HAMcast

An Implementation of a System-centric Middleware
Component for Universal Multicast

Sebastian Meiling
Dominik Charousset
Fabian Holler
Sebastian Wblke
Sebastian Zagaria

{sebastian.meiling,dominik.charousset}@haw-hamburg.de
{holler_f,woelke s,zagari s}@informatik.haw-hamburg.de

Agenda

= |Introduction

= Middleware Design

= Prototype Implementation
= Performance Evaluation
= Lessons learned

= Conclusion & Outlook

11/03/31 HAMcast - Sebastian Meiling

Introduction

Existing Problems

= Many multicast flavours and technologies
= Heterogeneous multicast deployment

= No general API to multicast services

<draft-irtf-samrg-common-api>

= Specification of a common multicast API

= Abstract naming scheme with Loc-ID split

= Concept for integrating different multicast technologies

11/03/31 HAMcast - Sebastian Meiling

Network Scenario Example

e
L2 ‘ "
FalsT: *‘ﬁ-

“\.':g/ N3
Member of F“ Member of ,G*

Member of ,G" Member of F*

Member of F“

' w/0 HAMcast stack
Member of ,G“

w/ HAMcast stack

11/03/31 HAMcast - Sebastian Meiling

Middleware Design

= Multicast service stack for end-systems

— Dynamic discovery and configuration of network and
system environment

— Pluggable multicast technology modules
— Late binding of multicast technologies at runtime

= Openness to future extensions and adaption of

— Other application programming languages
— New network technologies

— APl library and deployed HAMcast middleware remain
unchanged

11/03/31 HAMcast - Sebastian Meiling 5

HAMcast Prototype Implementation

= Middleware

— User-space process, runs once per host
- Implemented in C++, using boost library

= APl available for C++ and Java, conform to:
— <draft-irtf-samrg-common-api>
= Service modules

— Multicast technology specific, currently available:

+ |Pv4, IPv6, and Scribe-ALM
- Implemented in C++ and C

11/03/31 HAMcast - Sebastian Meiling

Middleware Overview

Applications
Multicast Socket f+--... HAMcast
Library
TTIPC-Interface
Middleware <
/“IPC Sessions "
Socket Buffer

|f Technology Interfaces ... Technology Interface|)
I

I Send/Receive |
: IPv4 IPv6 . OLM Join/Leave |
|

(AL i Gy S—— [s— Service Discovery I
N = e T _ s

Underlay

11/03/31

HAMcast - Sebastian Meiling

IPC Interface to Applications

= Connects applications that use multicast API
with the middleware process

= Based on localhost sockets and self-designed
|IPC protocol

— Open protocol specification

— Simple adoption by programming language
= Synchronous and asynchronous transfers
= Single IPC session per application

11/03/31 HAMcast - Sebastian Meiling

IPC Communication

= |PC session combines all calls for one application
— Multicast traffic is handled by streams (per group)

= Asynchronous:
— Multicast send/receive calls

= Synchronous:

— Join/leave calls

— Service calls (e.g., group_set, parent_set ...)
- Set/get socket options

- Update event calls

11/03/31 HAMcast - Sebastian Meiling

Multicast Service Module

= Access to specific multicast technology
= Multiple instances (interfaces) possible

— several |IP interfaces or overlays
= Each module provides its own

— Service discovery, to enable and configure module
instance(s)

— Technology dependent mapping function to translate
group names (URI) to addresses (e.g., hash)

11/03/31 HAMcast - Sebastian Meiling 10

IP Service Discovery

Investigate local system and network environment
Passive approach:

— Query multicast state tables

— System calls to network card driver

— Packet sniffing, e.g. IGMP/MLD queries or PIM messages
Active approach:

— Probe local network

— Join specific groups

React to system events

— Device comes up or down
— Network cable plug on/off

11/03/31 HAMcast - Sebastian Meiling

11

Performance Evaluation

= Measurements

— Comparison of HAMcast middleware-stack and Linux
standard |IP-stack

— Mean and std. deviation over 50 runs (60s each)
— Analysis of different packet sizes (100-1500 B)

= Metrics
— Throughput, loss, and CPU usage
= Test Setup

— Single source/receiver scenario
— Quad-Core CPU, Ubuntu-Linux, 1Gbit network

11/03/31 HAMcast - Sebastian Meiling

12

1100

Throughput in Mbit/s

1000 ~ HAMcast— -

s i — e —
000 | / e L o) _

800 |- -

700 =
600 |- —
500 I —

400 | i

Throughput [Mbit/s]

300 =

200 -

100 -

0 | | | | | | | \ I | | I | | I
0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600

11/03/31 HAMcast - Sebastian Meiling

Throughput in #pkt/s

1.2e+06 , |

f
MAX ———
P ——

1.1e+06 HAMcast =

le+06 |-
900000 |-
800000
700000 -
600000 |
500000 |-

400000

Throughput [#pkts/s]

300000 -

200000 |-

100000 | — -

0 | | I | | | | | | | | | | | |
0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600

11/03/31 HAMcast - Sebastian Meiling

CPU Usage

11/03/31

CPU Usage [%]

90

80

70

60

50

40

30

20

10

0

[] I [|
P ——
HAMcast
—F3
- T I I i
I |
—k I
| | | | | | | | | | | | | | |
0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600

Packet Size [B]
HAMcast - Sebastian Meiling

15

Lessons Learned

= |PC communication is critical bootleneck
= |PC optimizations for send/recv calls:

— Asynchronous transmission
— Aggregation of successive data packets

= Further optimizations:

— Precached name-to-address mappings
— Middleware runs with higher priority

11/03/31 HAMcast - Sebastian Meiling

16

Conclusion & Outlook

= Middleware prototype with multicast AP

— Supports native IP and Scribe multicast
— Provides multicast API for C++ (and Java)
— Runs on Linux and MacOS X

= Promising performance results
= Ongoing Work:
— Extended IMG functionalities

— Additional technology modules (e.g., spanning
multicast tunnels)

11/03/31 HAMcast - Sebastian Meiling 17

Thank you ...

Questions?

= Project Website:
+ http://hamcast.realmv6.org

= Prototype Release:
+ Friday next week (08.04.2011)

11/03/31 HAMcast - Sebastian Meiling

18

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18

