumes 10 devices per
person, 1 message per device per hour.

Long range yields high collision probability

Draft IG LPWA Report (IEEE P802.15-17-0528-00-lpwa)
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Agenda

When LoRa Frames Collide

The Journey Begins

Towards Machine Learning

Light Ahead

Lessons Learned
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When LoRa Frames
Collide

DALL-E. OpenAI
When LoRa Frames Collide There can be only one! 8



LoRa Modulation
Chirp Spread Spectrum
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Decoding LoRa
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Decoding LoRa
Frequency bin with the highest magnitude.
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LoRa Collisions
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LoRa Collisions
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Related Work

CIC

FTrack

Choir

CoLoRa

Real Time

Ac
cu

ra
cy

Ranking of LoRa collision recovery algorithms

Trade-off between accuracy and real-time performance.

C. Shao et al., ”Toward Ubiquitous Connectivity via LoRaWAN: An Overview of Signal Collision
Resolving Solutions,” in IEEE Internet of Things Magazine, vol. 4, no. 4, pp. 114-119, Dec. 2021.
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Goal
Find the full sine wave in the dechirped symbol.

acgt.me
When LoRa Frames Collide There can be only one! 15



The Journey Begins

DALL-E. OpenAI
The Journey Begins There can be only one! 16



Gathering Symbols

Software Defined Radio (SDR)

• Reuse existing deployment.
• Capture real-world symbol

data.

Simulated data
• Generate symbol data with

known parameters.
• Model symbol as complex

chirp with white gaussian
noise.
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Naive Approach

Use conventional time-frequency analysis techniques.
• Fast Fourier Transform (FFT).
• Short-time Fourier transform (STFT).

The Journey Begins There can be only one! 18



Naive Approach (cont.)
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Towards Machine
Learning

DALL-E. OpenAI
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First Insights

• Finding the full sine wave is harder than expected.
• LoRa collisions yield a complex frequency spectrum.
• Hard to unravel using conventional signal processing techniques.

• Potential of Machine Learning techniques for decoding LoRa
frames.

Use Machine Learning to identify the full sine wave

Towards Machine Learning There can be only one! 21
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Machine Learning Terminology
Artificial

Intelligence

Machine
Learning

Deep
Learning

Towards Machine Learning There can be only one! 22



Choice of Deep Learning

There seem to be two types of Machine Learning researchers:

• The Deep Learning users.
• The moving-towards-Deep-Learning users.
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Deep Learning
• Neural Networks.

• Ability to learn from
large and complex
data.

• Automatic Feature
Extraction.

input hidden layers output

TiKZ.net
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Neural Networks
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Deep Learning Architectures
Many! Some examples:

• Fully Connected Layers (FC).
• Good at classification and regression.

• Convolutional Neural Networks (CNN).
• Good at finding patterns in data.

• Recurrent Neural Networks (RNN).
• Good at predicting sequences.

• Autoencoders (AE).
• Good at dimensionality reduction.

Towards Machine Learning There can be only one! 26
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It looks promising

Due to the Deep Learning hype, it is easy to believe the process
is:

1. Gather data.
2. Build and train model.
3. Evaluate model.
4. Tune hyperparameters.
5. Get state-of-the-art results.
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CNN Symbol Classifier

• Train a CNN to find the longest sine wave in the dechirped
symbol.

• Use signal in time and frequency domain as input.
• Train from simulated data.
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CNN Architecture
convolutional

layers
fully-connected
hidden layers

input
layer output

layer

X [n] Y [n]

TiKZ.net
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CNN Symbol Classifier Evaluation

• Time domain as input.
• Does not converge

• Spectrogram (STFT) as input.
• Worse than baseline decoder.

• Frequency spectrum (FFT) as input.
• Does not detect symbols with collisions.
• But performs slightly better than baseline decoder.
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We need more signal features!
Wavelet Transform

Wigner-Ville DistributionSynchrosqueezing Transform

Fractional Fourier Transform

Hilbert-Huang Transform

Empirical Mode Decomposition

etc.

Wavelet Transform
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Aftermath of CNN Classifier

• Some features yield slightly better accuracy than the baseline
decoder.

• At the cost of high computational complexity.

• The classifier works best for symbols without collision.
Gains are not enough to justify the complexity

Towards Machine Learning There can be only one! 32
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Next attempt: Peak Classification

1. Find location of peaks.
• Reuse CNN architecture from previous attempt.

2. Find probability of each detected peak being a full sine wave.
• Based on peak features (power, frequency offset).
• Utilize a simpler Machine Learning model (Gradient Boosting).
• Compare against simple Bayesian (Zscore) method.

3. Choose the candidate with highest probability.
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CNN Peak Detection Evaluation
It works!
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Peak Classification Evaluation

Baseline CIC ML Model Zscore
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100 90.8 93.23 89.4 91.65
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Symbol Reception Ratio (SDR data)
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Aftermath of Peak Classification

• Peak detection works well, but computationally expensive.

• Peak classification does not bring any gains over the state of
the art.

• The Machine Learning model performs worse than the simple Zscore
method.

• ... and worse than the baseline decoder.

Peak classification strategy does not pay off
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Next attempt: Denoiser Autoencoder

• Noise remains as one of the main challenges.
• Hard to remove with simple math.

