
CAF - The C++ Actor Framework for

Scalable and Resource-efficient Applications

Dominik Charousset, Raphael Hiesgen, and Thomas C. Schmidt
{dominik.charousset,raphael.hiesgen,t.schmidt}@haw-hamburg.de

Dept. Computer Science
Hamburg University of Applied Sciences

Germany

October 2014, AGERE!@SPLASH

Previous Work

Implemented native actor library libcppa actor library in C++
Target at both high-performance and embedded environments
Allow millions of lightweight actors

Extended the actor model with publish/subscribe semantics
Original actor model only foresees 1:1 communication
Internet scale requires loose coupling

Support heterogeneous hardware components
GPUs can outperform CPUs by orders of magnitude
Transparent integration of OpenCL allows flexible deployment

Dominik Charousset iNET – HAW Hamburg 2

Rebranding & Modularization

Our approach to a growing userbase with diverse requirements:
Move from a monolithic library to an open framework
Split functionality into (optional) modules
Enable customization via extensible framework structure
Central project homepage1 linking to all activities

1
http://actor-framework.org

Dominik Charousset iNET – HAW Hamburg 3

Agenda

1 Type-safe Message Passing

2 Scheduling Infrastructure

3 Runtime Inspection & Debugging

4 Conclusion & Outlook

Dominik Charousset iNET – HAW Hamburg 4

Agenda

1 Type-safe Message Passing

2 Scheduling Infrastructure

3 Runtime Inspection & Debugging

4 Conclusion & Outlook

Dominik Charousset iNET – HAW Hamburg 5

Problem of Dynamic Typing

The original model2 defines actors in terms of
(Untyped) message passing primitives
Pattern matching

) Extensive integration testing required
Coding errors occur at runtime
Non-local dependencies are hard to track manually

2Carl Hewitt, Peter Bishop, and Richard Steiger. A Universal Modular ACTOR Formalism for Artificial
Intelligence.
In Proceedings of the 3rd IJCAI, pages 235–245, San Francisco, CA, USA, 1973. Morgan Kaufmann
Publishers Inc.

Dominik Charousset iNET – HAW Hamburg 6

Type-safe Message Passing

Lift type system of C++ and make it applicable to actor interfaces
Compiler statically checks protocols between actors
Protocol violation cannot occur at runtime
Compiler verifies both incoming and outgoing messages:
using math =

typed_actor <

replies_to <int , int >::with <int >,

replies_to <float >::with <float , float >>;

// ...

auto ms = typed_spawn (...);

sync_send(ms, 10, 20). then(

[](float result) {

// compiler error: result is int , not float

}

);

Dominik Charousset iNET – HAW Hamburg 7

Agenda

1 Type-safe Message Passing

2 Scheduling Infrastructure

3 Runtime Inspection & Debugging

4 Conclusion & Outlook

Dominik Charousset iNET – HAW Hamburg 8

Scalability of Scheduling

CAF aims at scaling to millions of actors on hundreds of processors
Actors cannot be implemented (efficiently) as threads
Running in userspace prohibits preemption
Classical thread pool or centralized scheduler has limitations

Central job queue is a bottleneck per se
Short-lived tasks cause significant runtime overhead
Could schedule actors for real-time with a priori knowledge 3

3M.L. Dertouzos and AK. Mok. Multiprocessor Online Scheduling of Hard-Real-Time Tasks.
Software Engineering, IEEE Transactions on, 15(12):1497–1506, Dec 1989

Dominik Charousset iNET – HAW Hamburg 9

Centralized Scheduling Issue

Divide & conquer: 220 actors with libcppa (central scheduling, 2013)

2 4 6 8 10 12
0

5

10

15

20

25

Ti
m

e
[s

]

Number of Cores [#]

 libcppa
 scala
 erlang

libcppa reached maximum performance
on 8 cores for divide & conquer algorithms

Dominik Charousset iNET – HAW Hamburg 10

Scheduling Approaches

Active dispatching
Central task management
One (or more) threads manage others
High communication overhead

Shared work queues
Reactive task management
Workers access one (or more) shared queues
Frequent access to shared data is a likely performance bottleneck

