
New Crypto-fundamentals in RIOT

Peter Kietzmann

peter.kietzmann@haw-hamburg.de

3rd get-together of the friendly Operating System for the Internet of Things

September 13, 2018



“Crypto-Fundamentals”???

IoT requires security. . .
... as we just learned in “Usable Security
for RIOT and the Internet of Things”

Low-cost “COTS” devices. . .
. . . usually don’t provide secure hardware
such as Trusted Platform Module, Intel
SGX or ARM TrustZone to reduce cost

Security protocols require. . .
. . . certain resources such as high quality
random numbers, salts, cryptographic keys

Lack of computational power. . .
. . . and the absence of secure hardware
require efficient software implementations
to fit device constraints

We introduce software fundamentals to address crypto requirements



“Crypto-Fundamentals”???

IoT requires security. . .
... as we just learned in “Usable Security
for RIOT and the Internet of Things”

Low-cost “COTS” devices. . .
. . . usually don’t provide secure hardware
such as Trusted Platform Module, Intel
SGX or ARM TrustZone to reduce cost

Security protocols require. . .
. . . certain resources such as high quality
random numbers, salts, cryptographic keys

Lack of computational power. . .
. . . and the absence of secure hardware
require efficient software implementations
to fit device constraints

We introduce software fundamentals to address crypto requirements



“Crypto-Fundamentals”???

IoT requires security. . .
... as we just learned in “Usable Security
for RIOT and the Internet of Things”

Low-cost “COTS” devices. . .
. . . usually don’t provide secure hardware
such as Trusted Platform Module, Intel
SGX or ARM TrustZone to reduce cost

Security protocols require. . .
. . . certain resources such as high quality
random numbers, salts, cryptographic keys

Lack of computational power. . .
. . . and the absence of secure hardware
require efficient software implementations
to fit device constraints

We introduce software fundamentals to address crypto requirements



“Crypto-Fundamentals”???

IoT requires security. . .
... as we just learned in “Usable Security
for RIOT and the Internet of Things”

Low-cost “COTS” devices. . .
. . . usually don’t provide secure hardware
such as Trusted Platform Module, Intel
SGX or ARM TrustZone to reduce cost

Security protocols require. . .
. . . certain resources such as high quality
random numbers, salts, cryptographic keys

Lack of computational power. . .
. . . and the absence of secure hardware
require efficient software implementations
to fit device constraints

We introduce software fundamentals to address crypto requirements



“Crypto-Fundamentals”???

IoT requires security. . .
... as we just learned in “Usable Security
for RIOT and the Internet of Things”

Low-cost “COTS” devices. . .
. . . usually don’t provide secure hardware
such as Trusted Platform Module, Intel
SGX or ARM TrustZone to reduce cost

Security protocols require. . .
. . . certain resources such as high quality
random numbers, salts, cryptographic keys

Lack of computational power. . .
. . . and the absence of secure hardware
require efficient software implementations
to fit device constraints

We introduce software fundamentals to address crypto requirements



Physical Unclonable Functions

Function

Input
(Challenge)

Output
(Response)

I Digital fingerprint based on
manufacturing process variations

I Extracted response identifies a device
like human fingerprint

I The ”secret” is hidden in physical structure
→ Hard to predict or clone

I A variety of PUFs exist based on:
Component delays, magnetism, optics, uninitialized memory pattern, ...

Note: Like biometric data, PUF responses are affected by noise



Physical Unclonable Functions

Function

Input
(Challenge)

Output
(Response)

I Digital fingerprint based on
manufacturing process variations

I Extracted response identifies a device
like human fingerprint

I The ”secret” is hidden in physical structure
→ Hard to predict or clone

I A variety of PUFs exist based on:
Component delays, magnetism, optics, uninitialized memory pattern, ...

Note: Like biometric data, PUF responses are affected by noise



PUF Applications & Parameters

Applications Quality Parameters

Noise
I RNG, PRNG seeding, ... I Intra-device variations

Identity
I Identification, authentication

I Secret key generation or
storage

I Unique app–to–device binding
(i.e., secure boot)

I Reproducible

I Unique

I Unpredictable

I Unclonable



Literature & Recent Work

A. Schaller:

“Lightweight Protocols and Applications for Memory-Based Intrinsic Physically Unclonable Functions Found on Commercial Off-The-Shelf Devices” (2017)

Secure applications based on PUFs evaluated on multiple COTS

“A. Van Herrewege et al.: Secure PRNG Seeding on Commercial Off-the-Shelf Microcontrollers” (2013)

SRAM analysis of different COTS for PRNG seeding under varying environmental conditions

“Y. Dodis et al.: Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data” (2008)

Provide secure techniques to generate crypto-keys from noisy responses

“C. Bösch et al.:Efficient Helper Data Key Extractor on FPGAs” (2008)

Design and evaluation of key extractors on FPGAs

“J. Delvaux et al.: Attacking PUF-Based Pattern Matching Key Generators via Helper Data Manipulation” (2012)

Propose attacks and recovery from PUF-constructed keys



No lightweight, open source, operating system
integration?

