Fight Fire with Fire s/Fire/Spoofing/g

Spoofing Detection in the UCSD Network Telescope

Raphael Hiesgen

INET, Hamburg University of Applied Sciences

CAIDA, UCSD

IP Spoofing

- spoof, /spoof/: hoax or trick (someone)
 - Trick someone into believing a packet was sent by someone else
 - *Problem:* No authentication in IPv4 headers (see IPSec AH)
- Reasons for spoofing
 - Conceal your "identity"
 - Impersonate someone else (MITM attack)
 - Denial of service (reflection attacks)

Motivation

- Big problem throughout the Internet (e.g., DDoS)
- Our focus: impact on measurements
 - Research and operations depend on reliable data
 - Source address often used for geolocation
- Application domain: UCSD Network Telescope

The UCSD Network Telescope

- A /8 darknet hosted at UCSD and operated by CAIDA
 - Hundreds of TB in Internet Background Radiation (IBR) per year
 - IBR examples: scans, malware, backscatter, ...
 - One way traffic (unlike most communication on the Internet)
- Lots of research opportunities!
 - CSE student wrote her phd thesis on telescope measurements¹
 - We will come back here later

¹ Leveraging Internet Background Radiation for Opportunistic Network Analysis, Benson et al., IMC'15

Data in Operational Use at IODA: Internet Outage Detection & Analysis

https://ioda.caida.org/

Our Goal

- Identify spoofed traffic in the IBR
- Challenges
 - One-way communication
 - Real-time processing
- No need to check every single packet

Spoofing Detection

- Filter packets leaving your LAN
- Ingress and Egress filtering (RFC 2827 & 3704)
 - Whitelisting based on expected source addresses
- Filters at IXPs based on customer cones and BGP¹
- Heuristics and rules²
 - Bursts of traffic including private and un-routed addresses
 - Packet anomalies (e.g., address ends in 0 or 255)

¹ Detection, Classification, and Analysis of Inter-Domain Traffic with Spoofed Source IP Addresses, *Lichtblau et al.*, IMC'17

² Estimating Internet address space usage through passive measurements, Dainotti et al., CCR'14

IP "Identification" Field

- 16 bits used to group fragments (RFC 791)
- Dubbed "IP ID"
- Traditionally a system-wide counter
 - Can be used to attribute packets to the same host
- First published by Steven M. Bellovin in 2002¹
- Previous used at CAIDA for alias-resolution²

¹ A Technique for Counting NATted Hosts, *S. M. Bellovin*, Workshop of Internet Measurements '02 ² Internet-Scale IPv4 Alias Resolution with MIDAR, *Key et al.*, Transactions on Networking, vol. 21, 2013

Spoofing-Detection via IP ID Correlation

- Idea: Correlate trigger IP ID with the IDs of probe replies
- Identifies valid packets instead of spoofed ones
 - Somewhat inaccurate (e.g., not all hosts reply to probes)
- Previously explored by a CAIDA intern¹

¹ Design and development of an active probing technique to validate the "source IP address" header field in a live stream of IP packets, *Alessandro Puccetti*, University of Pisa, 2015, *master thesis*

Example: Consistency Check

How do we plan to use this?

- Build a system that integrates into the telescope backend
- Tag packets to allow filtering during analysis
- Improve the reliability of IBR as resource

System Overview

- Collects results
- Writes logs (at the moment)

Implementation

- Implemented in C++11
- Actors as a foundation: C++ Actor Framework¹
 - Isolated, lightweight entities using message passing
 - Highly scalable runtime environment with a work-stealing scheduler
- Parallel packet ingestion via libtrace²
- Probing handled by scamper³

¹Revisiting Actor Programming in C++, *Charousset et al.*, Computer Languages, Systems & Structures 2016, <u>https://github.com/actor-framework/actor-framework/</u>

² <u>https://github.com/LibtraceTeam/libtrace</u>

³ Scamper: a Scalable and Extensible Packet Prober for Active Measurement of the Internet, *Matthew Luckie*, IMC'10, <u>https://www.caida.org/tools/measurement/scamper/</u>

Incoming Events

Finished Probes

Analysis

- Send a few probes for each trigger
- Check if probe IP IDs are incrementing monotonically
 - Other observations: random, constant, and no replies
- Drop everything outside a threshold (currently 8000)
- Check consistency

Linear Regression

- Algorithm
 - Calculate the line of best fit
 - Predict the expected trigger IP ID

- Use the prediction interval as the acceptable error
- Pro: Established method for predictions
- Contra: The error interval increases quickly with delay

First Results

	Absolute	Percentage
Events	2.083.575	100,00 %
Unresponsive	1.253.242	60,15 %
Responsive	830.333	39,85 %
Monotonic	735.691	35,31 %
Within threshold	107.237	5,15 %
Consistent	18.419	0,88 %
Consistent of threshold		17,18 %

Uhm?

