Towards Type-safe
Composition of Actors

Dominik Charousset, January 2016

Problem Statement

1. Actors lack (message) interfaces
2. Actors hard-code receivers

3. Actors do not compose

Actors lack Intertfaces

* Erlang and Akka use dynamic typing for actors
* No type checking of messages at sender
* Burdens developer with correctness checking
 SALSA, Pony, Charm++, etc. use an OO design
 Member function names identity message types

e Static type checking but inflexible, tight coupling

3

Actors Hard-code Recelvers

e Erlang-like implementations use explicit sends only
* Request/response modeled via two sends
* Programmers implement pipelining manually

* OO-inspired designs have call semantics
* Request/response modeled via return values

e Caller always receives results

4

Actors do not Compose

* No system offers configurable message flows

e Users cannot define actors in terms of other actors

Composability”

* Atype is composable if instances of it can be
combined to produce the same or a similar type

* Abstraction that enables gluing solutions together

* Reuse existing components without modification

 Modularize architecture

* Loosely based on the definition in "Why Functional Programming Matters"

6

Composability in FP

e Functions are first-class citizens
e Can be stored in variables / bound to names
e Can be passed to (higher order) functions
e Functions use parametric polymorphism”*
* Generic while maintaining full static type-safety

« Transformation of data types and other functions

* Allow deducing theorems for polymorphic functions, see "Theorems for free!”

/

Dot Operator in Haskell

e f.g composition pipes the output of g to £

o Qutput type of g is the input type of £

e f.g has inputtype of g and output type of £
e Definition in the Haskell standard library:

(.) :: (b =>¢c) -> (a -=> b) -> a -> c
f . g=\x -—>f (g x)

Dot Operator for Actors?

e Composition requires reasoning about types:
 What input types have actors F and G? *
« What output types generate F and G?
 Reasoning about types requires:
* Unambiguously define input and output types

* Force input -> output messaging style upon actors

* We denote actors using uppercase and functions using lowercase letters

9

State of the Art

e Traditionally: dynamic typing, messages are tuples
e Erlang, Scala Actors*, Akka
* Alternative approach: OO-inspired design

« SALSA, Pony, Charm++

* Deprecated since Scala 2.11 in favor of Akka

10

Traditional Design

No correlation of input and output messages
Hard-coded message receivers
Atoms or case classes identity operations

Akka also offers non-messaging future-based AP|

11

TAKka™

e Attempts to add type-safety to Akka
* Restricts input types for actors, but not outputs
* Embeds manifests for run-time type checks

» Keeps hard-coding of receivers as found in Akka

* See "lypecasting actors: from Akka to TAkka"

12

OO-inspired Design

Hides messages using named methods

Defines both input and output types of methods
Tightly couples caller and callee via type system

e Caller needs to know type or supertype or callee

e Structural types can prevent overly tight coupling

13

Structural Types

Enable type-safe duck typing

Hide actual type of callee but still bind to names
Allow compiler to check compliance of interfaces
Require user-defined definition of method

Unsuitable for "dot operator'-style composition

14

Conceptual Idea

1. Correlate inputs and outputs without OO design
2. Enable the runtime to manipulate message flows
3. Offer minimal set of composition primitives

4. Compose actors from other actors

15

Expose Message Flow

e Actors define input and output tuples as interface
e Interfaces are setsof (a, b) -> (c, d) rules
* Unigquely typed atoms allow to identity operations

 Example interface for an associative container:

('get', string) -> (int)
('set', string, int) -> ()

16

Manipulate Message Flow

* Prohibit actors from sending results manually
* (Generate responses from message handler results
e Store messaging path in a message header

« Build pipelines by redirecting responses

17

Find Composition Primitives

* Allow users to alter actor interfaces (unary)

* Pre-define or re-order input and output types

* Create adapter interface for further composition
* Enable user to compose two actors (binary)

« Compose result further with a third actor, etc.

e Structure compositions like a tree

18

Compose Unary and Binary

e Unary composition: partial applications / bindings
e Bindinginputs: H(x) = F(d $ x) *
 Binding outputs: H(x) = & $ F(x)

* Binary composition: sequential or parallel
e Pipelines: H(x) = F(G(x))

e JOINS:H(x) = (F(x), G(x))

* S Is the apply operator, 5 is a user-defined bind operation

19

Define Composed Actors

 Have their own identity

e Are never scheduled and have no mailbox
 Manipulate messages and message paths

e Can spawn actors for stateful operations (e.g. join)

 Cease to exist if any of their constituents dies

20

Implementation in CAF

 Messaging interfaces based on tuples only
 Abstract: (a, b) -> (¢, d)
e C++: replies to<a, b>::with<c, d>
 Composition is implemented with 4 decorators
e 2 for unary compositions

e 2 for binary compositions

21

FP equivalent:

adapter

H = F.bind(d)

