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PROJECT MINDSTONE 

  



Project Mindstone 

 Central goal:  

Content-centric contextual learning in social 

networks 

 Point of departure: 

 Conversational enthusiasm in social networks  

 Computer-assisted knowledge acquisition   

 Peer-centric, lightweight communication 

technologies 



Learning & the Internet-Paradigm 

 Information is available 

 Everywhere, every time 

 Information access is easy & fast 

 Unlimited, targeted, immediate & straightforward 

 User actions follow an End-to-End paradigm 

 Intermediate regulation or mediation alienates 

 Search & adaption remains self-determined 

 Personal trails through the net  

 Tools act as interfaces & (group) identifiers 



eLearning Content –  

 Traditional Management 

 Learning Management System (LMS) manages 

 Download of scripts 

 Lecture recordings 

 Course composed like instructional films 

 Navigation serves as instructional design … 

 

 Large, monolithic, rigid … directed  

 Sender-oriented … impersonal 

 



Aspects & Mindstones  

Content  
Repositories 

 Online 
Social  

Networks 

Mobile  
Interactive 

Technologies 

Incentives 



Online Social Networks (OSN) 

Integration 

 Develop a metric based approach in  

online social network (OSN) to measure 

 Distance in the sense of learning 

 Learning goal closeness 

 Learning style based group forming 

 

  



SOCIAL NETWORK 

INTEGRATION 

 



Online Social Networks (OSN) 

 Two anchor points   

 The people involve (presence and relations) 

 Topics in focus (network of content bricks) 

 Can we integrate traditional learning approaches 

into social platforms?  

 Requires view on external contents 

 Requires incentives „learning as part of living” 

 Programming interfaces available ( Facebook) 



Integration Approach 1/2 

 Create LMS integration for online social network 

 Allows automatic measurements to asses 

learning goals or find collaborators 

 Measure from data persisted in social networks 

which learning style a user prefers 

 Find metrics which determine the “distance” 

between user in the sense of learning 

 Propose each user that someone is learning on the 

same topic 

 

 



Integration Approach 2/2 

 Allow metric result to be used by and metric 

input data gathered from social „apps“ 

 M-Learning 

 E-Learning 

 Virtual Classroom (through chat…) 

 Serious games (game apps, like the sims social) 

 

 



Current Research 

 No research community in online social network 

learning 

 Research is done in 

 Computer-supported Collaborative learning (CSCL)  

 Adaptive Educational Hypermedia (AEH) 

 Both research areas discuss taxonomies / metrics to 

qualify 

 Learning style and skill recognition 

 Group forming  

 



Learning Styles 

 Learning style are widely used to adapt content 

or form group 

 Widely accepted Learning style theory by Felder 

and Silverman [1]  

 4 Dimensions which can be qualified numerical 

 Scale between –11 and +11 per dimension 

 Questionnaire is mostly used to calculate the 

dimension 

 

 



Felder & Silverman Dimension 

[2] 



COMPUTER SUPPORTED 

COLLABORATIVE LEARNING 



CSCL 

 Computer-supported collaborative Learning (CSCL) aims 

to allow students to learn in a group of physically 

distributed students 

 It is focused on the learning experience 

 „Possibility of improving collaborative learning by 

grouping students in specific ways“ and „set of good 

rules for grouping students could be different for 

distinct disciplines“ [3] 

 



Learning Style Usage in CSCL 

 Common to all approaches in CSCL research is 

measurement of certain key indicators to form a group 

of collaborator 

 Often, learning style (e.g. Felder and Silverman theory) 

is a measure to achieve automatic grouping 

 



One‘s Decision to Collaborate 1/3 

 “Quantitative model of once decision to collaborate with 

others” [4] 

 Available input to implement mechanism in adaptive 

system 

 Core skills i = skills of all users at time I 

 A = Set of actions enable user to collaborate with others 

 Completion Quality = yield a payoff for the user 

 Observation = User does not know his skills and 

communication abilities – has to be measured  

 

 



One‘s Decision to Collaborate 2/3 

[4] 



One‘s Decision to Collaborate 3/3 

 Observations a often done using questionnaires 

 OSN integration should not require manual 

input 

 Wouldn‟t allow evenly benchmark of each user 

 Wouldn‟t fit to a automatic proposal mechanism 

 Wouldn‟t allow the user to evolve over time 

 Techniques for automatic benchmarking / 

measurements are required 



Measuring Through User 

Interaction 1/2 

 [5] measures cognitive style by 

eye gaze movement 

measurement 

 Imager (above) and verbalizer 

(below) (visual <-> verbal) 

 Tested in Adaptive System 

Adaptive Web 

 “Adaptive Web generally shows 

correlation between of match 

conditions and performance“ [6] 

 

[tlgms-eauca-09]  



Measuring Through User 

Interaction 2/2 
  [7] presents an approach to 

link mouse movement patterns 

to learning style 

 The result of the study found  a 

correlation between global / 

sequential of Felder and 

Silverman dimensions [1] and 

the mouse movement 



Measuring Through User 

Interaction 2/2 
  [7] presents an approach to 

link mouse movement patterns 

to learning style 

 The result of the study found  a 

correlation between global / 

sequential of Felder and 

Silverman dimensions [1] and 

the mouse movement 



Neural Networks 1/2 

 [8] Felder – Silverman model 

 Artificial Neural Networks (ANN) 

