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1 Introduction

This project report examines a lightweight method to detect binary instruction code, possibly
embedded within regular data, as suggested in [1] and demonstrated at SIGCOMM 2012.
We will present details of this scheme and explore opportunities for a fairly reliable detection
method that can be implemented with a low computational overhead.

1.1 Motivation

Today portable communication devices have become common and can host a wide range of
applications. Many of those applications handle personal data that must be well protected
from unauthorized access. The recently increasing attacks on mobiles [2] show, that there
is a great demand for effective protection.

Protection of a mobile device is especially hard because of the mobility and its many
communication interfaces that exhibit a direct access from the

”
outside world“. In many

mobility scenarios, the users depend on the connection to those untrusted networks and
access business data via the Internet.

Each new interface brings its own communication stack that can be prone to attacks thus
generates possible attack vectors. For securing connections, the mobiles can use encryption
functions, but the devices must cope with limits in terms of memory-space and CPU-power.
Attackers may have much more computational power than the mobiles. Finally, the users of
mobiles are in most cases no computer experts. The users expect to be protected in a non
obtrusive way that shields them from unnecessary details.

1.1.1 Why are mobile Devices attacked?

Valuable information stored by users, such as calendars and business contacts, is one reason
for the interest of attackers to seek ways to access the data. Besides theft of valuable data,
mobile phones expose a greater incentive to attackers by constituting an indirect access
to a bank account [2]. If an attacker can trick a phone to use services such as premium
rate texting or voice-calls, a money transfer to a third party can be initiated. Mobiles are
also used to access electronic wallets to conduct micropayment transactions. To perform
micropayment transactions the mobiles often use near field communication (NFC) [3]. NFC
is a technology providing short-range wireless communication channels for mobile devices
that is prone to attacks due to the shared medium [4].

Like any computer, a mobile device needs regular software updates to fix disclosing
software bugs. Customers of mobiles depend on the responsibility of vendors to supply
patches in short term. For a mobile the time from introduction to the market until new
models become available, and thus the support for older models cease to exist, are very
short. Those short cycles lead to a situation, where devices are no longer supplied with
security updates by the vendors, but are still actively used by customers. As the software is
no longer updated, chances begin to grow, that there are undiscovered security holes.

There is always a gap between the detection of a security related software bug and
the distribution of the patch. Those unfixed bugs can be used to craft exploits. The so
called Zero-day-exploits are a great threat to devices with huge software libraries and with
constantly extended functionality such as the current mobiles.

Mobile devices can often be identified easily within the Internet, because there are IP-
ranges that are exclusively assigned to mobile devices by the telecommunication-providers.
Attacks are common in those networks and have been analyzed using mobile honeypots
[5]. In some installations of IP-Networks for mobiles, the networks use a basic protection
implemented by the telecommunication-providers. The protection is done either by using
NAT or a firewall to protect the mobiles from direct access from the Internet. This leads to a
false sense of security. Devices can still be reached with the help of the user, e.g., by opening
an email containing malicious code. If one device behind a firewall is successfully infected,
the attackers have a starting point for further attacks behind the first security barrier.
Once this barrier has been overcome, network based attacks can spread very quickly within
the IP-ranges of the mobiles. We have shown that mobile phones have a potentially high
risk of being attacked and misused. In the next section we will take a look at proposed
countermeasures.

1.1.2 Countermeasures against Attacks

Many solutions for the different threats to mobiles have been proposed. Some techniques are
used that have been established for desktop computers. Among those methods are signature
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based schemes used by desktop virus-scanners and trusted computing mechanisms.
Signature based schemes store a signature, such as a hash-value of a piece of code, that

is known to be malicious. Signature based schemes have various shortcomings that are in-
trinsic to these methods. They require that an attacking piece of code has been identified
and its signature is distributed to the mobile phone. The time from detection to the dis-
tribution has to be as short as possible. The creation of a signature is a manual process,
requiring an engineer to take a close look at the attacking piece of code. Attacks that are
known to be working and are not identified are so called zero-day-exploits. Signature based
schemes cannot detect or prevent zero-day-exploits. Limiting factors for the application of
signature based methods on mobiles are storage space, processing power and network usage
for the transfer of new signatures. On mobiles these factors have a harder limit than on
desktops. Small changes to known malware can restrain a signature based scheme from
correct detection.