We implement SRAM based PUFs in RIOT for
PRNG seeding and key generation



Outline

A Brief Introduction to PUFs

SRAM Memory Analysis of Standard RIOT Devices

A Seeder for Pseudo Random Number Generators

Cryptographic Key Generation from Noisy PUF Responses

Current Implementation Progress in RIOT

Next Steps, Future Plans, ...



SRAM Memory Analysis of Standard RIOT Devices



Experiment Setup

I Periodically power-on device and read
SRAM blocks after boot
→ Power-down time > RAM hold-time

I Transistor variations lead to different cell
states on startup
→ Unique pattern + noise

I Results depend on SRAM technologies,
circuit and environment
→ Should be evaluated individually



Intra-Device Analysis
50 reads; 1kB SRAM; 5 SAMD21; Ambient Temperature

Quantify randomness by min. entropy: Hmin = −
∑n

i=1 log2(max(pi0, p
i
1)) · 100%

n

n: memory length, p0/1: low/high probabilities

Quantify bias by hamming weight: W (a) = ‖{ai 6= 0}1≤i≤n‖ · 100%
n

Device A B C D E

Min. Entropy 4.16 % 5.46 % 5.28 % 4.68 % 5.48 %
Hamming Weight 50.7±3 % 49.5±3 % 51.3±6 % 49.8±4 % 53.1±3 %

→ The SRAM memory is not biased and contains a random component



Inter-Device Analysis
50 reads; 1kB SRAM; 5 SAMD21; Ambient Temperature

Device Pair A–B A–C A–D A–E

Hamming Distance 49.2±4 % 49.5±3 % 50.1±3 % 50.4±4 %

→ The SRAM pattern do not correlate between devices

Quantify uniqueness by fractional hamming distance:

D(a, b) = ‖{ai 6= bi}1≤i≤n‖ ·
100%

n



A Seeder for Pseudo Random Number Generators



Seeder Architecture

I Module hooks into startup before
kernel init

I Patterns of uninitialized SRAM are hashed by
DEK Hash

I 32-bit result is stored in pre-reserved RAM
section

I Seeds PRNG after kernel init

Entropy Extraction
Hash Function

Kernel Init
Modules Init (PRNG)

Application

Bootloader
ROM RAM

se
ed



SRAM Memory Length
Min. Seed Entropy; Varying SRAM Lengths; Ambient Temperature

102 103
SRAM length [Bytes]

5

10

15

20

25

30

En
tro

py
 [B

it]

MEGA2560
SAMD21
CC2538
STM32F4

→ Approximately 31 Bit entropy @ 1kB SRAM is a good fit



Seed Distribution
Frac. Hamming Distances of Seeds; 1kB SRAM; Ambient Temperature

0.0 0.2 0.4 0.6 0.8 1.0
Frac. Hamming Distance

1

2

3

4

5

Pr
ob

ab
ilit

y

CC2538

0.0 0.2 0.4 0.6 0.8 1.0
Frac. Hamming Distance

1

2

3

4

5

Pr
ob

ab
ilit

y

SAMD21

0.0 0.2 0.4 0.6 0.8 1.0
Frac. Hamming Distance

1

2

3

4

5

Pr
ob

ab
ilit

y

STM32F4

0.0 0.2 0.4 0.6 0.8 1.0
Frac. Hamming Distance

1

2

3

4

5

Pr
ob

ab
ilit

y

MEGA2560

Distances follow a normal distribution with expectation value around 0.5

→ We consider seeds as independent



Reset Detection

I The SRAM needs to be uninitialized to provide highest intra-device entropy
→ device needs start from power-off

I That’s not the “development” case where programmers press reset

I We implement a reset detection mechanism to report soft-resets

I A 32-bit marker is written to a specific location

I During the next reboot we test it’s presence



Talk Progress

A Brief Introduction to PUFs

SRAM Memory Analysis of Standard RIOT Devices

A Seeder for Pseudo Random Number Generators

Cryptographic Key Generation from Noisy PUF Responses

Current Implementation Progress in RIOT

Next Steps, Future Plans, ...



