
1

Dominik Charousset, January 2016

Towards Type-safe
Composition of Actors

Problem Statement

1. Actors lack (message) interfaces

2. Actors hard-code receivers

3. Actors do not compose

2

Actors lack Interfaces
• Erlang and Akka use dynamic typing for actors

• No type checking of messages at sender

• Burdens developer with correctness checking

• SALSA, Pony, Charm++, etc. use an OO design

• Member function names identify message types

• Static type checking but inflexible, tight coupling

3

Actors Hard-code Receivers
• Erlang-like implementations use explicit sends only

• Request/response modeled via two sends

• Programmers implement pipelining manually

• OO-inspired designs have call semantics

• Request/response modeled via return values

• Caller always receives results

4

Actors do not Compose

• No system offers configurable message flows

• Users cannot define actors in terms of other actors

5

Composability*

• A type is composable if instances of it can be
combined to produce the same or a similar type

• Abstraction that enables gluing solutions together

• Reuse existing components without modification

• Modularize architecture

6

* Loosely based on the definition in "Why Functional Programming Matters"

Composability in FP
• Functions are first-class citizens

• Can be stored in variables / bound to names

• Can be passed to (higher order) functions

• Functions use parametric polymorphism*

• Generic while maintaining full static type-safety

• Transformation of data types and other functions

7

* Allow deducing theorems for polymorphic functions, see "Theorems for free!"

Dot Operator in Haskell
• f.g composition pipes the output of g to f

• Output type of g is the input type of f

• f.g has input type of g and output type of f

• Definition in the Haskell standard library:  
(.) :: (b -> c) -> (a -> b) -> a -> c  
f . g = \x -> f (g x)

8

Dot Operator for Actors?
• Composition requires reasoning about types:

• What input types have actors F and G? *

• What output types generate F and G?

• Reasoning about types requires:

• Unambiguously define input and output types

• Force input -> output messaging style upon actors

9

* We denote actors using uppercase and functions using lowercase letters

State of the Art

• Traditionally: dynamic typing, messages are tuples

• Erlang, Scala Actors*, Akka

• Alternative approach: OO-inspired design

• SALSA, Pony, Charm++

10

* Deprecated since Scala 2.11 in favor of Akka

Traditional Design

• No correlation of input and output messages

• Hard-coded message receivers

• Atoms or case classes identify operations

• Akka also offers non-messaging future-based API

11

TAkka*

• Attempts to add type-safety to Akka

• Restricts input types for actors, but not outputs

• Embeds manifests for run-time type checks

• Keeps hard-coding of receivers as found in Akka

12

* See "Typecasting actors: from Akka to TAkka"

OO-inspired Design
• Hides messages using named methods

• Defines both input and output types of methods

• Tightly couples caller and callee via type system

• Caller needs to know type or supertype or callee

• Structural types can prevent overly tight coupling

13

Structural Types
• Enable type-safe duck typing

• Hide actual type of callee but still bind to names

• Allow compiler to check compliance of interfaces

• Require user-defined definition of method

• Unsuitable for "dot operator"-style composition

14

Conceptual Idea

1. Correlate inputs and outputs without OO design

2. Enable the runtime to manipulate message flows

3. Offer minimal set of composition primitives

4. Compose actors from other actors

15

Expose Message Flow
• Actors define input and output tuples as interface

• Interfaces are sets of (a, b) -> (c, d) rules

• Uniquely typed atoms allow to identify operations

• Example interface for an associative container:  
('get', string) -> (int)  
('set', string, int) -> ()

16

Manipulate Message Flow

• Prohibit actors from sending results manually

• Generate responses from message handler results

• Store messaging path in a message header

• Build pipelines by redirecting responses

17

Find Composition Primitives
• Allow users to alter actor interfaces (unary)

• Pre-define or re-order input and output types

• Create adapter interface for further composition

• Enable user to compose two actors (binary)

• Compose result further with a third actor, etc.

• Structure compositions like a tree

18

Compose Unary and Binary
• Unary composition: partial applications / bindings

• Binding inputs: H(x) = F(δ $ x) *

• Binding outputs: H(x) = δ $ F(x)

• Binary composition: sequential or parallel

• Pipelines: H(x) = F(G(x))

• Joins: H(x) = (F(x), G(x))

19

* $ is the apply operator, δ is a user-defined bind operation

Define Composed Actors

• Have their own identity

• Are never scheduled and have no mailbox

• Manipulate messages and message paths

• Can spawn actors for stateful operations (e.g. join)

• Cease to exist if any of their constituents dies

20

Implementation in CAF
• Messaging interfaces based on tuples only

• Abstract:(a, b) -> (c, d)

