Native Actors — A Scalable Software Platform
for Distributed, Heterogeneous Environments

Dominik Charousset
dominik.charousset@haw-hamburg.de

iINET RG, Department Informatik
HAW Hamburg

Oct 2013

Agenda

Why Focus on Concurrency & Distribution?

Dominik Charousset iNET — HAW Hamburg

Challenges of Modern Systems

Developers face not one, but multiple trends:
m More cores on both desktop & mobile plattforms

Dominik Charousset iNET — HAW Hamburg 3

Challenges of Modern Systems

Developers face not one, but multiple trends:
m More cores on both desktop & mobile plattforms
m SIMD components: GPUs can vastly outperform CPUs

Dominik Charousset iNET — HAW Hamburg 3

Challenges of Modern Systems

Developers face not one, but multiple trends:
m More cores on both desktop & mobile plattforms
m SIMD components: GPUs can vastly outperform CPUs
m Cloud computing: “Infrastructure as a service”

Dominik Charousset iNET — HAW Hamburg

Challenges of Modern Systems

Developers face not one, but multiple trends:
m More cores on both desktop & mobile plattforms
m SIMD components: GPUs can vastly outperform CPUs
m Cloud computing: “Infrastructure as a service”
m Heterogeneous Environments: From motes to high-end servers

Dominik Charousset iNET — HAW Hamburg 3

Challenges of Modern Systems

Developers face not one, but multiple trends:

m More cores on both desktop & mobile plattforms

m SIMD components: GPUs can vastly outperform CPUs

m Cloud computing: “Infrastructure as a service”

m Heterogeneous Environments: From motes to high-end servers
= Parallelization, specialization & distribution

Dominik Charousset iNET — HAW Hamburg 3

Performance & Composability

In order to make use of parallel hardware, we need to ...
m Split application logic into many tasks

m Minimize overhead for launching tasks and collecting results

Dominik Charousset iNET — HAW Hamburg 4

Performance & Composability

In order to make use of parallel hardware, we need to ...
m Split application logic into many tasks
m Minimize overhead for launching tasks and collecting results

In order to compose systems, we need to ...
m Make use of distributed & heterogeneous resources

m Collect results transparently

Dominik Charousset iNET — HAW Hamburg

Performance & Composability

In order to make use of parallel hardware, we need to ...
m Split application logic into many tasks
m Minimize overhead for launching tasks and collecting results

In order to compose systems, we need to ...
m Make use of distributed & heterogeneous resources

m Collect results transparently

= Late binding of software components to resources

Dominik Charousset iNET — HAW Hamburg

Agenda

The Problem With Implicit Sharing

Dominik Charousset iNET — HAW Hamburg

The Problem With Implicit Sharing

m Implicit sharing is still the dominant programming model

m Multiple threads can share objects in process-wide memory
m Concurrent access to stateful objects needs synchronization
m Challenges are ...

Dominik Charousset iNET — HAW Hamburg 6

The Problem With Implicit Sharing

m Implicit sharing is still the dominant programming model
m Multiple threads can share objects in process-wide memory
m Concurrent access to stateful objects needs synchronization

m Challenges are ...

m Race conditions (“solved” by locks)

m Deadlocks/Lifelocks (caused by locks)

m Poor scalability due to queueing (Coarse-Grained Locking)
m High complexity (Fine-Grained Locking)

Dominik Charousset iNET — HAW Hamburg 6

The Problem With Implicit Sharing

m Implicit sharing is still the dominant programming model
m Multiple threads can share objects in process-wide memory
m Concurrent access to stateful objects needs synchronization

m Challenges are ...

m Race conditions (“solved” by locks)

m Deadlocks/Lifelocks (caused by locks)

m Poor scalability due to queueing (Coarse-Grained Locking)
m High complexity (Fine-Grained Locking)

m Locks are not composable

Dominik Charousset iNET — HAW Hamburg

Agenda

The Actor Model
m Benefits & Limitations
m libcppa — Actors in C++11

Dominik Charousset iNET — HAW Hamburg

The Actor Model

Actors are concurrent entities, that ...
m Communicate via message passing
m Do not share state
m Can create (“spawn”) new actors
m Can monitor other actors
m Can be freely distributed