Motivation

Problem:

1. PUF responses are error-prone

2. PUF responses are not distributed uniformly

Requirement:

1. We need reproducible PUF responses

2. We want to produce uniformly distributed secrets

Solution:

1. Remove errors from PUF measurements

2. Map the high-entropy input to a uniformly distributed output



Fuzzy Extractor
Mechanism

Secure Sketch:

I Reliably reconstruct response from a
noisy measurement

I Uses error correction codes

Randomness Extractors:

I One way hash function to compress
high entropy output

I The input sequence needs min.
entropy

Deployment

Enrollment:

I Encoding and helper data generation

I Uses a reference PUF response

I Executed in trusted environment

Reconstruction:

I Decodes corrupted input sequence

I Uses a noisy PUF measurement

I Executed on the device after startup



Fuzzy Extractor
Mechanism

Secure Sketch:

I Reliably reconstruct response from a
noisy measurement

I Uses error correction codes

Randomness Extractors:

I One way hash function to compress
high entropy output

I The input sequence needs min.
entropy

Deployment

Enrollment:

I Encoding and helper data generation

I Uses a reference PUF response

I Executed in trusted environment

Reconstruction:

I Decodes corrupted input sequence

I Uses a noisy PUF measurement

I Executed on the device after startup



Fuzzy Extractor Design

Golay
Encoder 

Repetition
Encoder Helper

Code
Offset 

Oneway
Hash KeyPUF

MLE 

E
n

ro
llm

en
t

R
ec

o
n

st
ru

ct
io

n

The key does
not need to be
stored anywhere!



Fuzzy Extractor Design

Golay
Encoder 

Repetition
Encoder Helper

Code
Offset 

Oneway
Hash KeyPUF

MLE 

E
n

ro
llm

en
t

R
ec

o
n

st
ru

ct
io

n

The key does
not need to be
stored anywhere!



Fuzzy Extractor Design

Golay
Encoder 

Repetition
Encoder Helper

Code
Offset 

Oneway
Hash KeyPUF

MLE 

E
n

ro
llm

en
t

R
ec

o
n

st
ru

ct
io

n

The key does
not need to be
stored anywhere!



Fuzzy Extractor Design

Golay
Encoder 

Repetition
Encoder Helper

Code
Offset 

Oneway
Hash KeyPUF

MLE 

E
n

ro
llm

en
t

R
ec

o
n

st
ru

ct
io

n

The key does
not need to be
stored anywhere!



Fuzzy Extractor Design

Golay
Encoder 

Repetition
Encoder Helper

Code
Offset 

Oneway
Hash KeyPUF

MLE 

E
n

ro
llm

en
t

R
ec

o
n

st
ru

ct
io

n

The key does
not need to be
stored anywhere!



Fuzzy Extractor Design

Golay
Encoder 

Repetition
Encoder Helper

Code
Offset 

Oneway
Hash KeyPUF

MLE 

E
n

ro
llm

en
t

R
ec

o
n

st
ru

ct
io

n

The key does
not need to be
stored anywhere!



Fuzzy Extractor Design

Golay
Encoder 

Repetition
Encoder Helper

Code
Offset 

Oneway
Hash KeyPUF

MLE 

Golay
Decoder

Code
Offset Helper

Golay
Encoder 

Repetition
Encoder 

Oneway
Hash Key

Repetition
Decoder 

PUF
Noisy 

PUF
MLE 

E
n

ro
llm

en
t

R
ec

o
n

st
ru

ct
io

n

The key does
not need to be
stored anywhere!



Fuzzy Extractor Design

Golay
Encoder 

Repetition
Encoder Helper

Code
Offset 

Oneway
Hash KeyPUF

MLE 

Golay
Decoder

Code
Offset Helper

Golay
Encoder 

Repetition
Encoder 

Oneway
Hash Key

Repetition
Decoder 

PUF
Noisy 

PUF
MLE 

E
n

ro
llm

en
t

R
ec

o
n

st
ru

ct
io

n

The key does
not need to be
stored anywhere!



Fuzzy Extractor Design

Golay
Encoder 

Repetition
Encoder Helper

Code
Offset 

Oneway
Hash KeyPUF

MLE 

Golay
Decoder

Code
Offset Helper

Golay
Encoder 

Repetition
Encoder 

Oneway
Hash Key

Repetition
Decoder 

PUF
Noisy 

PUF
MLE 

E
n

ro
llm

en
t

R
ec

o
n

st
ru

ct
io

n

The key does
not need to be
stored anywhere!



Fuzzy Extractor Design

Golay
Encoder 

Repetition
Encoder Helper

Code
Offset 

Oneway
Hash KeyPUF

MLE 

Golay
Decoder

Code
Offset Helper

Golay
Encoder 

Repetition
Encoder 

Oneway
Hash Key

Repetition
Decoder 

PUF
Noisy 

PUF
MLE 

E
n

ro
llm

en
t

R
ec

o
n

st
ru

ct
io

n

The key does
not need to be
stored anywhere!