- Found some bugs, but nothing to explain this
- OSes switched to separate counters to improve privacy
 - Linux now has an array of 2048 counters
 - IP addresses and protocol determine which one to use

The Active Telescope

- Send probes with source address from a few address blocks
- Important: replies must be in the protocol of the trigger
 - ICMP: "easy mode", send echo requests
 - TCP: "normal mode"
 - Spoof SYN-ACK in response to SYNs
 - Spoof ACK probe with a matching 5-tuple
 - UDP: "hard mode", replies are service dependent

Testbed

- Goal
 - A controlled environment to test and validate the idea
 - VMs connected via an internal network
 - Collector does not respond with ICMP or TCP resets
- Scamper on the same host
- Collected 10k probes
- ICMP and TCP work

Recent Work

- Build a testbed with spoofed probes
- Focus on UDP methodology
 - Telescope deployment was delayed
 - UDP is a majority of the traffic

Testbed with Spoofing

- Changes
 - Move scamper to a separate host
 - Use separate scamper instances per protocol
- Collected 20k probes each
- ICMP validates 97.61%
- TCP validates 100%

UDP Probing

- UDP is a majority of the traffic
- Responsiveness is (probably) service specific
 - There is no connection state we can use
 - Closed port returns ICMP "destination unreachable"
 - We need UDP responses for the IP ID

Approaches

- Look how scanners and honeypots handle UDP
 - Service-specific probes (e.g., Nmap)
 - Send out newlines (e.g., honeytrap)
 - Reflect the payload (if it was sent to us it should be valid)

Port Scanning

- Send generic UDP probe (be aware of ICMP rate limiting)
 - *No replies*: UDP traffic blocked by firewall, NAT, etc.
 - ICMP reply:
 - Not everything blocked
 - Ports that don't provoke a reply are either open or blocked
- Follow up with service-specific probes (such as a DNSStatusRequest)
 - Replies tell you the port is open and runs the expected service
 - Receiving no reply does not give additional information

Test Data

- Challenge: Find a dataset with targets to probe
- <u>censys.io</u>: "Scanning as a service"
 - Regularly scan about 40 ports
 - Originally a research project and offers researchers free access*
- Self-hosted services
 - Deploy a few services in docker and scan them

Censys

• • • Q Google BigQuery × -	+												
\leftarrow \rightarrow C $\$ https://bigquery.cloud.google.	.com/res	sults/censystest-24	40711:US.bquijo	o_9a8e2e5_	16bad80cb4e?pl	i=1						⊕ ☆ 🛈 🌽 :	
Google BigQuery											Try the new UI ? J		
SANDBOX Set up billing to upgrade to the full BigQuery experience. Learn more													
COMPOSE QUERY	New Query ?									Query Editor UDF Editor 🗙			
Query History Job History Scheduled Queries Transfers Filter by ID or label	<pre>SQL SQL SQL SQL SQL SQL SQL SQL SQL SQL</pre>												
ipv4_public	Stand	lard SQL Dialect 🗙	1							Ctrl +	Enter: run query, Tab	or Ctrl + Space: autocomplete.	
 censys-io All data you add in sandbox will be deleted in 60 days. <u>Learn more</u> 	RUN	QUERY - Sa	ive Query S	ave View	Format Query	Schedule Query	Show Options	Query complete (32.9s elapse	d, 6.47 GB processed)			Ø	
▼ Public Datasets	Resu	ults Details							Download as CSV	Download as JSON	Save as Table	Save to Google Sheets	
bigquery-public-data:hacker_ne	Row	ip	ports protoc	ols tags									
bigquery-public-data:noaa_gsod	1	173.198.230.183	80 110/po	o3 dns									
bigquery-public-data:samples			465 143/im	ap ftp									
bigquery-public-data:usa_names			993 21/ftp	http									
gdelt-bq:hathitrustbooks			995 443/htt	os https									
gdelt-bq:internetarchivebooks			21 465/sm	tp imap									
lookerdata:cdc			53 53/dns	imaps									
▶ nyc-tlc:green			443 587/sm	tp pop3									
▶ nyc-tlc:yellow			587 80/http	pop3s									
			110 993/im	aps smtp									
			143 995/po	o3s									
	2	5.145.168.19	80 143/im	ap ftp									
			21 21/ftp	http									
			25 25/smt	https									
			443 443/htt	os imap									
			587 587/sm	tp smtp									
			143 80/http										
	Table	JSON				Ī	First < Prev Row	rs 1 - 2 of 117612051 Next >	Last				

Self-Hosted Services

- Use Nmap services as a foundation
- Examined:
 - *Running*: DNS, NTP, SNMP, SLP, DTLS, NFS, ARD, CoAP, memcached
 - Not running: SunRPC, NetBIOS, XDMCP, CLDAP, IKE, RIP, IPMI, OpenVPN, Citrix, Radius, Freelancer Game Server, Service Tag Discovery, NAT-PMP, DNS Service Discovery
- Service-specific probes work "well" (small sample size)

"Insider Knowledge"

- CAIDA receives a lot of
 - DNS responses
 - BitTorrent traffic
- Find a way to handle both (port range + payload analysis)

How do we plan to use this?

- Real-time detection of large-scale spoofing phenomena
 - Validate heuristics and rules already in use
 - Check for baseline in our classified traffic
 - Monitor baseline changes to identify interesting events

Next Steps

- Improve our system
 - How to extend the inferences to the entire /8?
 - Find more ideas for UDP
- Work on methodology
 - Compare with other methods of spoofing detection
 - Quantify reliability/expected outcome of different methods
- Can we transfer technique into other contexts?

Telescope Deployment

- We have a /24 block at BCIX
 - Continue UDP research
- We (finally) have a /24 block at CAIDA
 - Send RST to close TCP connections we accepted
 - Collect some real-life data for TCP and ICMP

Research Opportunities

- Examine the impact of "responding" to IBR traffic
 - How does this affect the unsolicited traffic we observe?
 - Does this revert when an address block becomes passive again?
- Accepting TCP connections will provide us with payload
 - Gives additional information, e.g., to attribute packets
 - Data previously available for UDP only