Dominik Charousset iNET — HAW Hamburg

Benefits of the Actor Model

m High-level, explicit communication: no locks, no implicit sharing
m Applies to both concurrency and distribution

m Divide workload by spawning actors
m Network-transparent messaging

m Known to provide strong failure semantics (e.g. Erlang)

m A lightweight implementation allows millions of active actors

Dominik Charousset iNET — HAW Hamburg [¢]

Current Limitations of the Actor Model

m Actors have not yet entered the native programming domain

Dominik Charousset iNET — HAW Hamburg

Current Limitations of the Actor Model

m Actors have not yet entered the native programming domain
m Original actor model not ready for Internet scale

m Loosely coupled orchestration missing

m No semantics for contacting unknowns

m 1:1 communication only, no publish/subscribe layer
m Security model for loosely coupled systems undefined

Dominik Charousset iNET — HAW Hamburg 10

Current Limitations of the Actor Model

m Actors have not yet entered the native programming domain
m Original actor model not ready for Internet scale

m Loosely coupled orchestration missing

m No semantics for contacting unknowns

m 1:1 communication only, no publish/subscribe layer

m Security model for loosely coupled systems undefined
m Actor systems need to include heterogeneous components

m Lack of GPGPU programming support
m No transparent integration of specialized HW components

Dominik Charousset iNET — HAW Hamburg

Current Limitations of the Actor Model

m Actors have not yet entered the native programming domain
m Original actor model not ready for Internet scale

m Loosely coupled orchestration missing

m No semantics for contacting unknowns

m 1:1 communication only, no publish/subscribe layer
m Security model for loosely coupled systems undefined

m Actor systems need to include heterogeneous components

m Lack of GPGPU programming support
m No transparent integration of specialized HW components

m Actor systems not available for embedded systems

Dominik Charousset iNET — HAW Hamburg 10

libcppa — Actors in C++11

m libcppa is an actor system for C++11

Dominik Charousset iNET — HAW Hamburg

11

libcppa — Actors in C++11

m libcppa is an actor system for C++11

m Internal DSL for pattern matching of messages

Dominik Charousset iNET — HAW Hamburg

11

libcppa — Actors in C++11

m libcppa is an actor system for C++11

m Internal DSL for pattern matching of messages
m Efficient program execution

m Low memory footprint
m Fast, lock-free mailbox implementation

Dominik Charousset iNET — HAW Hamburg

11

libcppa — Actors in C++11

m libcppa is an actor system for C++11

m Internal DSL for pattern matching of messages
m Efficient program execution

m Low memory footprint
m Fast, lock-free mailbox implementation

m Targets both low-end and high-performance computing

m Embedded HW, e.g., running CRIOT
m Server systems & cluster

Dominik Charousset iNET — HAW Hamburg 11

libcppa — Actors in C++11

m libcppa is an actor system for C++11
m Internal DSL for pattern matching of messages

m Efficient program execution

m Low memory footprint
m Fast, lock-free mailbox implementation

m Targets both low-end and high-performance computing

m Embedded HW, e.g., running CRIOT
m Server systems & cluster

m Transparent integration of OpenCL-based actors

Dominik Charousset iNET — HAW Hamburg 11

Classes vs. Actors

class KeyValStore {
public:

void set(Key k, Val v);

Val get(Key k) const;
}s

Dominik Charousset iNET — HAW Hamburg

12

Classes vs. Actors

class KeyValStore { become (

public:
void set (Key k,

}7

Dominik Charousset

Val get(Key k) const;

on(atom("set"), arg_match)
>> [=](Key k, Val v) { },
Val v); on(atom("get"), arg_match)
>> [=](Key k) { }
)

iNET — HAW Hamburg

12

Classes vs. Actors

class KeyValStore
public:

void set (Key k,

}7

m Method invocation

Dominik Charousset

Val get(Key k) const;

{ become (
on(atom("set"), arg_match)
>> [=](Key k, Val v) { },
Val v); on(atom("get"), arg_match)
>> [=](Key k) { }
)

m Message passing

iNET — HAW Hamburg

12

Classes vs. Actors

class KeyValStore { become (
public: on(atom("set"), arg_match)
>> [=](Key k, Val v) { },
void set(Key k, Val v); on(atom("get"), arg_match)

}7

m Method invocation

m Race conditions likely

Dominik Charousset

Val get(Key k) const;

