
Let Our Browsers Socialize:
Building User-centric Content Communities

on WebRTC

Max Jonas Werner, Christian Vogt, Thomas C. Schmidt
{maxjonas.werner,christian.vogt}@haw-hamburg.de, t.schmidt@ieee.org

iNET RG, Department of Computer Science
Hamburg University of Applied Sciences

June 30, 2014



Agenda

1 Introduction to WebRTC
2 Motivation and Use Cases
3 BOPlish Content Communities
4 Outlook

Christian Vogt iNET – HAW Hamburg 2



The Web Platform

All of us probably use the Web daily
Current browser communication is client/server only
Based on the traditional client/server paradigm (HTTP)
Browser evolved from simple markup viewer to application platform

Christian Vogt iNET – HAW Hamburg 3



Christian Vogt iNET – HAW Hamburg 4



Christian Vogt iNET – HAW Hamburg 5



WebRTC
Web Real-Time Communications

Allows peer-to-peer
communication between
browsers
Major paradigmatic change in
Web technologies
Support for media and data
channels
Opportunistic Security (OS)
Joint effort of IETF
(protocols) and W3C (APIs)

Christian Vogt iNET – HAW Hamburg 6



Christian Vogt iNET – HAW Hamburg 7



WebRTC Usages

Mostly media focused
Integration of real-time communication into websites1

Web-based conferencing2

Experimenal data applications
Instant 1-to-1 file sharing3

CDN based on a centralized P2P system4

1https://tokbox.com/
2https://jitsi.org/
3https://sharefest.me/
4https://peercdn.com/

Christian Vogt iNET – HAW Hamburg 8

https://tokbox.com/
https://jitsi.org/
https://sharefest.me/
https://peercdn.com/


Our Motivation

Started off by investigating new use cases
Build a user-centric layer that avoids centralization
Give control over content back to the user
Provide an extentable framework for community-based WebRTC
use cases

Goals in a nutshell: serverless, privacy aware, open platform

Christian Vogt iNET – HAW Hamburg 9



Use Cases
Example: Document sharing on the Web

Traditional
Server-based (e.g., Dropbox5)
Upload the content to a central server/service
Can you trust the service provider?

User-centric
Content centers around the user, not the service provider
Direct sharing from one browser/user to another
No intermediate party involved

5https://dropbox.com/

Christian Vogt iNET – HAW Hamburg 10



Introducing BOPlish
Browser-based Open Publishing

Build a community layer soley from Web browsers
Implement your own protocols on top of BOPlish
Privacy aware by avoiding central components and using OS
Drop-in JavaScript library for P2P web applications6

6https://github.com/boplish

Christian Vogt iNET – HAW Hamburg 11



Naming Content

URIs that are bound to location:
http://example.org/file-xyz
mailto:hi@chris.ac

Bound to a specific host via its IP address
Inflexible when the location changes
Idea: Bind content to user, not location

Christian Vogt iNET – HAW Hamburg 12



BOPlish Naming Scheme

Idea: Bind content to user, not location

BOPlish URI scheme
bop:username@idp:protocol[/path[?parameters]]

Examples
bop:alice@example.org:chat/nightOut
bop:bob@example.de:pacman/room1337
bop:me@chris.ac:file/hotpost-slides?ext=pdf

Christian Vogt iNET – HAW Hamburg 13



BOPlish Building Blocks

Task: Name Resolution
Resolve user-identifying URI
part to a host that holds the
content
Solution based on a
Distributed Hash Table (DHT)
Built soley from BOPlish peers

Name Resolver API

"user@identity.org"

goto XYZ1

2

DHT

Christian Vogt iNET – HAW Hamburg 14



Mobility and Offloading

Users are expected to frequently change content location
Transparent handover by updating the name resolution service
BOPlish URIs do not have to be changed when content location
changes
Support for offloading data to other hosts
Future Work: Extend name resolution to support multiple active
hosts

Christian Vogt iNET – HAW Hamburg 15



BOPlish Building Blocks

Task: Data Routing
Transfer the actual content from the resolved peer
Uses WebRTC DataChannel for textual and binary transfer

Procedure
1 Exchange offer/answer messages via overlay
2 Establish DataChannel connection between provider and receiver
3 Start communication using the specified protocol (e.g., pacman)

Christian Vogt iNET – HAW Hamburg 16



Name Resolver API

"user@identity.org"

goto XYZ1

3

2

DHT

"documents/beer.png"

4

010011...

Content API

Christian Vogt iNET – HAW Hamburg 17



BOPlish API

API hides all the complexity from the developer (WIP)

var bc = new BOPlishClient("wss:// chris.ac:5000");
var pacman = bc.registerProtocol("pacman");

pacman.setOnMessageHandler(function(bopuri , from , msg) {
// handle incoming pacman messages

});
pacman.send(

BopURI("bop:alice@example.org:pacman/game1"),
{movePacMan: {x:1, y:2}}

);

Christian Vogt iNET – HAW Hamburg 18



Christian Vogt iNET – HAW Hamburg 19



todo: change text

Christian Vogt iNET – HAW Hamburg 20



Conclusions

Provide a common layer for community-based
WebRTC applications
Open to custom application protocols
Browser-to-browser overlay network evades centralization
Some of the use cases have successfully been implemented

Christian Vogt iNET – HAW Hamburg 21



Outlook

Support pluggable overlay schemes for name resolution service
according to community size
Implement Pub/Sub interface
Finalize and refine API

Christian Vogt iNET – HAW Hamburg 22



Thank you!
Questions?

Visit us at http://inet.cpt.haw-hamburg.de/
Github: https://github.com/boplish

Christian Vogt iNET – HAW Hamburg 23

http://inet.cpt.haw-hamburg.de/
https://github.com/boplish