• C++: replies_to<a, b>::with<c, d>

• Composition is implemented with 4 decorators

• 2 for unary compositions

• 2 for binary compositions

21

22

adapter

H = F.bind(δ)

H F
x δ $ x y

h = λ(x) -> f(δ $ x)FP equivalent:

23

result adapter

H = F.rbind(δ)

H F
x x δ $ y

h = λ(x) -> δ $ f(x)FP equivalent:

H’
y

24

sequencer

H = F * G

H G
x x z

F
y

h = f · gFP equivalent:

25

splitter

H = splice(F, G)

H

F

x (y, z)

G

y

H’

x z

x

h = λ(x) -> (f(x), g(x))FP equivalent:

Types of Composed Actors
• Unary composition:

• Remove types for partial applications

• Select all possible clauses for reordering via bind

• Binary composition:

• Sequencer accept in(G), return F(G(x))

• Splitter accept in(F) ∩ in(G), return (F(x), G(x))

26

* in(F) denotes all accepted input tuples for F

Currying

27

(‘add’, int, int) -> (int)
(‘sub’, int, int) -> (int)
(‘mul’, int, int) -> (int)
(‘div’, int, int) -> (int)

(int, int) -> (int).bind(‘add’, _1, _2)

calculator adder

=

Binding

28

(‘add’, int, int) -> (int)
(‘sub’, int, int) -> (int)
(‘mul’, int, int) -> (int)
(‘div’, int, int) -> (int)

(int) -> (int).bind(‘mul’, _1, 2)

calculator doubler

=

Prefixing Results

29

(int) -> (int)
(int, int) -> (int, int)

(int) -> (‘res’, int)
(int, int) -> (‘res’, int)

.rbind(‘res’, _1)

calculator adder

=

Pipelining

30

(int, string) -> (int)
(int, double) -> (string, int)
(string) -> (string, string)

(int, string) -> (double)
(string) -> (string)

○

F H

(int) -> (double)
(string, string) -> (string)

G

=

Joining

31

(int) -> (int, int)
(string) -> (int)

(string, string) -> (bool)

(int) -> (double, int, int)
(string) -> (string, int)

++

F H

(int) -> (double)
(string) -> (string)

G

=

Error Handling

• Escalate errors always to original sender

• Indicate at what stage error occurred

• Trivial for sequencers: either F or G sends error

• Splitters have 3 possible error states

32

Error States of Splitters
1. F failed, but not G

2. G failed, but not F

3. Both F and G failed

➡ Transmit result of F and G regardless of error

33

34

splitter

H = splice(F, G)

H

F

x

G

ERR

H’

x z

x

((F, ERR), (G, z))

Re-using Inputs

• Consider

• H(x) = F(x, G(x))

• H(x) = F(x, F(x, x))

• How to multiply inputs for later stages?

35

36

H = F * splice(?, G)

H

?

x

G

x

H’

x G(x)

x

h = λ(x) -> f(x, g(x))FP equivalent:

F
(x, G(x))

37

H = F.bind(_1, _3) * splice(?, F) * splice(?, ?)

H

?

x

?

x

H’

x x

x

h = λ(x) -> f(x, f(x, x))FP equivalent:

F
(x, F(x, x))

?

F

(x, x)

H’'

(x, x) F(x, x)

(x, x)

(x, x, F(x, x))
H'''

Idea: Pseudo Actors

• Enable more complex composition

• From the examples: ? denotes the "identity actor"

• Have polymorphic interface (depends on the input)

38

Efficiency
• Not the goal of this work, but a side effect

• Concurrent setting: fewer scheduler cycles

• Distributed setting: fewer inter-node messages

• Composed actors are considered as values

• Never referenced across nodes, always copied

39

Reactive Programming RP

• Type-safe composable actors overlap with RP

• Accumulated updates are glitch-free by design

40

41

* from "Distributed REScala: An Update Algorithm for Distributed Reactive Programming"

ever, existing implementations of RP either target specific
kinds of distributed applications (e.g., only client-side [22]),
do not provide safe value propagation [19], or adopt a syn-
chronization and communication schema that is not accept-
able for interactions between remote hosts [3].

We propose Distributed REScala, which implements SID-

UP (Source IDentifier Update Propagation), an algorithm
for propagating changes in a network of dependent reactive
values that is suitable in a distributed setting. It renounces
properties that are undesirable in a distributed setting, such
as global centralized knowledge about the topology of the
dependency structure among reactive values and unneces-
sary communication and synchronization between changes
in completely independent parts of this structure, while
retaining safety guarantees (glitch freedom [22]). To the best
of our knowledge, such a solution has not been proposed
before. The proposed algorithm thus enables distributed
reactive programming (DRP for short), a powerful paradigm
to design distributed applications.