In contrast Statistical malware detection schemes work with statistics features that de-
scribe the structure of malware. These schemes can be lightweight but are often not as
accurate as signature based schemes. The Trusted Computing Group proposed an Archi-
tecture [6] that implements various methods to attest that a computer system is not being
tampered with. The Attestation-functionality is one of the proposed measurements to proof
that a system only runs the software that it is allowed to run. An implementation of this
attestation, in the case of mobiles, is that of a central, trusted authority that can crypto-
graphically sign every piece of software that is executed on the mobile. A piece of software
that is not signed cannot be executed. This implementation of attestation requires the ex-
change of cryptographic public keys with a central authority that the device trusts. The
central authority has to sign every piece of software that can be executed on the mobile.
An implementation of this scheme can be very lightweight. To apply those methods, spe-
cial hardware is required that can store cryptographic keys in a tamper-proof manner. A
specification for such a trust anchor is the Mobile Trusted Module (MTM) [7]. Attestation
methods cannot help against attacks where the regularly installed software is used by an
attacker to start actions that were not intended. An example would be a regular running
implementation of JavaScript containing a bug that exposes data to an attacker.

1.2 Problem Statement

Like any communicating system, a mobile device faces the problem of receiving malicious
data from a communication channel that was either established by the mobile itself or by
a correspondent node. Typically, unwanted instruction code is received from an attacking
site that exploits weaknesses of the processing software and may be embedded in regular
data. Common exploits target at the operating system, or - more frequently - at application
programs like Web browsers or games. In contrast to stationary devices, mobile nodes are
always less powerful. In particular, they are battery-powered and thus vulnerable to power
exhaustion attacks. Mobile nodes have many communication interfaces, that can operate in
parallel. Each communication interface has its own software stack. Software stacks such as
Bluetooth and GSM, have been attacked in the past [8, 9, 10].

The interaction of multiple subsystems pose a risk as an entry point for malicious soft-
ware. Software that is commonly used on mobile phones is branched from other projects.
Software is modified to meet the special needs, for instance memory and CPU power re-
quirements, of mobile devices. When branches diverge and new attack vectors are found in
the original branch, the fix in the mobile branch typically takes time until applied. One of
the major competitors in the mobile phone market has a poor history of supplying patches
appropriately. DeGusta [11] visualized the update problematic. This shows that many mo-
bile phones are up to three major releases behind schedule. There is no regular update cycle
for many phones on the market.

The end user applications on common phones are written by thousands of developers
worldwide. Different security models are established for monitoring the software [12]. Even
in centralized and monitored software market environments, such as Apples iPhone store,
the installation of malicious software could not be stopped [13].

To prevent an attack of embedded shell code, it needs to be detected prior to processing
by the vulnerable software. This bears the problem that attacks need to be identified even if
they are unknown and applied for the first time. As malware creation for the mobile regime
is a new field of growing activity [14], generic detection mechanisms are needed that work
on zero-day exploits. In addition, any protection scheme should be able to process data in
real-time. Protection schemes should be able to work on data streams, thus allowing to send
warnings as early as possible. Protective actions must comply to user requirements, and
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may not interfere with regular usability. It must not exhaust the mobile resources itself. It
has to shield the user from unnecessary detail while informing him of possible threats with
a high level of certainty.

5



2 Related Work: Malware Code Detection and Machine
Learning

More than one decade ago, malware has been described as a growing problem [15]. With the
pervasive use of computers in the everyday live, supported by tablet-PCs and smartphones,
the problem is still growing. Many approaches have been proposed to detect malicious
software. Not every method is applicable to the mobile realm, thus there is a demand for
suitable routines. The algorithmic decision, whether a software is a malware, is closely tied
to the halting problem [16]. The bad news is that many methods can aid in the detection, but
there will never be a universal solution that can detect all malware [17]. Predicting behavior
of programs can be reduced to the halting problem and is thus undecidable. Although in
many cases estimations of behavior predictions can be accurate.

Work related to our study of statistical malware code detection cover papers from multi-
ple fields. We discuss various approaches to malware detection including statistical methods,
often applied in digital forensic analysis.

2.1 File Scanners

The scanning technique is used in every anti-virus(AV) software on the market. The scanners
search for known patterns (signatures) in files. Szor examined scanning techniques prevalent
in current AV-software [18]. He names different methods of scanning. Among them are string
scanning techniques that match for a simple string, wildcard scanning that uses wildcards to
cover small changes in the malware and smart scanning that can overcome simple mutations
in the malware code.

