
OpenCL-based Actors in C++

Raphael Hiesgen
raphael.hiesgen@haw-hamburg.de

iNET RG, Department of Computer Science
Hamburg University of Applied Sciences

July 25, 2013

Agenda

1 GPU Computing

2 Introduction to OpenCL

3 Actors with libcppa

4 OpenCL-enabled Actors

5 Conclusion & Outlook

Raphael Hiesgen iNET – HAW Hamburg 2

GPU Computing

GPUs evolved to data-parallel programmable units
Easily outperform CPUs in several use cases
Heterogenous hardware is widely available, even in mobile devices
Programmable with frameworks (e.g., CUDA and OpenCL)

Raphael Hiesgen iNET – HAW Hamburg 3

GPU Architecture

GPU

Raphael Hiesgen iNET – HAW Hamburg 4

GPU Architecture

data-parallel unitGPU

Raphael Hiesgen iNET – HAW Hamburg 5

GPU Architecture

compute coredata-parallel unitGPU

Raphael Hiesgen iNET – HAW Hamburg 6

GPU Architecture

global

local
local

local
local

compute core memorydata-parallel unitGPU

Raphael Hiesgen iNET – HAW Hamburg 7

Agenda

1 GPU Computing

2 Introduction to OpenCL

3 Actors with libcppa

4 OpenCL-enabled Actors

5 Conclusion & Outlook

Raphael Hiesgen iNET – HAW Hamburg 8

Introduction to OpenCL

Open Computing Language
Standard for parallel general purpose computing
Platform-independent (CPU & GPU)
Developed by the Khronos Group
First released in 2008
Latest stable release: 1.2 (November 2011)
Next release: 2.0 (Provisional Specification, July 2013)

Raphael Hiesgen iNET – HAW Hamburg 9

Introduction to OpenCL

Program consists of two parts: host and device
Communication via command queue
Code executed on a device is called kernel

Written in a C dialect
Compiled at runtime
Always returns void
Arrays as input and output parameters

Raphael Hiesgen iNET – HAW Hamburg 10

Kernel Execution I

A kernel is executed in an N-dimensional index space
The dimensions must be specified by the programmer

Up to three dimensions
Limited by the hardware

Each N-tuple is a global ID
Each N-tuple refers to a point in the index space
Represents a single kernel execution
Called a work-item

Work-items are bundled in work-groups
Each work-group has an ID
Each work item has local, group-dependent ID

Raphael Hiesgen iNET – HAW Hamburg 11

Kernel Execution II

Last Revision Date: 11/14/12 Page 25

The number of work-groups can be computed as:

 (Wx, Wy) = (Gx / Sx, Gy / Sy)

Given a global ID and the work-group size, the work-group ID for a work-item is computed as:

 (wx, wy) = ((gx – sx – Fx) / Sx, (gy – sy – Fy) / Sy)

Figure 3.2 An example of an NDRange index space showing work-items, their global
IDs and their mapping onto the pair of work-group and local IDs.

A wide range of programming models can be mapped onto this execution model. We explicitly
support two of these models within OpenCL; the data parallel programming model and the
task parallel programming model.

Figure : Index space for a two dimensional kernel. [1]
Raphael Hiesgen iNET – HAW Hamburg 12

Memory Areas

Global, constant, local, and private memory areas
Different access speed and modifiers

area host access ownership speed

global read, write global slow
constant read, write global slow
local none work-group fast
private none work-item fast

Raphael Hiesgen iNET – HAW Hamburg 13

OpenCL Setup Steps

Find a platform (e.g. Apple, Nvidia CUDA)
Find the available devices (either GPUs or CPUs)
Create a context
Create a command queue
Create a program object from kernel source
Compile a kernel
Create and initialize memory objects on the device
Set memory objects as arguments for the kernel
Enqueue kernel for execution

Raphael Hiesgen iNET – HAW Hamburg 14

Agenda

1 GPU Computing

2 Introduction to OpenCL

3 Actors with libcppa

4 OpenCL-enabled Actors

5 Conclusion & Outlook

Raphael Hiesgen iNET – HAW Hamburg 15

The Actor Model

Actors are concurrent entities, that ...
Communicate via message passing
Do not share state
Can create (“spawn”) new actors
Can monitor other actors

Raphael Hiesgen iNET – HAW Hamburg 16

Benefits

High-level, explicit communication: no locks, no implicit sharing
Applies to both concurrency and distribution

Divide workload by spawning actors
Network-transparent messaging
Run transparently on heterogenous hardware