>> [=](Key k) { }
)

m Message passing

m Data race impossible

iNET — HAW Hamburg

12

Classes vs. Actors

class KeyValStore {
public:

void set(Key k, Val v);

Val get(Key k) const;
}s

m Method invocation

m Race conditions likely

m Concurrent performance
is a function of
developer skill

Dominik Charousset

become (
on(atom("set"), arg_match)
>> [=](Key k, Val v) { },
on(atom("get"), arg_match)

>> [=](Key k) { }

)

m Message passing

m Data race impossible

m Supports massively
parallel access &
remote invocation

iNET — HAW Hamburg

12

Agenda

A Performance Evaluation
m Overhead of Actor Creation
m Performance in a Mixed Scenario

m Matrix Multiplication

Dominik Charousset iNET — HAW Hamburg

13

Measurements

Benchmarks are based on the following implementations:

cppa C++ (GCC 4.7.2) with libcppa
scala Scala 2.10 with the Akka library
erlang Erlang 5.9.1

System setup:
m Two hexa-core Intel Xeon 2.27 GHz
m JVM configured with a maximum of 4 GB of RAM
m We vary the number of CPU cores from 2 to 12

Dominik Charousset iNET — HAW Hamburg 14

Overhead of Actor Creation

m Fork/join workflow to compute 2V

m Each fork step spawns two new actors
m Join step sums up messages from children
m Each actor at the leaf sends 1 to parent

m Benchmark creates ~ 1,000,000 actors (N = 20)

Dominik Charousset iNET — HAW Hamburg

15

Overhead of Actor Creation

25

20

—/\— scala

—/— erlang

—X—cppa

Dominik Charousset

6 8
Number of Cores [#]

iNET — HAW Hamburg

10

12

16

Overhead of Actor Creation

- 3500 r r
A 25th percentile 75th percentile
scala 3000+ 1stpercentile | 99th percentile T
) 2500 544 percenll)e Mean Median 95t>th percentile
£ 2000
n
3
~ @ 1500
- z a
- 5
- 2 1000
['4
0 r r r r 0 f ' J‘
2 4 6 8 10 12 cppa scala erlang

Number of Cores [#]

m All three implementations scale up to large actor systems
m Scala and Erlang remain almost constant from 8 cores onwards

m libcppa performs best, but slows down after 8 cores

Dominik Charousset iNET — HAW Hamburg

Performance in a Mixed Scenario

m Mixed operations under work load

m 20 rings of 50 actors each

m Token-forwarding on each ring until 1,000 iterations are reached
m 20 re-creations per ring

m One prime factorization per (re)-created ring to add work load

Dominik Charousset iNET — HAW Hamburg

17

Performance in a Mixed Scenario

—/\— scala

—/— erlang
—X—cppa

Dominik Charousset

Number of Cores [#]

iNET — HAW Hamburg

10 12

18

Performance in a Mixed Scenario

550 . T T T 300 T ; ;
500 —A—scala 4
4501 —7—erlang] 2504]

2004 1

@
=3
8
2 150 T 1
3
%]
5
3 1004 5 1
]
o =}
b 50 g
== I k
0 T r r r 0 ; 1 f
2 4 6 8 10 12 cppa scala erlang

Number of Cores [#]

m All three implementations exhibit comparable scaling behavior
m JVM performs compute-intensive tasks faster than Erlang's VM
m Tail-recursive prime factorization in Scala as fast as C++ version

m libcppa performs best & uses significantly fewer memory

Dominik Charousset iNET — HAW Hamburg

18

Matrix Multiplication

m Simple multiplication algorithm using three nested loops
m Implemented

m Using threads
m Using actors
m Using an OpenCL kernel

m C++ implementation is parallelized on the most inner loop
m Creates Rows-Columns threads or actors