Individual work queues
Decentralized, reactive task management
Workers communicate only when idle
Minimizes synchronizations between threads

Dominik Charousset iNET – HAW Hamburg 11

Work Stealing

Decentralized scheduling using Work Stealing4

One job queue and worker per core
Worker tries stealing work items from others when idle
Stealing is a rare event for most work loads5

But: A priori knowledge cannot be exploited (no global view)

4Robert D. Blumofe and Charles E. Leiserson. Scheduling Multithreaded Computations by Work Stealing.
J. ACM, 46(5):720–748, September 1999.
5Vivek Kumar, Daniel Frampton, Stephen M. Blackburn, David Grove, and Olivier Tardieu. Work-stealing
Without the Baggage.
In Proceedings of the ACM International Conference on Object Oriented Programming Systems Languages
and Applications, OOPSLA ’12, pages 297–314, New York, NY, USA, 2012. ACM.

Dominik Charousset iNET – HAW Hamburg 12

Work Stealing

Victim
Worker 1

Thief
Worker 2 Worker P

Queue 1 Queue 2 Queue P

Job 1

Job 2

Job 3

…

Job N

Job 3

Steal

Dominik Charousset iNET – HAW Hamburg 13

Configurable Scheduling in CAF

Framework has no a priori knowledge ! Work Stealing as default
Using Work Stealing, CAF scales up to at least 64 cores
Developers can deploy custom scheduler using
template <class Policy = work_stealing >

void set_scheduler(size_t num_workers = ...,

size_t max_msgs = indefinite);

max_msgs restricts # of messages actors can consume at once
Low value increases fairness and avoids bursts
High value minimizes queue access, usually maximizing throughput

Policy can be implemented to exploit a priori knowledge, if possible

Dominik Charousset iNET – HAW Hamburg 14

Scheduling Infrastructure

Divide & conquer: 220 actors with CAF

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0

5

10

15

20

25 ActorFoundry
 CAF
 Charm
 Erlang
 Scala

Ti
m

e
[s

]

Number of Cores [#]
Dominik Charousset iNET – HAW Hamburg 15

Scheduling Infrastructure

Mixed operations under work load with CAF

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0

50

100

150

200

250

300

350

 ActorFoundry
 CAF
 Charm
 Erlang
 ScalaTi

m
e

[s
]

Number of Cores [#]
Dominik Charousset iNET – HAW Hamburg 16

Agenda

1 Type-safe Message Passing

2 Scheduling Infrastructure

3 Runtime Inspection & Debugging

4 Conclusion & Outlook

Dominik Charousset iNET – HAW Hamburg 17

Runtime Inspection & Debugging

Debugging of distributed systems is inherently complex
Non-trivial program flow
No global clock
Diverging states

Recording messages crucial for on-line or post-mortem debugging
Erroneous behavior can be reproduced using message replaying 6

Visualization tools can help understanding complex errors 7

6Dennis Michael Geels, Gautam Altekar, Scott Shenker, and Ion Stoica. Replay debugging for distributed
applications.
In Proc. of USENIX’06 Ann. Tech. Conf., pages 289–300. USENIX Assoc., 2006.
7Terry Stanley, Tyler Close, and Mark S Miller. Causeway: A message-oriented distributed debugger.
Technical Report HPL-2009-78, HP Laboratories, 2009.

Dominik Charousset iNET – HAW Hamburg 18

Runtime Inspection & Debugging

Nexus

Frontend
(e.g. shell)

Node A
P1

…
…

Node N
PN

actor
A

actor
B

actor
C

actor
D

Dominik Charousset iNET – HAW Hamburg 19

Runtime Inspection & Debugging

Nexus

Frontend
(e.g. shell)

Node A
P1

…
…

Node N
PN

actor
A

actor
B

actor
C

actor
D

Dominik Charousset iNET – HAW Hamburg 20

Runtime Inspection & Debugging

Nexus

Frontend
(e.g. shell)

Node A
P1

…
…

Node N
PN

actor
A

actor
B

actor
C

actor
D

P1 … PN

Probes
Intercept & forward three kinds of messages to the Nexus:

Activity events: incoming & outgoing messages
Error events: network & system failures
Runtime statistics: periodic collection of CPU load, etc.