In summary, we makes the following contributions:

• We characterize the design space of existing algorithms
for change propagation in reactive programming, moti-
vating the need for new algorithms that better suit the
requirements of distributed applications.

• We present SID-UP, an algorithm for reactive program-
ming in distributed applications, thus enabling DRP.

• We analyze and compare the complexity of different
change propagation algorithms, including SID-UP.

• We discuss a small-scale case study to indicate design
improvements enabled by DRP and its performance cost
compared to designs based on distributed observer infras-
tructures.

• We empirically evaluate the efficiency of update algo-
rithms in a distributed setting, and show that SID-UP out-
performs existing algorithms.

While the abstract idea of DRP was presented in a vi-
sion paper [23], the SID-UP algorithm, the comprehensive
discussion of the problems with the state of the art, and the
evaluation, are new contributions of this paper. The imple-
mentation of SID-UP in a prototypical reactive language, the
case study, and all evaluation artifacts are available online1.

2. Background and Motivation

In this section, we introduce the case study used throughout
the paper for illustration and evaluation purposes. We intro-
duce key concepts of RP and motivate our work.

Our case study is ProfitReact, a software system that sup-
ports a manufacturing company. It consists of four modules.
Clients place orders on an incoming server. The purchases

1 http://www.stg.tu-darmstadt.de/research/

Figure 1. Reactive network graph of the case study.

department has a module that calculates a plan for acquir-
ing the resources needed to produce the ordered goods. The
sales department equivalently maintains a plan for delivering
the produced goods. Both plans are updated as the order list
changes. Finally, a management module combines the pro-
jected spending and the projected income, derived from the
purchase and delivery plans respectively, into the projected
profit. It defines an invariant that this profit must never be
negative: Whenever this is violated, a notification is sent out
to a responsible manager. To keep individual department’s
operations independent the four modules should run on sep-
arate machines, thus making the application distributed.

2.1 Reactive Architectures

A reactive architecture is well-suited for ProfitReact: There
is a small number of inputs and a lot of derived state that has
to be updated whenever some of the inputs change. In the
following, we briefly introduce the key concepts of a reactive
architecture and illustrate them by the case study.

Values in a reactive architecture are organized in a de-
pendency graph (DG): Nodes therein represent reactive val-
ues and are connected via dependency relations. Figure 1
shows the graph of the case study (without UI components).
Dashed boxes represent individual hosts. The set of nodes in
the DG is denoted by N . Some nodes can be modified im-
peratively through user code. In the example, these are the
list of orders, the fuel and the resource costs. We denote the
set input nodes as I ⊆ N and visualize them as triangles.
Most nodes’ values are the result of a user-defined computa-
tion using values from other nodes as input, i.e. they depend

on other nodes. The formula that calculates the estimated in-
come from the delivery plan is an example – it is associated
with the node “income” that depends on the state of the “de-
livery plan” value. We refer to the set of dependent nodes as
D ⊆ N with D ∩ I = ∅ and visualize them as circles.

We denote incoming dependencies of a node d ∈ D as
−→
depd (arrow points towards node’s name). In application
code, these correspond to input values to the computation
of d. In a reactive framework, for any n ∈ N , outgoing
dependencies

←−
depn (arrow points away from node’s name)

are maintained automatically. Outgoing dependencies point

362

Example RP Case Study

Conclusion

• We have a more functional take on actors

• Composability increases expressive power of CAF

• New API has overlap to distr. reactive programming

• More robust and efficient than user-generated code

42

Future Work
• Pseudo actors with polymorphic interfaces

• Higher-level buildings blocks based on primitives

• Explore connections and tradeoffs to RP

• Compare generated code / "ease of use"

• Evaluate differences in performance/networking

43

Thank you for your attention!

Questions?

44

References
• Hughes, J., "Why Functional Programming Matters", Vol. 32 of Computer

Journal, pp. 98-107, Oxford University Press, Oxford, UK, 1989

• Wadler, Philip. "Theorems for free!", in Proceedings of the fourth
international conference on Functional programming languages and
computer architecture, pp. 347-359. ACM, 1989

• He, Jiansen, Philip Wadler, and Philip Trinder. "Typecasting actors: from
Akka to TAkka." In Proceedings of the Fifth Annual Scala Workshop, pp.
23-33. ACM, 2014.

• Joscha Drechsler, Guido Salvaneschi, Ragnar Mogk, and Mira Mezini.
"Distributed REScala: an update algorithm for distributed reactive
programming." In Proceedings of the 2014 ACM OOPSLA '14, pp.
361-376 ACM, 2014.

45