Dominik Charousset iNET — HAW Hamburg

19

Matrix Multiplication

Setup: 12 cores, Linux, 1000x1000 matrices

Single-threaded 9.029s
Actors

OpenCL

Threads

Dominik Charousset iNET — HAW Hamburg

20

Matrix Multiplication

Setup: 12 cores, Linux, 1000x1000 matrices

Single-threaded 9.029s
Actors 2.428s
OpenCL
Threads

Dominik Charousset iNET — HAW Hamburg

20

Matrix Multiplication

Setup: 12 cores, Linux, 1000x1000 matrices

Single-threaded 9.029s

Actors 2.428s
OpenCL 0.288s
Threads

Dominik Charousset iNET — HAW Hamburg

20

Matrix Multiplication

Setup: 12 cores, Linux, 1000x1000 matrices

Single-threaded 9.029s

Actors 2.428s
OpenCL 0.288s
Threads exception: “std::system_error’;

per default, 1M threads are not supported

Dominik Charousset iNET — HAW Hamburg

20

Matrix Multiplication

Setup: 12 cores, Linux, 1000x1000 matrices

Single-threaded 9.029s

Actors 2.428s
OpenCL 0.288s
Threads exception: “std::system_error’;

per default, 1M threads are not supported

m Threads do not scale up to large numbers

m Number of actors only limited by available memory

Dominik Charousset iNET — HAW Hamburg 20

Agenda

Conclusion & Outlook

Dominik Charousset

iNET — HAW Hamburg

21

Conclusion

State of libcppa:
m Open source (GPLv2) in Version 0.7
m Hosted on GitHub since Mar 04, 2011
m Runs on GCC > 4.7 and Clang > 3.2 (Linux & Mac)
m Offers initial support for publish/subscribe communication

m Integrates OpenCL by creating actors from OpenCL kernels

Dominik Charousset iNET — HAW Hamburg 22

Conclusion

State of libcppa:
m Open source (GPLv2) in Version 0.7
m Hosted on GitHub since Mar 04, 2011
m Runs on GCC > 4.7 and Clang > 3.2 (Linux & Mac)
m Offers initial support for publish/subscribe communication

m Integrates OpenCL by creating actors from OpenCL kernels

Deployment:

m Cooperation with UC Berkeley (research group of Vern Paxson)
m Actor-based realtime intrusion detection system

m Ongoing negotiation to bundle 1ibcppa with Boost libraries
m Currently porting 1ibcppa to ARM & embedded systems

Dominik Charousset iNET — HAW Hamburg 22

Open Research Questions

m Distributed scheduling & load balancing

m Can one derive migration strategies from communication patterns?
m How to design a distributed workload management for actors?

Dominik Charousset iNET — HAW Hamburg 23

Open Research Questions

m Distributed scheduling & load balancing
m Can one derive migration strategies from communication patterns?
m How to design a distributed workload management for actors?
m Loosely coupled communication scenarios for actors
m How to define a scalable publish/subscribe layer for actors?
m How to orchestrate multiple independent actor systems?
m Which security design is appropriate for loosely coupled actors?
m How to propagate errors in non-hierarchical actor systems?

Dominik Charousset iNET — HAW Hamburg

Open Research Questions

m Distributed scheduling & load balancing
m Can one derive migration strategies from communication patterns?
m How to design a distributed workload management for actors?

m Loosely coupled communication scenarios for actors

m How to define a scalable publish/subscribe layer for actors?

m How to orchestrate multiple independent actor systems?

m Which security design is appropriate for loosely coupled actors?
m How to propagate errors in non-hierarchical actor systems?

m Message routing & composability

m How to define efficient routing of messages?
m How to process or transform types in in routed messages?
m How should errors be handled & reported?

Dominik Charousset iNET — HAW Hamburg

Publications

@ Dominik Charousset, Sebastian Meiling, Thomas C. Schmidt, and
Matthias Wahlisch.

A Middleware for Transparent Group Communication of Globally
Distributed Actors.

In Middleware Posters 2011, New York, USA, Dec. 2011. ACM, DL.

[3 Dominik Charousset, Thomas C. Schmidt, and Matthias Wahlisch.

Actors and Publish/Subscribe: An Efficient Approach to Scalable
Distribution in Data Centers.

In Proc. of the ACM SIGCOMM CoNEXT. Student Workshop, New
York, Dec. 2012. ACM.

[Dominik Charousset and Thomas C. Schmidt.
libcppa - Designing an Actor Semantic for C++11.
In Proc. of C++Now, 2013.

Dominik Charousset iNET — HAW Hamburg

Thank you for your attention!

