

Can Your Phone Trust Your Friend Selection?

Trust establishment in mobile phone ad-hoc networks

Sebastian Trapp, Matthias Wählisch, Jochen Schiller sebastian.trapp@fu-berlin.de

HAW Hamburg, 27.09.2011

Why ad-hoc communication with mobile phones

- Reliability
- Performance
- Security

Example scenario

- Using private Wifi without asking for the key

Private Wifi

Problem statement

- In ad-hoc communication all data is relayed via other devices
- Possible attacks
 - 1. Eavesdropping
 - 2. Data manipulation
 - 3. Packet dropping
- End-to-end encryption prevents (1) and (2)
- But: No prevention against (3)
 - Every relay can drop packets
 - Ad-hoc network will be unfeasible
- → Identifying trustworthy neighbors

Common approaches to assign trust

Through Authentication

- Idea: Derive trust from ID / group-ID
- Problem: Contradicts ad-hoc scenario
 - Central instance may not be available
 - Pre-shared secrets between all mobile phones unrealistic

Through Reputation

- Idea: Assign trust to well-behaving mobiles
- Problem: Slow and inaccurate prediction
 - Time consuming
 - Intention hiding problem
 - Phones can pretend to behave well until trust is established

Anything else?

A new way of trust establishment

Initial trust between mobiles has to be established...

- ...not using a central instance
- ...not relying on pre-shared secrets
- ...within a short timespan

Our idea - socially inspired trust

- Ad-hoc trust establishment based on local data
- Defining trust not technically but socially
- Using the user's social network

→ Finding phones of friends or friends of friends

Towards sociological trust establishment

Finding phones of friends or friends of friends

Example: Sending someone to deposit money for you.

Who would you entrust with your cash?

- Family member?
- Acquaintance?
- Friend of trusted friend?
- Stranger?

Depends on relationship

Data about the user's social network already inherent in phones

- Contact lists
 - Phone book, email directory, online social network (OSN) friends
- Interaction logs

How to find phones of friends?

Concept

- 1. Compare contact lists
 - Exchange and analyze contact lists between two nearby phones
 - Use of unique attributes of contacts
 - E.g.: phone numbers, email addresses, OSN IDs
- 2. Evaluate mutual contacts
 - Autonomous analysis on each phone
 - Mutual attributes indicate mutual contacts
 - Weight information based on
 - Quantity and
 - Quality of mutual contacts

Evaluating mutual contacts

Quantity

- How many mutual contacts are there?
 - (Weak) indication for closeness of two users
- Find out if users associate with the same groups of people

Quality

- Who are the mutual contacts?
 - Trusted friends can enhance trust towards the other user
- Assign a weight to mutual contacts

Tie Strength – Weighting interpersonal relationships

- Sociological concept introduced by Granovetter in 1973
- Range from weak ties (acquaintances) to strong ties (trusted friends, family)
- Classification based on
 - duration of relationship
 - intensity and intimacy of communication

Classification of mutual contacts

Classifiers

- Duration of relationship
 - Long lasting relationships → stronger tie
 - Indicator can be date of first contact
- Intensity and intimacy of communication
 - Vivid exchange of messages or calls → stronger tie
 - Time of last contact
- Type of entries
 - OSN friends → weaker tie
 - Becoming "friends" is typically effortless, no contact needed
 - Phone number or email address → stronger tie
 - More action required
 - If added automatically, initial contact has taken place
- Number of mutual entries per contact
 - different entries of the same kind → stronger tie
 - e.g., work, private mobile and landline phone number

