

A Comparative Analysis of the IPv6 Inter-Domain Routing in European Countries

Tácio dos Santos tacio.santos@haw.hamburg.de Matthias Wählisch waehlisch@ieee.org Thomas C. Schmidt t.schmidt@ieee.org

Internet Technologies Group

Department of Computer Science, HAW Hamburg

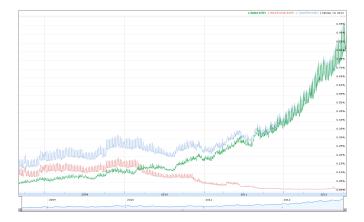
Prof. Dr. Thomas C. Schmidt

INET Seminar Oct 17, 2012

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Outline

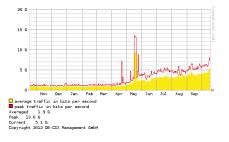
Motivation


- Measuring IPv6 deployment
- Methodology
- Results & discussion
- Conclusion & outlook

Motivation

IPv6 is gaining momentum

Users at Google¹



Motivation

IPv6 is gaining momentum

TRAFFIC AT IXPs ² ³

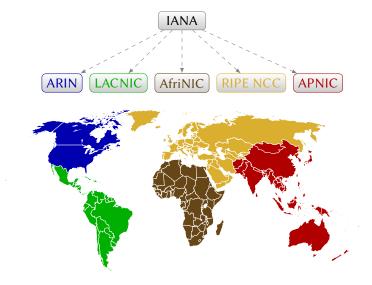
DE-CIX

AMS-IX

Why?

2 3

http://www.de-cix.net/about/statistics/


https://www.ams-ix.net/technical/statistics/sflow-stats/ipv6-traffic

Where do Internet addresses come from?

Regional Internet registries Origin of IP adresses

IPv4 address exhaustion

Reaching the last /8 block

/8 block $\approx 16 \times 10^6$ IP addresses

- April 15, 2011

 APNIC reaches the final /8 block
- September 14, 2012 ▷ RIPE reaches the final /8 block

Last block allocation policy: /22 (1024 IP addresses)

The definitive solution:

IPv6

How ready is IPv6?

Global IPv6 deployment

Measurement areas

- Hardware and software support
 - ▷ Operating systems, web browsers, end-user applications
 - ▷ Network equipment (routers, switches, firewalls, CPEs, ..)
- Traffic
 - IXPs and large ISPs
 - Content providers
- Infrastructure
 - ▷ Content and services (DNS, email, web, CDNs)
 - Backbone (network links/topology)

DE-CIX, AMS-IX, BCIX, ..

Market surveys

Google, Akamai, Facebook, ..

Routing

Methodology (1/2)

1 Generate an IPv6 AS-level routing graph ⁴	Directed, weighted
2 Using IP-blocks, identify the European ASes ⁵	inet6num
3 Generate the routing subgraphs for each European country	Shortest paths
4 For each subgraph compute the distributions of	
⊳ degree ⊳ distance	Path length in hops

clustering

⁴ Rolf, Winter, "Modeling the Internet Routing Topology - In Less than 24h", 2009

Wählisch et al., "Exposing a Nation-Centric View on the a German Internet -- A Change in Perspective on the AS Level", 2012

Methodology (2/2)

5 Rank according to:

Ref: EU subgraph

- ▷ number of ASes with average degree greater than reference
- \triangleright the relative number of paths less than log(log(#ASes))

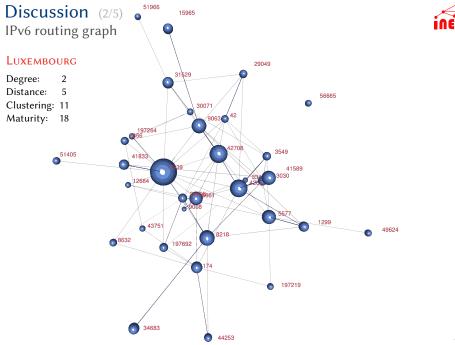
Scale-free graph

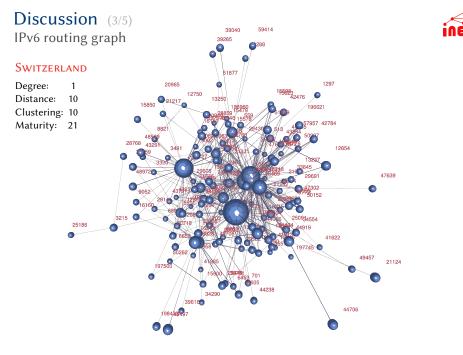
> global clustering coefficient

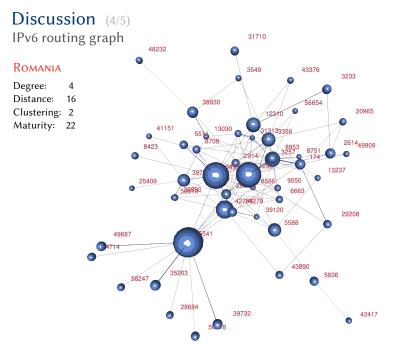
The relative maturity index is the sum of the rankings

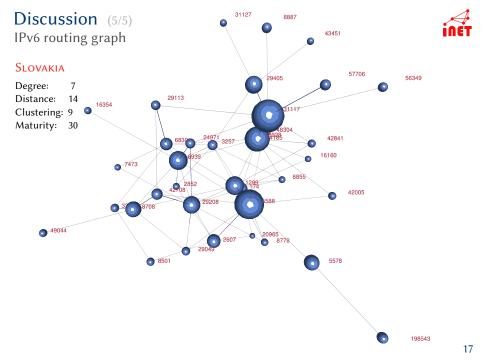
Results

Heat map of the IPv6 routing maturity


Rank				
Country	Degree	Distance	Clustering	Maturity Index
HU	3	7	1	11
LU	2	5	11	18
СН	1	10	10	21
RO	4	16	2	22
SK	7	14	29 <	30


Top-5 ASes sorted by the maturity index


Discussion (1/5) IPv6 routing graph


HUNGARY Degree: Distance: Clustering: 1 Maturity: 197248 99125 Q,229 D) 702 8928

Conclusion & outlook

How ready is IPv6 (Inter-domain routing)?

- No final answer, sorry, but ...
- The methodology looks promising, because
 - Catches preparatory activities
 - Multiple data sources

NEXT STEPS

- Improve the toolchain
 - > Add & aggregate more data sources
 - Broaden the focus
 - ▷ Logging & unit testing
- Validity & reliability
 - > Operationalization
 - Converge & divergence
 - Measurement error

Generic regions

Structural analysis

Construct/model validity With other measures

Public BGP collectors, Whois, third-party

- Figure on slide 6 is based on http://en.wikipedia.org/w/index.php?title=File:Regional_Internet_Registries_world_map.svg
- Topology graphs were drawed with igraph^6 and $\operatorname{Inkscape}^7$

⁶ http://igraph.sourceforge.net/

⁷ http://inkscape.org/