With the rise of polymorphic viruses1 simple scanning methods are not sufficient. Syman-
tec uses a hybrid approach that combines scanning with code emulation [19]. The scanner
can examine code of a running program and find virus-like behavior by combining a static
analysis with properties gathered during run-time.

2.2 Statistical Approaches

To circumvent a comparing of known patterns with unknown samples, methods have been
proposed that use statistical methods, often applied in data-mining applications. Data-
mining methods use schemes from various fields of computing, such as statistics and machine
learning. The most important components of such a detection are the classification algorithm
and the selection of features. To aid the feature composition, statistics are applied on input
data to gain a more robust and compact form. A typical basic scheme of data-mining
applications, presented in this section, is shown in figure 1. The raw data to be analyzed is
preprocessed in a way that aids the feature extraction. An example is the split of the input
data in overlapping windows for further processing. Feature extraction typically normalizes
the length of the input via statistical measurements. The choice of the right features is often
the most important task. In the final step, the classifier assigns a class to the extracted
features. This scheme can be applied to data streams.

Raw Data

?
Preprocessing

?

Feature Extraction

?

Classification

Figure 1: Typical data-mining scheme

Data mining has long been used in malware detection. Recent papers show that data
mining is still a viable option. In 1996, IBM researchers applied neural networks to the

1Polymorphic viruses automatically change the content of their execution code sequences, without altering
their malicious behaviour.
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problem of finding boot sector viruses [20]. They were able to identify up to 85% of the
viruses.

In a recent paper [21] Adobe researcher Raman used selected header fields of PE-Windows
files to classify them as malware or benign using a tree algorithm. With a large test set he
confirmed that tree learning algorithms are sufficient to find critical patterns in malware.
In his paper he used the decision tree Learning Algorithm C4.5 [22]. The work focuses on
PE-EXE files prevalent on Windows machines. He selected various features only concerned
with EXE-files, thus this method is not a general scheme. The C4.5 Algorithm achieved a
true positive rate of 0.98.

Like Raman, Siddiqui et al. [23] also tried to detect Windows based malware. They
extracted sequences of op-codes from binaries to use them as a feature, thus stripping header
and data sections. Their tests are based on a set of more than 800 malware samples.
Their test data did not cover any encrypted or polymorphic viruses, thus only static viruses
were tested. Their approach showed a 98.4% detection rate. The result was achieved with
previously unknown code, not used in the training process of the classifier. The false positive
on unknown malware was at 1.9%.

Instead of using one classifier, the work of Schultz et al. [24] trained multiple classifiers
on a set of malicious and benign executables to detect new malicious code samples. The
work focuses on Windows PE executables. With naive Bayes classifiers, the accuracy was
greater than 90% with a false positive rate of less than 2%.

The approaches of Raman, Siddiqui et al. and Schultz et al. were specific to Windows
malware. A more general method that can work on any file-type was proposed by Lyda
et al. [25]. They have used (stationary) Shannon-entropy averages to roughly distinguish
certain data types. Their approach shows that a pure entropy analysis can support a manual
malware search. For an automated detection of high accuracy, entropy averages alone are
not satisfactory.

Conti et al. [26] also used the Shannon-entropy. They additionally applied other statis-
tical measures to correlate in their scheme. In contrast to Lyda et al. they applied multiple
statistics to cluster data of different file types. They split each file in fragments and applied
normalized mean, Shannon Entropy, Chi Square, and Hamming Weight as characteristic
feature Classification by the k-nearest-neighbor algorithm achieved a 96.7% accuracy, accu-
mulated for ELF and PE files, in their test-set.

The use of multiple classifiers was already suggested by Schultz et al.. The method of
using multiple classifiers for a classification problem is a basic principle applied in boost-
ing. Boosting is an established method in machine learning. The boosting method merges
multiple classifiers to gain a single, more efficient classifier. A larger comparison of the ef-
fectiveness of different classifiers on malware detection is given by Kolter and Maloof [27].
They applied the classifiers naive Bayes, decision trees, support vector machines, and boost-
ing. For testing, they collected about 1600 malicious code samples for the Windows platform
from various sources, one of them being a message board about viruses called VX Heavens 2.
For the pre-processing of the data, text mining methods were applied by selecting relevant
n-grams from sample code. The amount of n-grams was then filtered by only using the
most relevant n-grams according to the information gain calculated by a formula of Yang
and Pederson [28]. The information gain helped to select the best features for classification
automatically. Their tests were aided by WEKA 3 a data mining software. Boosted decision
trees showed the most promising results. For a desired false-positive rate of 0.05 boosted
decision trees achieved a true-positive rate of 0.98.

