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Introduction

Existing Problems

= Many multicast flavours and technologies
= Heterogeneous multicast deployment

= No general API to multicast services

<draft-irtf-samrg-common-api>

= Specification of a common multicast API

= Abstract naming scheme with Loc-ID split

= Concept for integrating different multicast technologies
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Network Scenario Example
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Middleware Design

= Multicast service stack for end-systems

— Dynamic discovery and configuration of network and
system environment

— Pluggable multicast technology modules
— Late binding of multicast technologies at runtime

= Openness to future extensions and adaption of

— Other application programming languages
— New network technologies

— APl library and deployed HAMcast middleware remain
unchanged
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HAMcast Prototype Implementation

= Middleware

— User-space process, runs once per host
- Implemented in C++, using boost library

= APl available for C++ and Java, conform to:
— <draft-irtf-samrg-common-api>
= Service modules

— Multicast technology specific, currently available:

+ |Pv4, IPv6, and Scribe-ALM
- Implemented in C++ and C
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Middleware Overview
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IPC Interface to Applications

= Connects applications that use multicast API
with the middleware process

= Based on localhost sockets and self-designed
|IPC protocol

— Open protocol specification

— Simple adoption by programming language
= Synchronous and asynchronous transfers
= Single IPC session per application
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IPC Communication

= |PC session combines all calls for one application
— Multicast traffic is handled by streams (per group)

= Asynchronous:
— Multicast send/receive calls

= Synchronous:

— Join/leave calls

— Service calls (e.g., group_set, parent_set ...)
- Set/get socket options

- Update event calls
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Multicast Service Module

= Access to specific multicast technology
= Multiple instances (interfaces) possible

— several |IP interfaces or overlays
= Each module provides its own

— Service discovery, to enable and configure module
instance(s)

— Technology dependent mapping function to translate
group names (URI) to addresses (e.g., hash)
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IP Service Discovery

Investigate local system and network environment
Passive approach:

— Query multicast state tables

— System calls to network card driver

— Packet sniffing, e.g. IGMP/MLD queries or PIM messages
Active approach:

— Probe local network

— Join specific groups

React to system events

— Device comes up or down
— Network cable plug on/off
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Performance Evaluation

= Measurements

— Comparison of HAMcast middleware-stack and Linux
standard |IP-stack

— Mean and std. deviation over 50 runs (60s each)
— Analysis of different packet sizes (100-1500 B)

= Metrics
— Throughput, loss, and CPU usage
= Test Setup

— Single source/receiver scenario
— Quad-Core CPU, Ubuntu-Linux, 1Gbit network
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Throughput in #pkt/s
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CPU Usage
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Lessons Learned

= |PC communication is critical bootleneck
= |PC optimizations for send/recv calls:

— Asynchronous transmission
— Aggregation of successive data packets

= Further optimizations:

— Precached name-to-address mappings
— Middleware runs with higher priority
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Conclusion & Outlook

= Middleware prototype with multicast AP

— Supports native IP and Scribe multicast
— Provides multicast API for C++ (and Java)
— Runs on Linux and MacOS X

= Promising performance results
= Ongoing Work:
— Extended IMG functionalities

— Additional technology modules (e.g., spanning
multicast tunnels)
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Thank you ...

Questions?

= Project Website:
+ http://hamcast.realmv6.org

= Prototype Release:
+ Friday next week (08.04.2011)
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