Developer blog: http://libcppa.org
Sources: https://github.com/Neverlord/libcppa

iNET working group: http://inet.cpt.haw-hamburg.de

Dominik Charousset iNET — HAW Hamburg

25

Multiply Matrices

static constexpr size_t matrix_size = /*...x%x/;

// always rows == columns == matrix_size

class matrix {

public:
float& operator () (size_t row, size_t column);
const vector<float>& data() const;
//

private:
vector<float> m_data; // glorified vector

};

Dominik Charousset iNET — HAW Hamburg

26

Multiply Matrices — Simple Loop

matrix simple_multiply(const matrix& lhs,
const matrix& rhs) {
matrix result;
for (size_t r = 0; r < matrix_size; ++r) {
for (size_t ¢ = 0; ¢ < matrix_size; ++c) {
// each calculation can run independently
result(r, c) = dot_product(lhs, rhs, r, c);
}
}
return move (result);

}

Dominik Charousset iNET — HAW Hamburg

27

Multiply Matrices — std: :async

matrix async_multiply(const matrix& 1lhs,
const matrix& rhs) {
matrix result;
vector<future<void>> futures;
futures.reserve(matrix_size * matrix_size);
for (size_t r = 0; r < matrix_size; ++r) {
for (size_t ¢ = 0; ¢ < matrix_size; ++c)
futures.push_back(async(launch::async,
result(r, c) = dot_product(lhs, rhs,
13D

}
for (auto& f : futures) f.wait();
return move (result);

}

Dominik Charousset iNET — HAW Hamburg

{
[&,r,c] {
r, c);

28

Multiply Matrices — 1ibcppa Actors

matrix actor_multiply(const matrix& lhs,
const matrix& rhs) {
matrix result;
for (size_t r = 0
for (size_t c =
spawn ([&,r,c]
result(r, c

)

; ¥ < matrix_size; ++r) {
0; ¢ < matrix_size; ++c) {
{

) = dot_product(lhs, rhs, r, c);
}
await_all_others_done ();

return move (result);

}

Dominik Charousset iNET — HAW Hamburg

29

Multiply Matrices — OpenCL Actors

static constexpr const char* source = R"__(
__kernel void multiply(__global float* lhs,

__global float* rhs,
__global float* result) {

size_t size = get_global_size (0);

size_t r = get_global_id (0);

size_t ¢ = get_global_id(1);

float dot_product = 0;

for (size_t k = 0; k < size; ++k)

dot_product += lhs[k+cxsize] * rhs[r+k*size];

result [r+c*size] = dot_product;

Y__";

Dominik Charousset iNET — HAW Hamburg

30

Multiply Matrices — OpenCL Actors

matrix opencl_multiply(const matrix& lhs,
const matrix& rhs) {
// function signature

auto worker = spawn_cl<float* (float* ,floatx*)>(
// code, kernel name & dimensions
source, "multiply",
{matrix_size, matrix_sizel});

// ordinary message passing

send (worker , lhs.data(), rhs.data());

matrix result;

receive (on_arg_match >> [&] (fvec& res_vec) {

result = move(res_vec);
b
return move (result);

}

Dominik Charousset iNET — HAW Hamburg

31

Network Transparency

Node A Node B
I

Network

Dominik Charousset iNET — HAW Hamburg

Network Transparency

Node A

was made accessible via
network by calling

publish (actor2,

port)

middleman (MM)Q

transparently handles
network connections &

serialization

e

Network

Dominik Charousset

iNET — HAW Hamburg

32

Network Transparency

Node A Node B
Actor 1 ————— - — -

remateActor(host,port

e

| Network

Dominik Charousset iNET — HAW Hamburg

32

Network Transparency

Node A Node B
RN
1
1
:
Actor 2
Proxy

Network

Dominik Charousset iNET — HAW Hamburg

Network Transparency

Node A Node B
I

e

serialize deserialize

Network

Dominik Charousset iNET — HAW Hamburg

32

Network Transparency

Node A Node B
I

Actor 1
Proxy

deserialize

serialize

Network

Dominik Charousset iNET — HAW Hamburg

Network Transparency

Node A Node B
I

Actor 1
Proxy

deserialize

serialize

Network

Dominik Charousset

iNET — HAW Hamburg

32

Message Processing

?

