OpenCL-based Actors in C++

Raphael Hiesgen
raphael.hiesgen@haw-hamburg.de

iINET RG, Department of Computer Science
Hamburg University of Applied Sciences

July 25, 2013

Hochschule fiir Angewandte
Wissenschaften Hamburg
Hamburg University of Applied Sciences

<7

-]



Agenda

GPU Computing

Raphael Hiesgen

iNET — HAW Hamburg

hy

=
-]



GPU Computing

>
m
-]

GPUs evolved to data-parallel programmable units

Easily outperform CPUs in several use cases

Heterogenous hardware is widely available, even in mobile devices
Programmable with frameworks (e.g., CUDA and OpenCL)

Raphael Hiesgen iNET — HAW Hamburg

\

4



hy

GPU Architecture

>
m
-]

iNET — HAW Hamburg



GPU Architecture

[ GPU ] [data-parallel unit ]

iNET — HAW Hamburg



GPU Architecture

[ GPU

] [data-parallel unit] [ compute core ]

00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000

iNET — HAW Hamburg




GPU Architecture

[ GPU

] [data-parallel unit] [ compute core ] [

memory ]

00000000
00000000
00000000
00000000

[e20]

00000000
00000000
00000000
00000000

leqo|b

00000000
00000000
00000000
00000000

[e20]

00000000
00000000
00000000
00000000

iNET — HAW Hamburg




Agenda

Introduction to OpenCL

Raphael Hiesgen

iNET — HAW Hamburg

hy

=
-]



Introduction to OpenCL

Open Computing Language

Standard for parallel general purpose computing
Platform-independent (CPU & GPU)

Developed by the Khronos Group

First released in 2008

Latest stable release: 1.2 (November 2011)

Next release: 2.0 (Provisional Specification, July 2013)

Raphael Hiesgen iNET — HAW Hamburg



Introduction to OpenCL ineT

m Program consists of two parts: host and device

m Communication via command queue
m Code executed on a device is called kernel

m Written in a C dialect

m Compiled at runtime

m Always returns void

m Arrays as input and output parameters

Raphael Hiesgen iNET — HAW Hamburg 10



- SN

Kernel Execution |

>

m A kernel is executed in an N-dimensional index space
m The dimensions must be specified by the programmer
m Up to three dimensions
m Limited by the hardware
m Each N-tuple is a global 1D

m Each N-tuple refers to a point in the index space
m Represents a single kernel execution
m Called a work-item

m Work-items are bundled in work-groups

m Each work-group has an ID
m Each work item has local, group-dependent ID

Raphael Hiesgen iNET — HAW Hamburg 11



Kernel Execution |l

work-group size Sy

>
m
-]

work-group size Sy

e
I
/| work-group (W, , wyl
/
/
/
/
K
J/ work-item work-item
,
// (0 Sy, W S 15 08) | 0% | S g, w8 05 4F)
/
// (5¢:8)=(0.0) (55:8))=(5¢1,0)
K
/
/ -
7 e : . :
P - : . :
d | -
— work-item work-item
NDRange size Gy (Hy Syts iy W S,45,4F,) (y SypSFy Wy S,p5,4F,)
I ~~~~~~~~ (5¢:8,)=(0.5,71) (558 =(S,1,5,71)

NDRange size Gy

Figure : Index space for a two dimensional kernel. [1]

Raphael Hiesgen iNET — HAW Hamburg

12



Memory Areas e

m Global, constant, local, and private memory areas

m Different access speed and modifiers

area host access ownership  speed
global read, write  global slow
constant | read, write  global slow
local none work-group  fast
private none work-item  fast

Raphael Hiesgen iNET — HAW Hamburg 13



OpenCL Setup Steps in

5 \
i N

Find a platform (e.g. Apple, Nvidia CUDA)

Find the available devices (either GPUs or CPUs)
Create a context

Create a command queue

Create a program object from kernel source
Compile a kernel

Create and initialize memory objects on the device
Set memory objects as arguments for the kernel

Enqueue kernel for execution

Raphael Hiesgen iNET — HAW Hamburg 14



Agenda

Actors with 1ibcppa

Raphael Hiesgen

iNET — HAW Hamburg

hy

=
-]

15



\

4

The Actor Model F

>
m
-]

Actors are concurrent entities, that ...
m Communicate via message passing
m Do not share state
m Can create (“spawn”) new actors
]

Can monitor other actors

Raphael Hiesgen iNET — HAW Hamburg 16



Benefits o

m High-level, explicit communication: no locks, no implicit sharing
m Applies to both concurrency and distribution

m Divide workload by spawning actors
m Network-transparent messaging
m Run transparently on heterogenous hardware

Raphael Hiesgen iNET — HAW Hamburg 17



Agenda

B OpenCl-enabled Actors

Raphael Hiesgen

iNET — HAW Hamburg

=
-]

