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GPU Computing
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GPUs evolved to data-parallel programmable units

Easily outperform CPUs in several use cases

Heterogenous hardware is widely available, even in mobile devices
Programmable with frameworks (e.g., CUDA and OpenCL)
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GPU Architecture
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GPU Architecture
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GPU Architecture

[ GPU
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Introduction to OpenCL

Open Computing Language

Standard for parallel general purpose computing
Platform-independent (CPU & GPU)

Developed by the Khronos Group

First released in 2008

Latest stable release: 1.2 (November 2011)

Next release: 2.0 (Provisional Specification, July 2013)
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Introduction to OpenCL ineT

m Program consists of two parts: host and device

m Communication via command queue
m Code executed on a device is called kernel

m Written in a C dialect

m Compiled at runtime

m Always returns void

m Arrays as input and output parameters
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Kernel Execution |
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m A kernel is executed in an N-dimensional index space
m The dimensions must be specified by the programmer
m Up to three dimensions
m Limited by the hardware
m Each N-tuple is a global 1D

m Each N-tuple refers to a point in the index space
m Represents a single kernel execution
m Called a work-item

m Work-items are bundled in work-groups

m Each work-group has an ID
m Each work item has local, group-dependent ID
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Kernel Execution |l
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Figure : Index space for a two dimensional kernel. [1]
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Memory Areas e

m Global, constant, local, and private memory areas

m Different access speed and modifiers

area host access ownership  speed
global read, write  global slow
constant | read, write  global slow
local none work-group  fast
private none work-item  fast
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OpenCL Setup Steps in
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Find a platform (e.g. Apple, Nvidia CUDA)

Find the available devices (either GPUs or CPUs)
Create a context

Create a command queue

Create a program object from kernel source
Compile a kernel

Create and initialize memory objects on the device
Set memory objects as arguments for the kernel

Enqueue kernel for execution
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The Actor Model F
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Actors are concurrent entities, that ...
m Communicate via message passing
m Do not share state
m Can create (“spawn”) new actors
]

Can monitor other actors
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Benefits o

m High-level, explicit communication: no locks, no implicit sharing
m Applies to both concurrency and distribution

m Divide workload by spawning actors
m Network-transparent messaging
m Run transparently on heterogenous hardware
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OpenClL-enabled Actors

m Integration of OpenCL actors into 1ibcppa
m Coherent programming model
m Network transparency
m High-level abstraction
m OpenCL is handled in the background
m Messaging handled by libcppa's runtime
m A facade for each OpenCL actor runs on the CPU

m Handles messages
m Extracts kernel arguments from messages
m Initiates the kernel execution on the OpenCL device
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Example i
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Matrix multiplication of two square matrices
N-dimensional index space is necessary

m One OpenCL dimension per matrix dimension
m One work-item in each dimension per row / column
m One kernel instance for each index in the matrix

OpenCL actors are created by using spawn_cl
Calculation is triggered by a message containing the input values

Result is sent back to the client
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The Kernel

constexpr const char* kernel_name = "matrix_mult";
constexpr const char* kernel_source = R"__(
__kernel void matrix_mult(__global float* matrix1,
__global float* matrix2,
__global float* output) {
size_t size = get_global_size (0);
size_t x = get_global_id (0);
size_t y = get_global_id(1);
float result = 0;
for (size_t idx = 0; idx < size; ++idx) {
result += matrixl[idx + y * size]
* matrix2[x + idx * sizel;
}

output [x+y*size] = result;
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Usage Example \
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size_t matrix_size = 5;

vector<float> ml
vector<float> m2

create_matrix(matrix_size);
create_matrix (matrix_size);

auto worker =
spawn_cl<float*x(float*,float*)>(kernel_source,
kernel_name,
{matrix_size,
matrix_sizel});

sync_send (worker, ml, m2).then(
[J(const vector<float>& result) {
print_as_matrix(result);

}
)
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Speed Benchmark
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Overhead Benchmark :
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Embedding OpenCL adds overhead:
m Actor creation
m Managing OpenCL resources
m Conversion from messages to kernel arguments

m Sent result messages
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Overhead Benchmark
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Conclusion

m GPUs

m More cores than CPUs
m Data-parallel architecture

m OpenCl-enabled actors

m Easy setup via spawn_cl
m Integrated into libcppa

m Messages handled by 1ibcppa’s runtime
m Keep benefits, e.g., network transparency

m Performace

m Outperforms CPUs for several use cases
m Little overhead compared to native OpenCL
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Future & Ongoing Work iner

Memory management

Handling of multiple GPUs
Improvements in runtime performance

m Prevent copying in 1:1 communication between OpenCL-enabled
actors

Spawn OpenCL-enabled actors on other machines at runtime
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GPU Characteristics \
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GPUs have several characteristics important to OpenCL.

m Number of parallel compute-cores

work-items

m Maximum work-grotp

m Clock frequency
m Global device memory

m Out of order execution
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Used Hardware

m GPUs:
GT 650M | Tesla C2075
compute cores 2 14
ok items 1024 1024
clock frequency [MHz] 900 1147
global device memory [MB] | 1024 5375
out of order queue false true
m CPU:
m 12 cores
m 2394 MHz

m x86 64 processor
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@ Thank you for your attention.
Questions?

iNET: http://inet.cpt.haw-hamburg.de
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