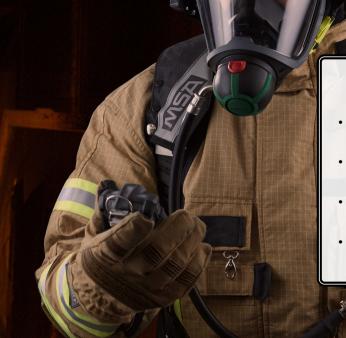


Security for the Industrial IoT: The Case for Information-Centric Networking IEEE World Forum on IoT Limerick, Ireland

Michael Frey¹ <u>Cenk Gündoğan²</u> Peter Kietzmann² Martine Lenders³ Hauke Petersen³ Thomas Schmidt² Felix Shzu-Juraschek¹ Matthias Wählisch³


¹Safety IO ²HAW Hamburg ³Freie Universität Berlin

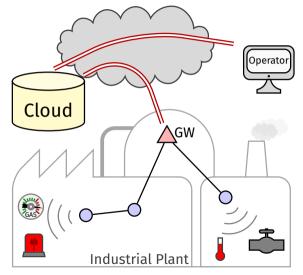
April 17, 2019

Network Requirements

- wide area deployments
- time-sensitive traffic flows
- secure communication
- hardened infrastructure

Challenges

- device mobility
- intermittent connectivity
- network repair
- delay-tolerance


Industrial IoT Deployments: Today & Future

Information-Centric Networking for the Industrial IoT

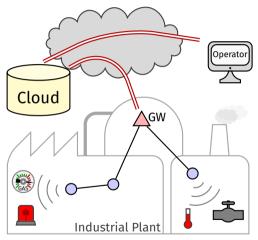
Comparative Security Assessment

Conclusion

Industrial IoT Deployments of Today

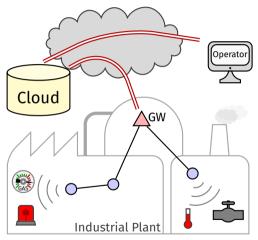
Standard Protocol Stack for the Industrial IoT

Application	Application
MQTT-SN	СоАР
UDP	
IPv6	
6LoWPAN	
IEEE 802.15.4, BLE, LoRa	

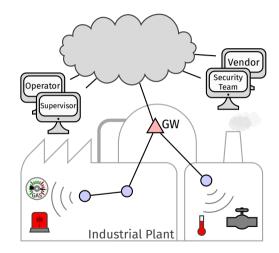

MQTT

- ► First specification in 1999
- ISO/IEC 20922 in 2016
- Pub-sub using message broker
- MQTT-SN for sensor networks in 2007

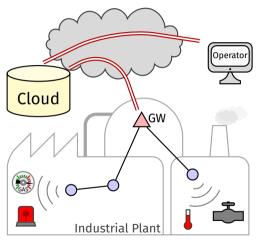
CoAP

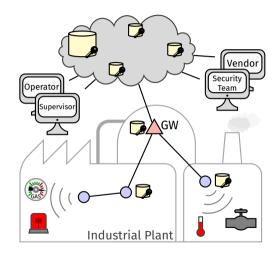

- RFC7252 in 2014
- REST architecture
- Supported communication schemes: polling, push, observe

Break-up of Silos



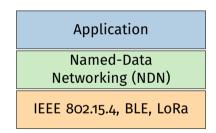
Trusted Channels


Break-up of Silos


Trusted Channels

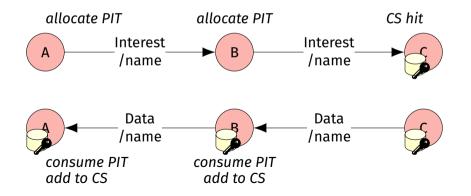
Break-up of Silos

Trusted Channels



Information-Centric Networking (ICN)