Dominik Charousset iNET – HAW Hamburg 21

Runtime Inspection & Debugging

Nexus

Frontend
(e.g. shell)

Node A
P1

…
…

Node N
PN

actor
A

actor
B

actor
C

actor
D

Nexus

The Nexus
Provides global view of the distributed system
Receives & collects events from Probes
Statefully configures verbosity of Probes

Dominik Charousset iNET – HAW Hamburg 22

Runtime Inspection & Debugging

Nexus

Frontend
(e.g. shell)

Node A
P1

…
…

Node N
PN

actor
A

actor
B

actor
C

actor
D

Frontend
(e.g. shell)

Frontend application categories
Observing agents: monitoring & threshold-based alerts
Supervising agents: active manipulation of running app.
Monitoring & visualization: access to aggregate state
) For instance, an interactive inspection shell

Dominik Charousset iNET – HAW Hamburg 23

Interactive Inspection Shell

Allows users to inspect distributed system
In global mode:

Global view to the system
Access to individual participating nodes

In node mode:
Access to statistics such as RAM usage, CPU load, etc.
Direct interaction with actors on that node

Dominik Charousset iNET – HAW Hamburg 24

Agenda

1 Type-safe Message Passing

2 Scheduling Infrastructure

3 Runtime Inspection & Debugging

4 Conclusion & Outlook

Dominik Charousset iNET – HAW Hamburg 25

Conclusion

CAF is a robust, scalable platform for native actor programming
Strong emphasis on low mem. footprint and performance
Type-safe messaging interfaces
Open scheduling infrastructure with efficient default
First step towards debugging distributed actors

Dominik Charousset iNET – HAW Hamburg 26

Outlook

Scale down to IoT devices (port CAF to RIOT-OS8)
Load balancing for massively parallel, distributed systems
Monitoring and debugging tools based on current platform
Robust security layer for the IoT: subsuming strong authentication
of actors in combination with opportunistic encryption

8
http://riot-os.org

Dominik Charousset iNET – HAW Hamburg 27

Thank you for your attention!

Homepage: http://actor-framework.org

Sources: https://github.com/actor-framework

iNET Working Group: http://inet.cpt.haw-hamburg.de

Dominik Charousset iNET – HAW Hamburg 28

References

Carl Hewitt, Peter Bishop, and Richard Steiger.
A Universal Modular ACTOR Formalism for Artificial Intelligence.
In Proceedings of the 3rd IJCAI, pages 235–245, San Francisco, CA, USA, 1973. Morgan Kaufmann Publishers
Inc.

M.L. Dertouzos and AK. Mok.
Multiprocessor Online Scheduling of Hard-Real-Time Tasks.
Software Engineering, IEEE Transactions on, 15(12):1497–1506, Dec 1989.

Robert D. Blumofe and Charles E. Leiserson.
Scheduling Multithreaded Computations by Work Stealing.
J. ACM, 46(5):720–748, September 1999.

Vivek Kumar, Daniel Frampton, Stephen M. Blackburn, David Grove, and Olivier Tardieu.
Work-stealing Without the Baggage.
In Proceedings of the ACM International Conference on Object Oriented Programming Systems Languages and
Applications, OOPSLA ’12, pages 297–314, New York, NY, USA, 2012. ACM.

Dennis Michael Geels, Gautam Altekar, Scott Shenker, and Ion Stoica.
Replay debugging for distributed applications.
In Proc. of USENIX’06 Ann. Tech. Conf., pages 289–300. USENIX Assoc., 2006.

Terry Stanley, Tyler Close, and Mark S Miller.
Causeway: A message-oriented distributed debugger.
Technical Report HPL-2009-78, HP Laboratories, 2009.

Dominik Charousset iNET – HAW Hamburg 29

	Type-safe Message Passing
	Scheduling Infrastructure
	Runtime Inspection & Debugging
	Conclusion & Outlook