Fuzzy Extractor Design

Golay
Encoder 

Repetition
Encoder Helper

Code
Offset 

Oneway
Hash KeyPUF

MLE 

Golay
Decoder

Code
Offset Helper

Golay
Encoder 

Repetition
Encoder 

Oneway
Hash Key

Repetition
Decoder 

PUF
Noisy 

PUF
MLE 

E
n

ro
llm

en
t

R
ec

o
n

st
ru

ct
io

n

The key does
not need to be
stored anywhere!



Fuzzy Extractor Parameters
Error probability:

I Measured bit error probability: pmax = 0.1

(literature calculates with pb = 0.15)

I Calculated output error probability: Ptotal = 5.07× 10−7

(literature considered Ptotal = 1× 10−6 as conservative)

Min. length of PUF response:1

Secret Bits Source Bits Coded Source Bits Coded Source Bytes

32 42 1056 132
128 171 3960 495
146 192 4224 528

1T.Ignatenko et al.: ”Estimating the Secrecy-Rate of Physical Unclonable Functions with the
Context-Tree Weighting Method”



Fuzzy Extractor Parameters
Error probability:

I Measured bit error probability: pmax = 0.1

(literature calculates with pb = 0.15)

I Calculated output error probability: Ptotal = 5.07× 10−7

(literature considered Ptotal = 1× 10−6 as conservative)

Min. length of PUF response:1

Secret Bits Source Bits Coded Source Bits Coded Source Bytes

32 42 1056 132
128 171 3960 495
146 192 4224 528

1T.Ignatenko et al.: ”Estimating the Secrecy-Rate of Physical Unclonable Functions with the
Context-Tree Weighting Method”



Fuzzy Extractor Processing Time

132 5280

50

100

150

200

Pr
oc

es
sin

g 
tim

e 
[m

s]

Atmel SAMD21

132 5280

5

10

15

20

STMicroelectronics STM32F4
SHA1
XOR OUT
REP ENCODE
GOLAY ENCODE

GOLAY DECODE
REP DECODE
XOR IN

PUF Response Length [Bytes]



Current Implementation Progress in RIOT



RIOT Implementation Progress

Component Feature Status

PRNG Seeder
Cortex-M 3

AVR8 3

Evaluation Tool 3

Fuzzy Extractor
Cortex-M 3

AVR8 8

Helper Data generation tool 3



Next Steps, Future Plans, ...



General:

I Implement the missing components :-) !

I Evaluate SRAM startup from low power wake-up

Random:

I Add “secure” seed for cryptographically secure PRNG
I Extend random API in various aspects

I Enable parallel PRNGs
I Application based seed provisioning
I Event reporting, e.g., soft-reset detection

I Apply NIST statistical test suite to RIOT

Fuzzy Extractor:

I Evaluate privacy of public Helper Data

I Measure bit error probability on embedded devices

I Implement build target for Helper Data generation & storage



General:

I Implement the missing components :-) !

I Evaluate SRAM startup from low power wake-up

Random:

I Add “secure” seed for cryptographically secure PRNG
I Extend random API in various aspects

I Enable parallel PRNGs
I Application based seed provisioning
I Event reporting, e.g., soft-reset detection

I Apply NIST statistical test suite to RIOT

Fuzzy Extractor:

I Evaluate privacy of public Helper Data

I Measure bit error probability on embedded devices

I Implement build target for Helper Data generation & storage



General:

I Implement the missing components :-) !

I Evaluate SRAM startup from low power wake-up

Random:

I Add “secure” seed for cryptographically secure PRNG
I Extend random API in various aspects

I Enable parallel PRNGs
I Application based seed provisioning
I Event reporting, e.g., soft-reset detection

I Apply NIST statistical test suite to RIOT

Fuzzy Extractor:

I Evaluate privacy of public Helper Data

I Measure bit error probability on embedded devices

I Implement build target for Helper Data generation & storage





BS - Error Correction Code

I Binary codes are noted as [n, k , d ] -codes with
n = code length, k = encoded message length, d = minimum distance of code
words

I Concatenation of Golay and Repetition 11 code leads to [264, 12, 77] -code

I Binary Symmetric Channel as model:

Ptotal = 1−
t∑

i=1

(
n

i

)
pib(1− pb)n−i

with t = (dmin − 1)/2 correctable errors

I tgolay = 3, trep11 = 5 and pb = 0.1

I Total error by calculating inner code and apply error to outer code



BS - Length of PUF response

Secrecy rate:

I Universal hash function compresses PUF response bits

I Min. amount of compression (by hashing) is expressed by “secrecy rate” SR
I Max. achievable secrecy rate given by mutual information between

PUF responses during Enrollment and Reconstruction

I Common value is SR = 0.76
→ For a secret of length 128 Bit, we need S−1

R · 128 = 171 source Bits

I Minimum number of source bits after encoding: nd171/ke


