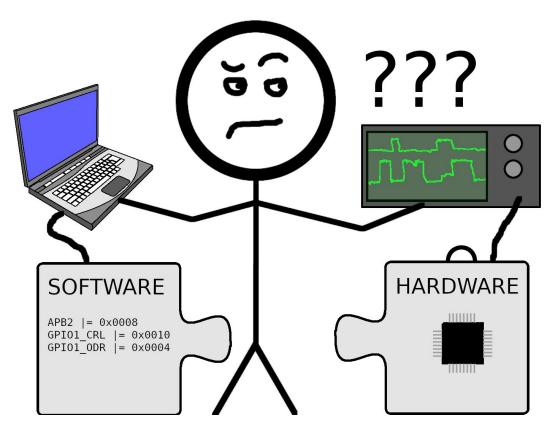
PHILIP on the HiL: Automated Multi-platform OS Testing with External Reference Devices


Kevin Weiss¹, Michel Rottleuthner¹, Thomas C. Schmidt¹, Matthias Wählisch²

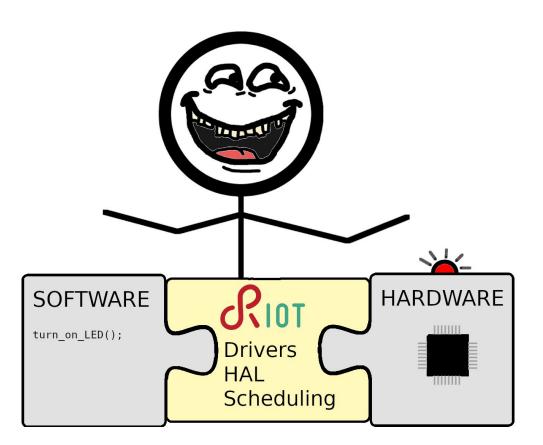
¹Hamburg University of Applied Sciences, Germany, ²Freie Universität Berlin, Germany

Embedded Development. Challenges.

Hardware implementations vary

Improper state changes

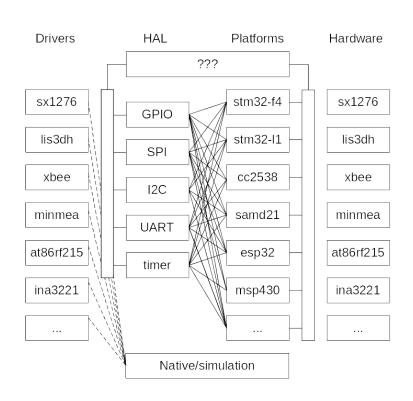
Uninitialized registers


Misconfigured clocks

Incorrect component values

Broken wires

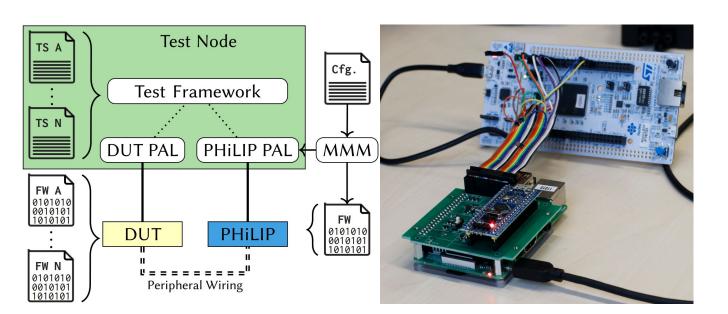
. . .


Embedded Development. Solutions.

Using an OS

- Peripheral abstraction
- Device drivers
- Reusable modules
- Mature code that works

Embedded Development. Challenges of Solutions.


Can we simplify complexity by isolating and verifying all the hardware interactions?

PHiLIP Concept Overview

PHILIP is qualified firmware on an inexpensive development kit

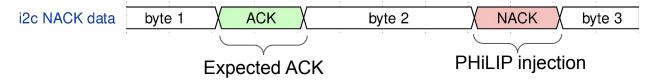
DUT (device-under-test) runs RIOT OS test firmware and is wired to PHILIP

The test node coordinates the tests, interfacing to both PHILIP and the DUT

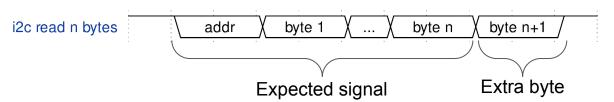
Deployment. RIOT OS CI.

- Built with open-source tools
 - Robot Framework for tests
 - Jenkins for triggering tests
 - Ansible for configuring test nodes
- 24+ unique boards
 - Various vendors
 - Heterogeneous form factors
 - 9 MCU architectures
- 96 test cases over 7 test suites
- Running for 2 years

Deployment. Costs.


- Costs within the DUT cost range
- Affordable deployment allows community participation
- Desktop: Developer setup and run
- CI: Automated rack deployment
- DUT: Range of testing devices

	Desktop	CI	DUT
OPEX	$30 \frac{mins}{run}$	0.05 € run	$0.01 to 0.12 \frac{\epsilon}{run}$
CAPEX	10 €	80 €	7 to 136 €


Using PHiLIP. API Reworks.

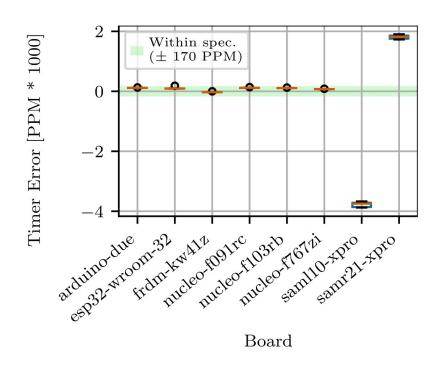
PHiLIP was initially used during the month long I2C rework

PHiLIP can expose difficult to discover errors

PHiLIP found bugs missed with conventional tests

Using PHiLIP. Timing.

GPIO instrumentation with 14 ns resolution


Faster results

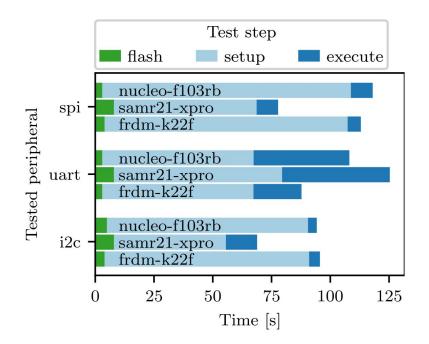
Expose timing issues

Incorrect clock prescaler configuration

Wrong oscillator selection

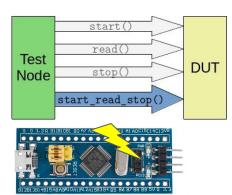
Short timing deviations

Results and Analysis. Test Timing.


CI and test time is a limited resource

Nightlies take ~45 mins, leaving ample headroom

Test setup step is the bottleneck


Adding boards has little effect on overall time

Scaling test cases will have the largest impact

Lessons Learned

- Using an MCU for PHiLIP limits instrumentation capabilities
- Dedicated handling of time critical call sequences is required
- Oscillator quality on PHiLIP boards
 limits timing accuracy
- DUT may have communication issues
- Flashing tools can be unstable

Missing device Flash failed!

Future Work

Emulate PHiLIP and DUTs and use hardware to qualify emulation results (+ scalability)

Automated selective testing (- cost)

Adding code coverage feedback via connected debugger (+ test reliability)

Test case generation (+ test quality)

Thanks! Questions?

Hardware schematics and software available at https://philip.riot-apps.net/

Contact Kevin.Weiss@haw-hamburg.de