2.3 Activity Monitoring and Behavior Detection

Monitoring the activity of a program is a frequently used method to reveal the intentions
of a program. The activity is monitored during run-time and thus called dynamic analysis.
One of the most common methods of monitoring program behavior is the monitoring of
API-calls. Egele et al. [29] compared 18 general malware analysis tools that use dynamic
methods for the malware detection.

Wagner et al. [30] report on a prototype that builds a control flow graph from learning
the behavior on a static basis, without executing the code. During run-time on the actual
machine, the constructed calling graph was compared to the actual API calls to detect
differences and thus abnormal behavior. They showed examples of real malware samples
and demonstrated their method. A greater malware set was not used in their tests, thus
a success rate was not presented in the paper. The application of control flow graphs was

2virus exchange message board http://vx.netlux.org
3http://www.cs.waikato.ac.nz/ml/weka/
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tested on metamorphic malware, where it proofed effective [31]. Cesare et al. [32] also used
control flow graphs to detect malware. They propose a method to build malware signatures
using control flow graphs based on the decompilation technique of structuring. During the
signature generation the malware code is emulated in a safe environment. The signatures
consist of a small grammar that represents the control flow graph. Similarities between
signatures are determined using string edit distances. Their method combines dynamic and
static aspects of malware analysis. An essential step of their static analysis is unpacking of
packed malware.

While the other works deal with call graphs to a large set of operating system APIs, Bai et
al. [33] select a smaller subset of APIs that are critical for most of the known malware. They
construct calling graphs (critical API-calling graphs (CAGs)), using only critical APIs (e.g.,
network access) and discarding non-critical API. This method shrinks the graph, compared
to a graph featuring all APIs. With a known CAG Graph signature of a malware they can
detect variants of this malware using similarities in the calling graph.

Younghee et al. [34] executed code in a sand-boxed environment. With generated be-
havior graphs they could find matches in malware. Using sub-graphs they were also able
to detect certain polymorphic malware. The tests were performed on a set of 300 malware
samples. They classified the samples in multiple malware-groups. Only 5.3% of samples
could not be classified in any class.

In contrast to building graphs from static analysis, Rieck et al. [35] execute suspicious
software in a sandbox environment. The focus of their approach is the classification and
clustering of malware-groups based on the behavior. Sequences of API-calls are mapped to
short sequences of observed instructions, representing groups of malicious behavior.

In contrast to the above mentioned papers, Kim et al. [36] use a dynamic method,
applied during run-time, to detect malware from energy usage profiles of applications. The
work shows that malware can have conspicuous energy usage profiles. The detection is built
upon gathering the differences between known usage profiles and the actual profile.

2.4 Network Monitoring

Methods from the realm of intrusion detection overlap with the goals of malware detection.
Instead of monitoring activity on the device, the external data sources can also be monitored
for suspicious traffic.

Nazario [37] proposes techniques to detect Internet worms in networks. He describes
different patterns of data acquisition, among them are packet capture and statistics from
switches. He describes the change of traffic patterns of a host as a meaning of detecting
infected hosts in a network.

Wang et al. used statistics on incoming and outgoing packets to detect zero-day exploits
in networks [38]. They recorded a regular profile of a network sites traffic. Using the network
profile, they were able to detect anomalies in traffic flows. They applied statistics to build
clusters of suspicious content flows. With a collaborative security system they were able to
detect many network worms. The statistical methods applied here were related to methods
used in file carving, presented in section2.5

Olivain and Goubault showed that the entropy analysis can be applied to the network
layer [39]. Their software net-entropy is able to detect attacks on the handshake of encrypted
network protocols without accessing the decrypted content. In the training phase they record
typical entropy profiles for small chunks of encrypted handshake data. The entropy profile
generation uses entropy functions generated from many typical handshakes. In the working
phase, the error between the recorded profile and the actual data is compared to detect
attacks to network streams in real-time. In the process they used an approximation of the
Shannon-entropy to get reports on the entropy before receiving the complete data [40] .

The work of Gu et al. [41] applied the method of maximum entropy estimation on the
detection of anomalies in network traffic. The maximum entropy estimation algorithm is
applied to extract the baseline distribution of the packet classes from the training data.
Their tests yield detection rates above 90%.