• Train a neural network to remove noise from frequency
domain.

• Then use simple math techniques to find the full sine wave.
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Denoiser Autoencoder Architecture

encoder decoder
input output

X [n] + w [n] X [n]

TiKZ.net
Towards Machine Learning There can be only one! 38



Denoiser Autoencoder Evaluation
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Aftermath of Denoiser Autoencoder

• SNR of the signal is improved.

• Phase distortion introduces a new problem.
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Phase matters!
• Location of sine waves is encoded in the phase.

Time domain Frequency spectrum
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Aftermath of Denoiser Autoencoder (cont.)

• Different architectures and training methods improve results.

• Phase reconstruction still not good enough.
Incorrect phase distortion rules out

the use of time-frequency techniques
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Light Ahead

DALL-E. OpenAI
Light Ahead There can be only one! 43



Recap

• Addressed the problem from
many different angles.

• Machine Learning show good
results for certain tasks.

• Still, the original problem
remains unsolved.

• Each iteration takes time,
without any guarantees.

imgflip.com
Light Ahead There can be only one! 44
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Last hope: Simple Math (revisited)

• Leverage the knowledge acquired from the previous
approaches.

• Tons of signal processing techniques.
• Understanding the dynamics of LoRa collisions.

• After some weeks of research, we identified an analytic
scheme.

• Exploits the structure of symbols under collision.
• Isolates the full sine wave from the rest of the signal.

Light Ahead There can be only one! 45
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Preliminary Evaluation

Baseline CIC New approach
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Symbol Reception Ratio (simulated data) for low SNR and strong interference
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Lessons Learned

DALL-E. OpenAI
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Post Mortem Analysis

• Spent 6 month trying to solve a problem that could be solved
in 2 weeks with conventional math techniques.

• Was it worth it?
Absolutely!

Lessons Learned There can be only one! 48



Post Mortem Analysis

• Spent 6 month trying to solve a problem that could be solved
in 2 weeks with conventional math techniques.

• Was it worth it?

Absolutely!

Lessons Learned There can be only one! 48



Post Mortem Analysis

• Spent 6 month trying to solve a problem that could be solved
in 2 weeks with conventional math techniques.

• Was it worth it?
Absolutely!

Lessons Learned There can be only one! 48



Post Mortem Analysis (cont.)

• Knowledge acquired led to final solution.

• Some Deep Learning tasks show promising results.
• Denoising
• Peak detection

• These strategies have still interesting applications for LoRa
decoding

• Peak detection in extremely noisy environments.

Lessons Learned There can be only one! 49
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Lessons Learned

Although very powerful:

1. Machine Learning is not a silver bullet.
2. Machine Learning is not magic.
3. Machine Learning is not straightforward.
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Not a Silver Bullet

• Certain tasks are solved better with conventional math
techniques.

• Training/tuning takes time
• It is not always worth it.

• Complex models do not ensure better results.
• Deep Learning models do not always perform better than simpler

Machine Learning models.
• And they are harder to train.
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Not a Silver Bullet (cont.)
But for certain tasks, Deep Learning is likely the best approach.

• Large Language Models
• Denoising
• Sketching Santa Claus

drinking Glühwein in
Hamburg.

DALL-E. OpenAI.
Lessons Learned There can be only one! 52



Not a Silver Bullet (cont.)
But for certain tasks, Deep Learning is likely the best approach.
• Large Language Models

• Denoising
• Sketching Santa Claus

drinking Glühwein in
Hamburg.

DALL-E. OpenAI.
Lessons Learned There can be only one! 52



Not a Silver Bullet (cont.)
But for certain tasks, Deep Learning is likely the best approach.
• Large Language Models
• Denoising

• Sketching Santa Claus
drinking Glühwein in
Hamburg.

DALL-E. OpenAI.
Lessons Learned There can be only one! 52



Not a Silver Bullet (cont.)
But for certain tasks, Deep Learning is likely the best approach.
• Large Language Models
• Denoising
• Sketching Santa Claus

drinking Glühwein in
Hamburg.

DALL-E. OpenAI.
Lessons Learned There can be only one! 52



Not Magic

• Underneath the fancy names, Machine Learning models are
just a bunch of matrix multiplications.

• Days of training may converge to a mathematical function that can be
expressed in a single line of code.

• They are not able to learn anything that is not in the data.
• They do not replace domain knowledge
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Not Magic (cont.)
After some time, one develops a sense of what is possible and
what is not.

imgflip.com
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Not Straightforward

• Model may learn something completely different from what
you expect.

• First iterations of autoencoder learned the identity function.

• If data is not balanced, model may learn to always predict the most
common class.

• Requires some experience to identify and solve these problems.
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Not Straightforward (cont.)

• Lack of interpretability.
• It is not always clear why a model is not working.
• It is not always clear how to improve a model.

• Architecture selection is not straightforward.
• It is not always clear which architecture is the best for a given task.
• Loss, activation functions and size of network make a huge difference.
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Should you use Machine Learning?

Yes, but carefully.
• Try conventional techniques first.

• Stay there if you are happy with the results.
• Identify tasks that may benefit from Machine Learning.

• Pattern recognition
• Prediction

• Start with simple models before moving to Deep Learning.
• Specially if data is limited.
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Thank you
for your attention!
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