receive
next
message

W :indu

Dominik Charousset

<\ pattern 1 matched M case 1
$ pattern 2 matched M case 2

|

]

s pattern N matched M case N

asle

os|o

9s|e

Typical actor loop

iNET — HAW Hamburg

33

Message Processing

receive
next

message

of
8|

attern 1 matched M

case 1

(y-—patem 2 e @
o

‘ et
of
gl
8|

m Messages are copy-on-write tuples of any size

m Messages are buffered at the actor in a FIFO-ordered mailbox
m Actors set a partial function f as (replaceable) message handler
m Runtime skips each message M if f(M) is undefined

m Unmatched (skipped) messages remain in the actor's mailbox
m Each receive operation begins with the oldest element

9sje

Dominik Charousset iNET — HAW Hamburg

33

Fault Tolerance — Linking Actors

o
(®)
o

alice

Dominik Charousset

< link

exit message
(non-normal exit reaso

quit()

iNET — HAW Hamburg

34

Fault Tolerance — Linking Actors

exit message
(non-normal exit reasol

quit()

m Actors can link their lifetime

m Errors are propagated through exit messages
m When receiving an exit message:

m Actors fail for the same reason per default
m Actors can trap exit messages to handle failure manually

m Build systems where all actors are alive or have collectively failed

Dominik Charousset iNET — HAW Hamburg

34

Performance for N:1 Communication

m 1 receiving actor
m 20 threads, each sending 1,000,000 messages

m Mailbox of receiving actor acts as a shared resource

Dominik Charousset iNET — HAW Hamburg

35

Performance for N:1 Communication

55 T T T T
504 —/\—scala
25 —/— erlang

| —>*—cppa

Time [s]

2 4 6 8 10 12
Number of Cores [#]

Dominik Charousset iNET — HAW Hamburg

36

Performance for N:1 Communication

50 —/—scala
] ——erlang
—<cppa

Number of Cores [#]

m libcppa exhibits no concurrency penalty for up to 12 cores
m Erlang is at best 2—-3 times slower than 1ibcppa

m Akka's scheduling suboptimal for N:1 communication

Dominik Charousset iNET — HAW Hamburg

Partial Functions in 1ibcppa

partial function f {
on("hello") >> [] {
cout << "hello!" << endl;

by

on(atom("hello™)) >> [] {

cout << "atom(hello)!" << endl;
b
on_arg match >> [] (int a, int b) {

cout << a << ", " << b << endl;

I

on("hello", arg match) >> [] (const string& name) {
cout << "hello " << name << "!I" << endl;

}
b

assert (not f (make any tuple(42)));
assert (f (make any tuple("hello")));

Dominik Charousset iNET — HAW Hamburg 37

Partial Functions in 1ibcppa

partial function f {
(on("hello™)) >> ({1 {)

cou€\5< "hello!™" 2<\33fij
Yo

matches tuples with }"~ [callback that should be
one (string) element of 1191 invoked on a match; could
value "hello" take a string as argument

(in

cout << a << ", " << b << endl;

I

on("hello", arg match) >> [] (const string& name) {
cout << "hello " << name << "!I" << endl;

}
b

assert (not f (make any tuple(42)));
assert (f (make any tuple("hello")));

Dominik Charousset iNET — HAW Hamburg

Partial Functions in 1ibcppa

partial function f {
on("hello") >> [] {
cout << "hello!" << endl;
I
(on(atom("hello"))) >> [] {
cout <<\<atom(hello)!" << endl;
by

int b) {

atoms are constants, calculated
< endl;

at compile time from short
strings (max 10 characters)

— [] (const string& name) {
cout << "hello " << name << "I" << endl;

b

assert (not f (make any tuple(42)));
assert (f (make any tuple("hello")));

Dominik Charousset iNET — HAW Hamburg 37

Partial Functions in 1ibcppa

partial function f {
on("hello") >> [] {
cout << "hello!" << endl;
br

on(atom("hello™)) >> [] {

cout << "atom(hello)!" << endl;
I
(on_arg match)>> [](int a, int b) {

cout X< a << ", " << b << endl;
I

deduce types from callback [] (const stringé& name) {
. . << "I << endl;

signature = match tuples with

two integers

assert (not f (make any tuple(42)));
assert (f (make any tuple("hello")));

