

IoT Content Object Security with OSCORE and NDN: A First Experimental Comparison IFIP Networking 2020, Paris

Cenk Gündoğan¹ Christian Amsüss

Thomas C. Schmidt¹ Matthias Wählisch²

¹HAW Hamburg ²Freie Universität Berlin

cenk.guendogan@haw-hamburg.de

christian@amsuess.com

t.schmidt@haw-hamburg.de

m.waehlisch@fu-berlin.de

Constrained IoT devices

Content Object Security

Prominent feature in information-centric architectures

- Content objects securely cacheable
- Slowly transitions into host-centric world

Session Security vs. Object Security

Protocol Performance

Conclusion & Outlook

Session Security vs. Object Security

Session Security: CoAP over DTLS 1.2

Sensor nodes

host-centric

HTTP	CoAP			
TLS	DTLS			
ТСР	UDP			
IP	v6			
6LoWPAN				
802.15.4, BI	_E, LoRa,			

E2E protection is harmed

Object Security: CoAP + OSCORE

10 / 41

Object Security: Named Data Networking

Comparison of Security Properties

	(NDN	
	DTLS	OSCORE	Protected
Request Message			
Integrity	\checkmark	\checkmark	(🗸)
Authenticity	\checkmark	\checkmark	(🗸)
Confidentiality	1	1	× *
Response Message			
Integrity	\checkmark	\checkmark	1
Authenticity	\checkmark	\checkmark	1
Confidentiality	\checkmark	1	x *

* provided on application layer

Research Question

Is OSCORE the better alternative for secure networking in the IoT?

Protocol Performance

Testbed Setup

Hardware M3 node in IoT Lab testbed, IEEE 802.15.4

Software RIOT with tinyDTLS, libOSCORE, CCN-lite

Topology Single- & Multi-hop

		C	NDN			
	DTLS		OSCORE		Protected	
	Request	Response	Request	Response	Request	Response
Structure Context ID Nonce MAC						

		C	NDN				
	[DTLS		OSCORE		Protected	
	Request	Response	Request	Response	Request	Response	
Structure	11	11					
Context ID	2	2					
Nonce	8	8					
MAC	8	8					

		C	NDN			
	DTLS		OSCORE		Protected	
	Request	Response	Request	Response	Request	Response
Structure	11	11	4	3		
Context ID	2	2	1	0		
Nonce	8	8	1	0		
MAC	8	8	8	8		

		C	NDN			
	[DTLS	05	SCORE	Protected	
	Request	Response	Request	Response	Request	Response
Structure	11	11	4	3	-	5
Context ID	2	2	1	0	-	1
Nonce	8	8	1	0	-	0
MAC	8	8	8	8	_	40

Protocol overhead in bytes compared to unsecured protocol variants

OSCORE leverages CoAP features to reduce overhead

MAC	8	8	8	8	-	40

- Message retransmissions are frequent in low-power regimes
- **CoAP:** Application layer retransmissions
- NDN: Network layer retransmissions

- Message retransmissions are frequent in low-power regimes
- **CoAP:** Application layer retransmissions
- NDN: Network layer retransmissions

- Message retransmissions are frequent in low-power regimes
- CoAP: Application layer retransmissions
- NDN: Network layer retransmissions

- Message retransmissions are frequent in low-power regimes
- CoAP: Application layer retransmissions
- NDN: Network layer retransmissions

- Message retransmissions are frequent in low-power regimes
- **CoAP:** Application layer retransmissions

DTLS session layer generates higher load on retransmissions

Protocol Latencies

- DTLS: security association with 5-tuple: (IP_{src}, Port_{src}, IP_{dst}, Port_{dst}, Protocol)
- Frequent endpoint changes or loss of session state leads to handshakes
- **Setup:** requests change endpoint information with probability of 20%

Protocol Latencies

- DTLS: security association with 5-tuple: (IP_{src}, Port_{src}, IP_{dst}, Port_{dst}, Protocol)
- Frequent endpoint changes or loss of session state leads to handshakes
- **Setup:** requests change endpoint information with probability of 20%

Protocol Latencies

DTLS security association with 5-tunle (IP. Port. IP., Port., Protocol)

Session establishment requires slow security handshakes

Completion Time [ms]

150

Conclusion & Outlook

Takeaways

- OSCORE brings a lean object security to the constrained IoT
- NDN has a higher reliability due to hop-wise caching
- CoAP over DTLS 1.2 has an expensive session overhead

Next Steps

- Extend OSCORE with caching capabilities
- Explore a RESTful information-centric Web of Things

Thank You!

We support reproducible research.

https://github.com/inetrg/IFIP-Networking-2020

Backup

IEEE 802.15.4

Low-rate and low-power wireless personal area networks

Radio Properties

- Max physical packet size: 127 bytes
- Theoretical bandwidth: 250 kbit/s
- Range: \approx 10 200 meters

Media Access Control Layers

- Unslotted CSMA/CA + timeout-based acknowledgements
- Time slotted channel hopping (TSCH)

DTLS Enhancements

- Connection Identifiers (draft-ietf-tls-dtls-connection-id-07)
- DTLS 1.3 (draft-ietf-tls-dtls13-38)
 - Optimized record layer encoding and shorter header sizes
 - New handshake pattern with shorter message exchange
 - New session resumption mechanism

- Name-based routing & hop-wise forwarding
- In-network caching & object security
- Current research indicates higher reliability for IoT

- Name-based routing & hop-wise forwarding
- In-network caching & object security
- Current research indicates higher reliability for IoT

- Name-based routing & hop-wise forwarding
- In-network caching & object security
- Current research indicates higher reliability for IoT

- Name-based routing & hop-wise forwarding
- In-network caching & object security
- Current research indicates higher reliability for IoT

Secured multi-source & multi-destination

RIOT Network Stack

CoAP / DTLS

- gCoAP over sock_dtls
- tinyDTLS package

CoAP / OSCORE

- gCoAP with OSCORE
- libOSCORE package

NDN

- NDN over netapi
- CCN-lite package

Authenticated Encryption with Associated Data

Encryption

Input: plaintext + key + optional plaintext header Output: ciphertext + authentication tag

Decryption

Input: ciphertext + key + authentication tag + optional plaintext header Output: plaintext + authentication result