Raphael Hiesgen iNET – HAW Hamburg 17

Agenda

1 GPU Computing

2 Introduction to OpenCL

3 Actors with libcppa

4 OpenCL-enabled Actors

5 Conclusion & Outlook

Raphael Hiesgen iNET – HAW Hamburg 18

OpenCL-enabled Actors

Integration of OpenCL actors into libcppa
Coherent programming model
Network transparency

High-level abstraction
OpenCL is handled in the background
Messaging handled by libcppa’s runtime

A facade for each OpenCL actor runs on the CPU
Handles messages
Extracts kernel arguments from messages
Initiates the kernel execution on the OpenCL device

Raphael Hiesgen iNET – HAW Hamburg 19

Example

Matrix multiplication of two square matrices
N-dimensional index space is necessary

One OpenCL dimension per matrix dimension
One work-item in each dimension per row / column
One kernel instance for each index in the matrix

OpenCL actors are created by using spawn_cl

Calculation is triggered by a message containing the input values
Result is sent back to the client

Raphael Hiesgen iNET – HAW Hamburg 20

The Kernel

constexpr const char* kernel_name = "matrix_mult";
constexpr const char* kernel_source = R"__(

__kernel void matrix_mult(__global float* matrix1 ,
__global float* matrix2 ,
__global float* output) {

size_t size = get_global_size (0);
size_t x = get_global_id (0);
size_t y = get_global_id (1);
float result = 0;
for (size_t idx = 0; idx < size; ++idx) {

result += matrix1[idx + y * size]
* matrix2[x + idx * size];

}
output[x+y*size] = result;

}
)__";

Raphael Hiesgen iNET – HAW Hamburg 21

Usage Example

size_t matrix_size = 5;

vector <float > m1 = create_matrix(matrix_size);
vector <float > m2 = create_matrix(matrix_size);

auto worker =
spawn_cl <float*(float*,float *)>(kernel_source ,

kernel_name ,
{matrix_size ,
matrix_size });

sync_send(worker , m1, m2).then(
[](const vector <float >& result) {

print_as_matrix(result);
}

);

Raphael Hiesgen iNET – HAW Hamburg 22

Speed Benchmark

2000 4000 6000 8000 10000
0,1

1

10

100

1000

tim

e
(s

ec
on

ds
)

square matrix size [#]

 GPU
 CPU

Raphael Hiesgen iNET – HAW Hamburg 23

Overhead Benchmark

Embedding OpenCL adds overhead:
Actor creation
Managing OpenCL resources
Conversion from messages to kernel arguments
Sent result messages

Raphael Hiesgen iNET – HAW Hamburg 24

Overhead Benchmark

2000 4000 6000 8000 10000
0,1

1

10

100

tim
e

(s
ec

on
ds

)

square matrix size [#]

 cppa
 native

Raphael Hiesgen iNET – HAW Hamburg 25

Agenda

1 GPU Computing

2 Introduction to OpenCL

3 Actors with libcppa

4 OpenCL-enabled Actors

5 Conclusion & Outlook

Raphael Hiesgen iNET – HAW Hamburg 26

Conclusion

GPUs
More cores than CPUs
Data-parallel architecture

OpenCL-enabled actors
Easy setup via spawn_cl
Integrated into libcppa

Messages handled by libcppa’s runtime
Keep benefits, e.g., network transparency

Performace
Outperforms CPUs for several use cases
Little overhead compared to native OpenCL

Raphael Hiesgen iNET – HAW Hamburg 27

Future & Ongoing Work

Memory management
Handling of multiple GPUs
Improvements in runtime performance

Prevent copying in 1:1 communication between OpenCL-enabled
actors

Spawn OpenCL-enabled actors on other machines at runtime

Raphael Hiesgen iNET – HAW Hamburg 28

GPU Characteristics

GPUs have several characteristics important to OpenCL.

Number of parallel compute-cores
Maximum work-items

work-group

Clock frequency
Global device memory
Out of order execution

Raphael Hiesgen iNET – HAW Hamburg 29

Used Hardware

GPUs:
GT 650M Tesla C2075

compute cores 2 14
work-items
work-group 1024 1024
clock frequency [MHz] 900 1147
global device memory [MB] 1024 5375
out of order queue false true

CPU:
12 cores
2394 MHz
x86_64 processor

Raphael Hiesgen iNET – HAW Hamburg 30

References I

A. Munshi, “The OpenCL Specification,” Khronos OpenCL
Working Group, 2012.

D. Charousset and T. C. Schmidt, “libcppa - Designing an Actor
Semantic for C++11,” in Proc. of C++Now, May 2013.

Raphael Hiesgen iNET – HAW Hamburg 31

Thank you for your attention.
Questions?

iNET: http://inet.cpt.haw-hamburg.de

Raphael Hiesgen iNET – HAW Hamburg 32

http://inet.cpt.haw-hamburg.de