Measurement-based analysis

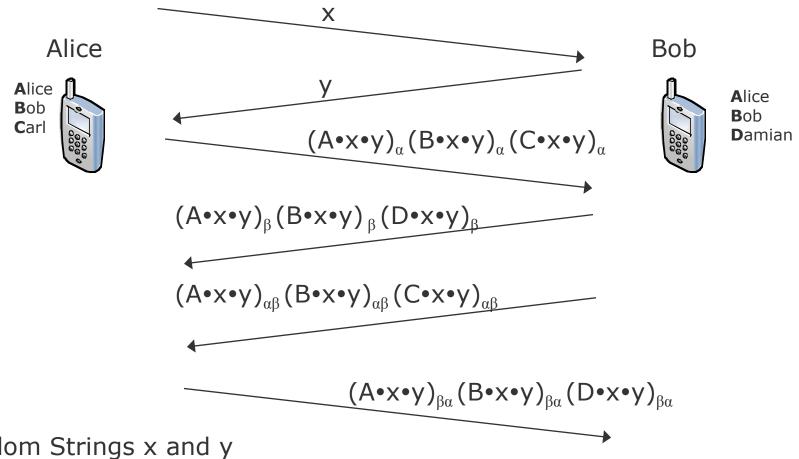
Setup

- 12 contact lists of friends and colleagues (Android and iOS devices)
 - Subjects belong to 4 different social groups
- Phone numbers and email addresses
- No logs (quantitative analysis only)
- Comparison of contact lists
 - Mutual entries can be identified this way

Results

- Contact list sizes vary greatly
 - By one order of magnitude (48 to 496 entries)
- Social groups are represented in mutual contacts
 - Within one group high numbers of mutual contacts
 - Between groups hardly no mutual contacts
- About 11 kB traffic
 - Ø 240 contacts, 3 entries per contact and 128 bit hash function
 - Around 1 second transmission time on first generation Bluetooth

Technical implementation


Preparation of entries

- Exclusion of business contacts, hotlines, ...
- Normalization of numbers and email addresses
 - E.g., 0800-..., +4940-8382313

Exchange of contact lists

- Near field communication technology
 - E.g., Bluetooth
- Commutative encryption
 - All data transmitted is encrypted
 - Eavesdroppers gain no contact information
 - The communication partners only know the identity of mutual contacts

Contact list exchange

Random Strings x and y

Concatenation operator •

Secret private keys α and β

Commutative encryption: $A_{\alpha\beta} = A_{\beta\alpha}$

Freie Universität Berlin

Roundup

A new way to establish trust between smartphones

- Ad-hoc
 - Initial level of trust can be assigned at first interaction
- Autonomous
 - Utilizing solely the social network data inherent to mobile phones
- Reciprocal
 - Relaying node can simultaneously evaluate its incentives

But there are still open questions...

Freie Universität Berlin

Discussion I

Possible attacks

- The users learn about the reciprocal selection of contacts
 - → Randomization of encrypted contacts
 - → Marking of sensible contacts
- An attacker can gather social information in advance
 - → Avoid "phone book attack" by limiting contacts to compare
- The device of a friend is compromised
 - Malware or theft
 - → Grouping contacts by risk

Discussion II

Intense communication is not a good indicator for closeness

- Could also point to ongoing conflict
- → More likely to denote close relationship [Gilbert'09]
 - Especially if duration of relationship is long

Not all mutual contact entries can be identified

- No false positives
- Prediction less optimistic
- → no security risk

Conclusion and outlook

New concept to assign initial trust

- Establishing trust between technical devices on a sociological basis
 - Based on the user's social network data available on mobiles
- Autonomous and spontaneous
 - No central instance necessary
 - Every phone make its own decision

Next steps

- More detailed evaluation
 - Ongoing implementation
- Defining a metric to assign trust based on tie strength
- Expand idea to other application scenarios
 - Similar set of data available on most home PCs
 - Automatic friends suggestions or creation of group of close friends

Research Agenda

Tie Strength

- Defining an absolute or relative scale
- Accuracy of characterization of real-life relationships
- What more observable phenomena can be used

Assigning trust

- Metric for deriving trust out of tie strength

Analyzing logs

- Time interval to observe for reliable information

Commutative encryption

Encryption function based on Diffie-Hellman key exchange

$$E_K(m) = h(m)^K \mod p$$

- p = 2q + 1, with p, q prime
- к Element of 1, 2, ..., q-1
- h hash function

Commutative character

$$F_k(x) = x^k \mod p$$

$$F_{kh}(x) = (x^k \mod p)^h \mod p = x^{kh} \mod p = (x^h \mod p)^k \mod p = F_{hk}(x)$$