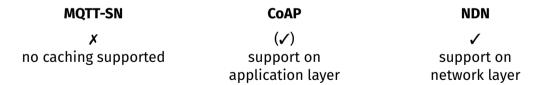
- Future Internet architecture
- Flavors: NDN, CCNx, NetInf, ...
- Content-aware, not host-aware
- Request-response paradigm
- Ubiquitous content caching
- Inherent multicast support


ICN in IoT

- Reduced network stack complexity
- Hop-by-hop flow balance
- Hop-wise retransmissions

NDN Primitives

- FIB: Forwarding Information Base contains names
- PIT: Pending Interest Table to hold open request state
- CS: Content Store for seamless in-network caching

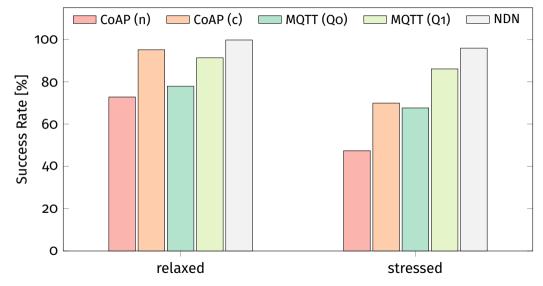


Comparative Security Assessment

- 1. Caching
- 2. Reliability
- 3. Object security: authenticity & integrity
- 4. Infrastructure protection
- 5. Name privacy

Caching

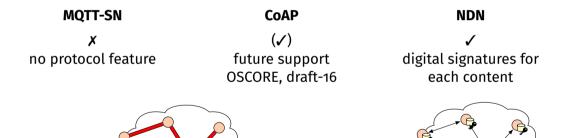
- Enhances content availability
- Increases robustness against network failures and denial of service attacks

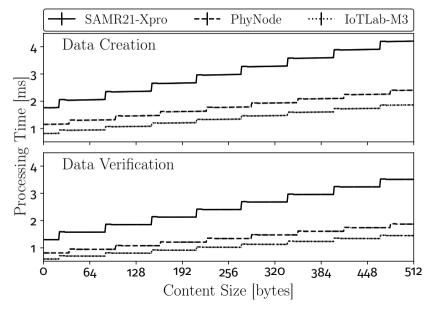

Reliability

Experiment Setup

- \blacktriangleright FIT IoTLab Testbed: 50 class 2 devices (pprox 50 kiB RAM / pprox 250 KiB ROM)
- Multi-hop topology using DODAG rooted at gateway (convergecast)
- Relaxed scenario: \approx 1.6 $\frac{data \ packet}{s}$ traverse gateway
- Stressed scenario: \approx 10 $\frac{data \ packet}{s}$ traverse gateway

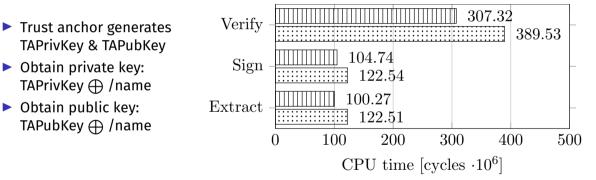
RIOT CCN2lite


Reliability: Experimental Results


Object Security: Integrity & Authenticity

TLS

▶ Protects content on gateways during protocol translations (e.g., DTLS \Rightarrow TLS)


Object Integrity in NDN: Expenses of HMAC

Object Authenticity in NDN: Identity-Based Security

Obtain private kev:

Obtain public key:

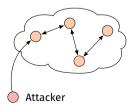
TWITT Twisted Edwards Extended Short Weierstrass

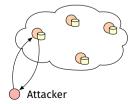
Infrastructure Protection

Protection against reflective amplification attacks

MQTT-SN

x prone to IP spoofing UDP, connectionless no congestion control


CoAP


X

prone to IP spoofing UDP, connectionless no congestion control

NDN

no ent-to-end notion de-localized content flow balance

Conclusion

ICN Benefits

- Resilient to intermittent connectivity
- Increased content availability
- Hardened network infrastructure
 - in-network caching
 - no end-to-end paradigm
- Seamless multi-party data access

ICN is a viable solution for secure and lightweight Industrial IoT deployments