 One Input neurons per action in system: 

 Reading material, access to examples, answer changes, 

exercises, exam delivery time, exam revision, chat usage, 

mail usage forum usage, information access (linear or 

random) 

 Generalized Delta Rule (GDR) for weight adjustment 



Neural Networks 2/2 

 24 Neurons in hidden layer 

 Network is trained by simulated student data 

 Students learning style 

 Access to certain resources according to his learning style 

 Best accuracy 69,3 % 



Group Cohesion 

 Group cohesion to describes the quality of collaboration 

 [9] use lexical markers to determine group cohesion 

 First Person Singular (FPS) “I”, Second Person Plural 

(SPP) “you”, First Person Plural(FPP) “we” 

 Number of occurrence of FPP implies group cohesion 

 Could be used to gather input data from chat in OSN 



Team Formation  1/5 

 [10] proposes a team composition discovery metric 

 Aim: Find optimal team to solve a problem 

 Could be used to distribute good learning matches 

among possible candidates 

 Aspects 

 Skills: sum of all involvements to a certain activity 

 Interaction Distance: count(collaboration in joint activities) 

 Load: true or false 



Team Formation  2/5 

Proposed algorithm is related to determine a clique in a 

weighted graph  paper proves NP completeness 

 Heuristics based genetic algorithms and simulated 

annealing 

[10]  



Team Formation  3/5 

 Genetic algorithm 

 

[10]  



Team Formation  4/5 

 Simulated annealing 

 

[10]  



Team Formation  5/5 

 Expert selection function 

 Traverse search space in short time 

 Find similar neighboring configuration 

 A evaluation in [10] figures out that 

 GA is better than SA for smaller worlds  

 Runtime of GA depends on population size 

 



ADAPTIVE SYSTEMS 



Adaptive Educational 

Hypermedia (AEH) 

 AEH Systems try to adapt learning content 

(presentation) to the learners need 

 Issue: “It does seem that personalization to show a 

statistically significant benefit in educational systems is 

much harder to create than first envisaged” [11]  

 Adaption is done by analyzing knowledge, learning style 

cognitive style 

 Measurements can be used for social network metric 

 

 



Knowledge Estimation 1/2 

 AEH-System LS-Plan [12]  



Knowledge Estimation 2/2 

 Student model (SM) consist of 

 Learning Style (LS): Felder and Silverman model 

 Cognitive State (CS): Each Knowledge item 

processed by the student in a given domain 

 Student models are updated after student 

studies a learning object 

 [12] proposes update CS through questionnaires 

and access time of learning objects 

 Access Time could be measured by OSN analysis 

 



Predict User Interest 1/2 

 Usage mining, e.g. done by [13] 

 Information measured: Total Access Time, Most 

Recently Used, Most Frequently Used 

 Collaborative Filtering: infer from other users„  

measured information possible future interest of 

current user 



Predict User Interest 2/2 

 Architecture image from[13] 

 

 

 

 

 

 

 

 Case Study shows “small error on prediction” 

 Possible OSN metric 



MINDSTONE DEMONSTRATOR 

IMPLEMENTATION 



Development Idea 

 Create a social network based or integrated LMS 

 2 Approaches 

 Integration into existing social network (FB, G+) 

 Modifying of an open source social networking 

engine (Diaspora) 

 Open Problem: Data acquisition 

 



Data Acquisition 1/4 

 Social networks differ from closed communities like 

moodle  

 # of users  

 Connection and communication between users 

 Research interest in mass data analysis to use synergies 

in large user groups 

 Privacy and legal issues avoid simple fetching of the 

user graph 



Data Acquisition 2/4 

 Studies require graph data from social network 

 Can be gathered from real instances 

 Facebook Graph API 

 Upcoming Google+ API 

 Can be created and load to a OSN database 

 Currently possible with FOS Diaspora  

 



Data Acquisition 3/4 

 [14]propose an algorithm that creates a graph similar to 

real-world graphs  

 Metrics are used to determine differences between real-

world and simulated data 

 Degree Distribution: Power Law exponent of distribution 

 Diameter & Average Path length 

 Clustering: ij and jk linked: P(ik)? 

 Betweenness Centrality: # of occurrences of a node in the 

shortest path between other nodes 



Data Acquisition 4/4 

 Metrics are used to determine differences between real-

world and simulated data (continuation of 3/4) 

 Assortativity Coefficient: Similarity factor of degrees of 

neighbors 

 Comparison results in [14] 



Resume 

 Research of integration into social networks is needed to 

 Connect people learning on the same topic 

 Propose learning topics based on communication 

 Ensure completeness and consistency of learned information 

 It is required to transfer research in CSCL and AEH to 

online social network learning technologies by 

 Modify techniques of both areas to fit into OSN paradigms 

 Develop a experimental software platform to 

 Test techniques 

 Find most appropriate OSN implementation 

 Use the platform to make studies with students 

 



Thank You – Questions? 

Contact: 

 

HAW Hamburg 

hendrik.roreger@haw-hamburg.de  

 

 

Further Information: 

http://mindstone.hylos.org 

http://www.haw-hamburg.de/inet  
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