Dominik Charousset iNET — HAW Hamburg 37

Partial Functions in 1ibcppa

partial function f {
on("hello") >> [] {
cout << "hello!" << endl;
br

22 '] L

deduce second half of types from
callback signature = match tuples with
two strings if first element is "hello"

{
cout << a <K ", " <K< b << endl;

},

(on("hello", arg match)) >> [] (const string& name) ({
cout << "hello " << name << "!I" << endl;

}
b

assert (not f (make any tuple(42)));
assert (f (make any tuple("hello")));

Dominik Charousset iNET — HAW Hamburg 37

Partial Functions in 1ibcppa

partial function f {

on("hello™) >> [] {
cout << "hello!" << endl;

b

on(atom("hello™)) >> [] {
cout << "atom(hello)!" << endl;

b

on_arg match >> [] (int a, int b) {
cout << a << ", " << b << endl;

libcppa's pattern matching is defined
only for any tuple, because it requires
runtime type information

st string& name) {
" << endl;

assert (not f (make any tuple)(42)));
assert (f (make any tuple("hello")));

Dominik Charousset iNET — HAW Hamburg 37

Minimal Actor Example

void math server() {
become (
on(atom("plus"), arg match) >> [] (int a, int b) {

reply(atom("result"), a + b);
}
) ;
}
void math client (actor ptr ms) {
sync_send (ms, atom("plus"), 40, 2).then(
on(atom("result"), arg match) >> [=] (int result) {
cout << "40 + 2 = " << result << endl;
}
) ;
}
int main () {
spawn (math client, spawn(math server));

//

Dominik Charousset iNET — HAW Hamburg

38

Minimal Actor Example

void math server () {
ontatom("plus"), arg match) >> [](int a, int b) {
reply (atom("result"), a + b);

set partial function as message
handler; handler is used until
replaced or actor is done

v — — ms) |
sync_send (ms, atom("plus"), 40, 2).then(
on(atom("result"), arg match) >> [=] (int result) {
cout << "40 + 2 = " << result << endl;

)7
}

int main () {
spawn (math client, spawn(math server));

//

Dominik Charousset iNET — HAW Hamburg 38

Minimal Actor Example

void math server () {
become (
Lot oo duna) match) >> [](int a, int b) {
send a message and then |, = . | 1),

wait for response
(using a "one-shot handler")

on(atom("result"), arg match) >> [=] (int result) {
cout << "40 + 2 = " << result << endl;
}
) ;
1
int main() {
spawn (math client, spawn(math server));
//

Dominik Charousset iNET — HAW Hamburg

38

Minimal Actor Example

become (

on(atom(\'plus"), arg match) >> [](int a, int b) {

a + b);

this actor "loops" forever
(or until it is forced to quit)
}
void math client (actor ptr ms) {

sync_send (ms, atom("plus"), 40, 2).then(

on(atom("result"), arg match) >> [=] (int result) {
cout << "40 + 2 = " << result << endl;
}
) ;
1
int main() {
spawn (math client, spawn(math server));
//

Dominik Charousset iNET — HAW Hamburg

38

Minimal Actor Example

void math server() {
be

L

messages
) ;

}
void(math client
sync_send(ms, atom(
on(atom("result")
cout << "40 + 2

) ;
}
int main () {
spawn (math client,

//

Dominik Charousset

this actor sends one
message and receives one

ch) >> [](int a, int b) {
a + b);

(actor ptr ms) {

"plus"), 40, 2).then(
, arg match) >> [=] (int result) {
= " << result << endl;

spawn (math server)) ;

iNET — HAW Hamburg

38

Minimal Actor Example

void math server() {
become (
on(atom("plus"), arg match) >> [] (int a, int b) {

reply(atom("result"), a + b);
}
)
}
void math client (actor ptr ms) {
sync_send (ms, atom("plus"), 40, 2).then(
Lozl L=t g _match) >> [=] (int result) {
<< result << endl;

usage example

}

int main () {
(spawn(math client, spawn (math server))a

//

Dominik Charousset iNET — HAW Hamburg

38

	Why Focus on Concurrency & Distribution?
	The Problem With Implicit Sharing
	The Actor Model
	Benefits & Limitations
	libcppa – Actors in C++11

	Performance Evaluation
	Overhead of Actor Creation
	Performance in a Mixed Scenario
	Matrix Multiplication

	Conclusion & Outlook