O%x

h=Ax)->f® $ x)

22

FP equivalent:

result adapter

H = F.rbind(d)

h=AXx)->039% f(x)

23

FP equivalent:

sequencer

H=F*G

24

Qix

FP equivalent:

splitter

H = splice(F, G)

h = A(x) => (f(x), g(x))

25

Types of Composed Actors

e Unary composition:
 Remove types for partial applications
* Select all possible clauses for reordering via bind
e Binary composition:
e Sequencer accept in (G), return F (G (x))
o Splitter accept in(F) N in(G), return (F(x), G(x))

*in (F) denotes all accepted input tuples for F

26

calculator
-
(fadd’, int, int) —»> (int)
(‘sub’, int, int) —> (int)
(‘mul’, int, int) —> (int)
(¢div’, int, int) —> (int)
N\

urrying

.bind(‘add’, _1,

27

_2)

adder

(int, int) —> (int)

calculator
-
(fadd’, int, int) —»> (int)
(‘sub’, int, int) —> (int)
(‘mul’, int, int) —> (int)
(¢div’, int, int) —> (int)
.

Binding

.bind(‘mul’,

28

1, 2)

doubler

(int) -> (int)

Prefixing Results

calculator

(int) => (int)
(int, int) —> (int, int)

.rbind(‘res’,

29

_1)

adder

(int) -> (‘res’, int)
(int, int) -> (‘res’, int)

(int) —> (double)
(string, string) -»> (string)

Pipelining

(int, string) -» (int)
(int, double) -»> (string, int)
(string) -»> (string, string)

30

(int, string) -> (double)
(string) -»> (string)

(int) —> (double)
(string) -»> (string)

++

Joining

(int) -> (int, int)
(string) -»> (int)
(string, string) -»> (bool)

31

(int) -> (double, int, int)
(string) -»> (string, int)

Error Handling

» Escalate errors always to original sender
* |Indicate at what stage error occurred

 Trivial for sequencers: either F or G sends error

e Splitters have 3 possible error states

32

Error States of Splitters

1. F failed, but not G
2. G failed, but not

3. Both F and ¢ failed

= [ransmit result of F and G regardless of error

33

splitter

H = splice(F, G)

((F, ERR), (G, 2))

34

Re-using Inputs

 Consider
e H(x) = F(x, G(x))

e H(x) = F(x, F(x, X))

* How to multiply inputs for later stages”?

35

Qix

FP equivalent:

h = AXx) -> f(x, g(x))

36

(x, G(x) @

Qix

FP equivalent:

H

F.bind(_1, _3) * splice(?, F) * splice(?, ?)

(x, x, F(x, X))

h = A(x) -> f(x, f(x, x))

(x, F(x, x)) (:)

37

|dea: Pseudo Actors

* Enable more complex composition

o From the examples: ? denotes the "identity actor’

* Have polymorphic interface (depends on the input)

38

Efficiency

Not the goal of this work, but a side effect
Concurrent setting: fewer scheduler cycles
Distributed setting: fewer inter-node messages

« Composed actors are considered as values

* Never referenced across nodes, always copied

39

Reactive Programming RP

* Type-safe composable actors overlap with RP

* Accumulated updates are glitch-free by design

40

Example RP Case Study

Purchases

resource
COSsts

———— — — ——— ——— — —— — — — — — — — —

| I
I I
| | profit 1sNegative send out
orders | I notification |
b | i whenever it |
| delivery income ! L_____________|] becomes true|
i_fuel cost plan |

* from "Distributed REScala: An Update Algorithm for Distributed Reactive Programming”

41

Conclusion

We have a more functional take on actors
Composability increases expressive power of CAF
New APl has overlap to distr. reactive programming

More robust and efficient than user-generated code

42

Future Work

Pseudo actors with polymorphic interfaces
Higher-level buildings blocks based on primitives
Explore connections and tradeoffs to RP
 Compare generated code / "ease of use”

* Evaluate differences in performance/networking

43

Thank you for your attention!

Questions?

44

References

Hughes, J., "Why Functional Programming Matters®, Vol. 32 of Computer
Journal, pp. 98-107, Oxford University Press, Oxford, UK, 1989

Wadler, Philip. "Theorems for free!”, in Proceedings of the fourth
international conference on Functional programming languages and
computer architecture, pp. 347-359. ACM, 1989

He, Jiansen, Philip Wadler, and Philip Trinder. "Typecasting actors: from
Akka to TAkka." In Proceedings of the Fifth Annual Scala Workshop, pp.
23-33. ACM, 2014.

Joscha Drechsler, Guido Salvaneschi, Ragnar Mogk, and Mira Mezini.
"‘Distributed REScala: an update algorithm for distributed reactive
programming.” In Proceedings of the 2014 ACM OOPSLA '14, pp.
361-376 ACM, 2014.

45

