Group Formation in eLearning-enabled Online Social Networks

Steffen Brauer, Thomas C. Schmidt

steffen.brauer@haw-hamburg.de, t.schmidt@ieee.org

iNET RG, Department of Computer Science Hamburg University of Applied Sciences

September 26, 2012

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Outline

1 Motivation

- 2 eLearning-enabled OSN
- **3** Group Formation Approach
- 4 Evaluation
- 5 Conclusion

Motivation

Classic eLearning environments

- Intra-group communication in predefined classrooms
- Managed by instructor
 - Creates groups
 - Analyses course results
 - Tracks learning progress

Online social networks (OSN)

- Socialize with friends
- Groups are user-triggered
- Ubiquitous use

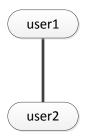
How to provide a platform for self-paced learning on topics of personal interest?

jdflksajfdlkjsalkfjlksaä löksaölfdköskdaf ölsaökdsaf ölksölfdkösa

Motivation Objectives & Challenges

- Our work focuses on integrating an OSN and an eLearning environment by removing the instructor
- Removal of instructor leads to challenges
 - 1 How to stimulate a team building process that is effective for learners?
 - 2 How to provide access to the relevant content for a learning group?
 - **3** How to facilitate a consistent learning progress, include feedback and corrective actions?

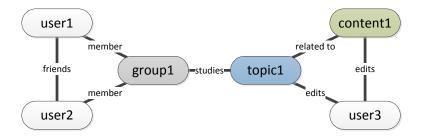
Motivation Objectives & Challenges


- Our work focuses on integrating an OSN and an eLearning environment by removing the instructor
- Removal of instructor leads to challenges
 - How to stimulate a team building process that is effective for learners?
 - 2 How to provide access to the relevant content for a learning group?
 - **3** How to facilitate a consistent learning progress, include feedback and corrective actions?

eLearning-enabled OSN Base Structure

- Extend commercial OSN by adding learning related features
- Communication is handled by commercial OSN via APIs
- All relevant objects are represented in the OSN

Classical representation of an OSN



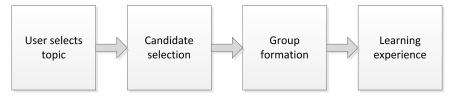
eLearning-enabled OSN Base Structure

- Extend commercial OSN by adding learning related features
- Communication is handled by commercial OSN via APIs
- All relevant objects are represented in the OSN

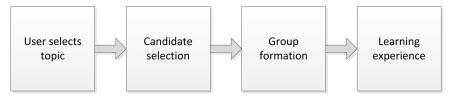
Representation using the unified approach

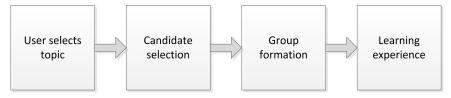
- Availability
 - Motivation of an user to start collaboration

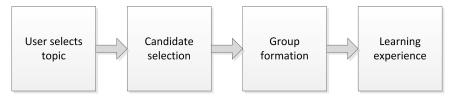
eLearning-enabled OSN User Model


- Availability
 - Motivation of an user to start collaboration
- Learning style (Felder & Silverman Theory)
 - Active or Reflective (Processing)
 - Visual or Verbal (Input)
 - Sensing or Intuitive (Perception)
 - Sequential or Global (Understanding)

eLearning-enabled OSN User Model


- Availability
 - Motivation of an user to start collaboration
- Learning style (Felder & Silverman Theory)
 - Active or Reflective (Processing)
 - Visual or Verbal (Input)
 - Sensing or Intuitive (Perception)
 - Sequential or Global (Understanding)
- Knowledge
 - Represented by tags
 - Each topic defines required tags with weights
 - Users also hold tags with an activity index
 - Knowledge Rank is calculated by product of weights and activity index


User initiate group building by selecting a topic, which requires collaboration


- User initiate group building by selecting a topic, which requires collaboration
- 2 Starting at the initiator, the social network is searched for candidates

- User initiate group building by selecting a topic, which requires collaboration
- 2 Starting at the initiator, the social network is searched for candidates
- **3** If a number of candidates is found, the group formation tries to find the best constellation

- User initiate group building by selecting a topic, which requires collaboration
- 2 Starting at the initiator, the social network is searched for candidates
- **3** If a number of candidates is found, the group formation tries to find the best constellation
- 4 Selected users are invited and learning experience starts

Candidate Selection

 Input: social network, number of candidates, threshold

- Vertex is added to candidate set, if distance to initiator and topic is lower than threshold
- Distance formula includes learning style and knowledge rank (scale: 0 - 1)
- Implemented search algorithms:
 - Breath First Search(BFS)
 - Random Walk Search(RWS)
 - Best Connected Search(BCS)
- Output: candidate set

Candidate selection

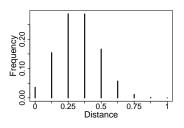
Group Formation

- Input: candidate set
- Group fitness defined by:
 - common learning style
 - high knowledge rank
 - low distance in social network
- Implemented by genetic algorithms to reduce complexity
 - Group constellations are treated as chromosomes in a population
 - In each generation cross-over and mutation operations are performed
 - Only constellations with a high fitness are selected for next generation
- Output: best group constellations

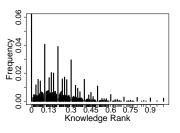
Group formation Evaluation Open questions

- 1 How are the user attributes distributed?
- 2 What is the impact of search algorithms?
- 3 Does the threshold influence the search complexity?
- 4 Does the candidate count influence the group fitness?

Evaluation Generating test data

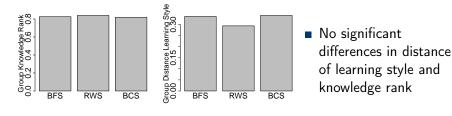

- No implementation exists and no appropriate test data
- Evaluation on synthetic data
- Simplification: Only user objects in the social network and all users are available
- Forest fire model was used to generate a social network with 1000 vertices and 31522 edges
- Challenge: How to distribute the user attributes?
 - Learning style: empirical data from Felder & Spurlin
 - Knowledge: 20 tags are power-law distributed over all vertices with random activity index

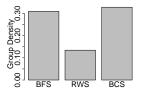
Evaluation User Model


How are the user attributes distributed?

Distance in learning style

- Normal distribution
- Low average distance

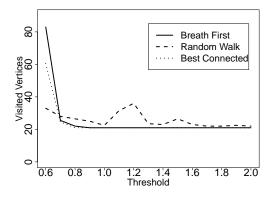

Knowledge rank



- 0 = 0.27
- Very low average knowledge rank

Evaluation Candidate Selection

What is the impact of the search algorithms?

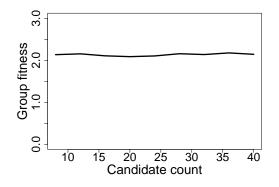


- BFS and BCS produce nearly equal results
- RWS produce low group density

Evaluation Candidate Selection

Does the threshold influence the search complexity?

- RWS performs best if threshold < 0.7
- BFS and BCS convert at 0.9



Steffen Brauer

Evaluation Group Formation

Does the candidate count influence the group fitness?

- BFS was used to find candidates
- Threshold = 0.8
- No significant change in group fitness by increasing candidate count

Conclusion & Outlook

Problem: How to simulate a team building process that is effective for learners?

- User model includes availability, learning style and knowledge
- Approach divided in two parts:
 - Candidate selection
 - Group formation
- Evaluation based on synthetic data

Future research

- Improve data base by empirical data
- Include tie strength to take full advantage of unified approach