18



OpenClL-enabled Actors

m Integration of OpenCL actors into 1ibcppa
m Coherent programming model
m Network transparency
m High-level abstraction
m OpenCL is handled in the background
m Messaging handled by libcppa's runtime
m A facade for each OpenCL actor runs on the CPU

m Handles messages
m Extracts kernel arguments from messages
m Initiates the kernel execution on the OpenCL device

Raphael Hiesgen iNET — HAW Hamburg

- SN

19



Example i

5 \
i N

Matrix multiplication of two square matrices
N-dimensional index space is necessary

m One OpenCL dimension per matrix dimension
m One work-item in each dimension per row / column
m One kernel instance for each index in the matrix

OpenCL actors are created by using spawn_cl
Calculation is triggered by a message containing the input values

Result is sent back to the client

Raphael Hiesgen iNET — HAW Hamburg 20



The Kernel

constexpr const char* kernel_name = "matrix_mult";
constexpr const char* kernel_source = R"__(
__kernel void matrix_mult(__global float* matrix1,
__global float* matrix2,
__global float* output) {
size_t size = get_global_size (0);
size_t x = get_global_id (0);
size_t y = get_global_id(1);
float result = 0;
for (size_t idx = 0; idx < size; ++idx) {
result += matrixl[idx + y * size]
* matrix2[x + idx * sizel;
}

output [x+y*size] = result;

Raphael Hiesgen iNET — HAW Hamburg

e

T

21



4

Usage Example \

>
m
-]

size_t matrix_size = 5;

vector<float> ml
vector<float> m2

create_matrix(matrix_size);
create_matrix (matrix_size);

auto worker =
spawn_cl<float*x(float*,float*)>(kernel_source,
kernel_name,
{matrix_size,
matrix_sizel});

sync_send (worker, ml, m2).then(
[J(const vector<float>& result) {
print_as_matrix(result);

}
)

Raphael Hiesgen iNET — HAW Hamburg 22



Speed Benchmark

T T T T T T T T
10005 | —w— GPU
] —e—CPU
100 5
- E
e}
c
3
o} 104
23
[0
=
14
0,1 L D L L R B B L LR BLEL R LR LR RALALLLY
2000 4000 6000 8000 10000
square matrix size [#]
Raphael Hiesgen iNET — HAW Hamburg

23



\

)

Overhead Benchmark :

=
m
-]

Embedding OpenCL adds overhead:
m Actor creation
m Managing OpenCL resources
m Conversion from messages to kernel arguments

m Sent result messages

Raphael Hiesgen iNET — HAW Hamburg 24



Overhead Benchmark

100

time (seconds)

0,1

—&— cppa
—e— native

Raphael Hiesgen

2000 4000

square matrix size [#]

iNET — HAW Hamburg

6000 8000 10000

25



Agenda

Conclusion & Outlook

Raphael Hiesgen

iNET — HAW Hamburg

=
-]

26



Conclusion

m GPUs

m More cores than CPUs
m Data-parallel architecture

m OpenCl-enabled actors

m Easy setup via spawn_cl
m Integrated into libcppa

m Messages handled by 1ibcppa’s runtime
m Keep benefits, e.g., network transparency

m Performace

m Outperforms CPUs for several use cases
m Little overhead compared to native OpenCL

Raphael Hiesgen iNET — HAW Hamburg

27



Future & Ongoing Work iner

Memory management

Handling of multiple GPUs
Improvements in runtime performance

m Prevent copying in 1:1 communication between OpenCL-enabled
actors

Spawn OpenCL-enabled actors on other machines at runtime

Raphael Hiesgen iNET — HAW Hamburg 28



N
AN

4

GPU Characteristics \

>
m
-]

GPUs have several characteristics important to OpenCL.

m Number of parallel compute-cores

work-items

m Maximum work-grotp

m Clock frequency
m Global device memory

m Out of order execution

Raphael Hiesgen iNET — HAW Hamburg 29



Used Hardware

m GPUs:
GT 650M | Tesla C2075
compute cores 2 14
ok items 1024 1024
clock frequency [MHz] 900 1147
global device memory [MB] | 1024 5375
out of order queue false true
m CPU:
m 12 cores
m 2394 MHz

m x86 64 processor

Raphael Hiesgen

iNET — HAW Hamburg

30



iy

References |

>
m
-]

[@ A. Munshi, “The OpenCL Specification,” Khronos OpenCL
Working Group, 2012.

[§ D. Charousset and T. C. Schmidt, “libcppa - Designing an Actor
Semantic for C++11," in Proc. of C++Now, May 2013.

Raphael Hiesgen iNET — HAW Hamburg 31



@ Thank you for your attention.
Questions?

iNET: http://inet.cpt.haw-hamburg.de

Raphael Hiesgen iNET — HAW Hamburg

3

32


http://inet.cpt.haw-hamburg.de