The work of Nychis et al. [42] applied time-series of entropy values from network related
sources to anomaly detection. The entropy time series were supplied by traffic volume,
source addresses, destination addresses, in-degree, out-degree and other network sources.
Their approach showed that time-series of entropy values of address and port distributions
are strongly correlated and provide a stable detection capability for malicious activity in a
network.
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2.5 Excursion: Computer Forensics

A common problem in computer forensics is the type identification of a file. While this
problem is not similar to malware detection, the methods applied are very much alike the
data-mining methods presented in section 2.2. In practice, the question of file type identi-
fication occurs, when files have to be reconstructed. Reconstruction is required, whenever
directory information is lost or deleted. The reconstruction process is called file carving. An-
other example is the restoration of content from network streams. The methods presented
here try to identify the type of a file using statistical analysis of their contents without the
use of parsing.

A basic approach is the file type identification by Hickok et al. [43]. They use a combi-
nation of extension and magic bytes prevalent in the files. The work proofed that methods
that rely on the prevalence of patterns, such as magic bytes, are ineffective with many file
formats. The detection of magic bytes is similar to virus scanners presented in section 2.1.

McDaniel et al. propose a method for file type identification driven by statistics based
on segments from entire files [44]. The algorithm did not concentrate on prevalent patterns
such as magic bytes. They used three different algorithms to generate fingerprints, for file-
types, based on a set of known input files. The algorithms are based on using byte-value
distributions of the file content and include byte frequency analysis, byte frequency cross-
correlation analysis and file header/trailer analysis. They predict the file-type by finding
the minimal difference in a histogram for an unknown file type, compared to a fileprint.
The fileprint is a centroid constructed from known files. Their tests show a large variance
of results, that depend on the data provided. Their results vary from 27.5% up to 95.83%,
depending on the feature selection. They conclude that the results of their approach show
that basic statistical methods are not enough to construct a reliable detection method. The
success of their method depends strongly on prevalent patterns within the input data.

The fileprints method proposed by Li et al. [45] uses a similar approach as McDaniel.
They use the byte frequency as a statistical measurement. They extend the method of
McDaniel by using a set of centroids, instead of just one, to describe a file type. Clustering
is applied to find a minimal set of centroids with a high detection rate. The use of multiple
centroids leads to better results than achieved by McDaniels. The underlying problem of
the requirement of prevalence of statistically relevant patterns within the input data is not
solved. Without regular patterns in the data, the detection rate can lead to a sudden
decrease. Compared to McDaniels, the use of multiple centroids leads to a rather complex
method, because it requires more resources in terms of processing time and memory usage.
Using exemplar files as centroids, the method achieved a 94.1% accuracy on EXE files.

An approach that is similar to Li et al. can be found in the work of Karresand et al.
[46] with their OSCAR-method. In addition to the byte frequency, the OSCAR-method also
uses the rate of change. They define the rate of change as the absolute difference between
two consecutive byte values. The rate of change is applied to also take the ordering of bytes
into consideration. This improved method shows better results than their predecessors. The
method has similar problems than McDaniels approach.

In his master thesis, Harris [47] implemented a file type detection algorithm for image
files. The work uses neural networks with up to 30 hidden neurons to learn patterns of 5
different image file types. Small segments of a file were repeatedly fed into the neural network
for classification. The intent is the identification of entire files, not small segments as were
the goal of the above mentioned methods. This was done to stop unwanted effects when a
file contains many null values. As the approach did not use any statistical measurements,
the detection rate was never above 50 percent for any file type of the test set. This approach
proofed that neural networks can be applied for the pattern detection. Nonetheless the
ability of neural networks to detect patterns remains insufficient. An algorithm is needed
that extracts features from the input data that can support the neural network.

Hall and Davis [48] use entropy in a sliding window approach to determine the type of
files. When calculating the entropy for a sliding window, there are many values that have
to be recalculated when the window slides to the next position. Hall and Davis rewrote the
entropy formula to prevent recalculation of the entropy values. To identify file types, they
collected average entropy functions from a test-set. The method features from file-types.
Identification is performed by calculating a distance between known and new file-types.
Instead of a distance measure they also tried Pearsons Rank Order Correlation which led to
better results. The approach fails to identify file types correctly. It can help to give a rough
idea about the file-type. They had a success rate of 97% for ZIP-files.

The work of Erbacher and Mulholland [49] deals with the localization of data types em-
bedded within a file. They applied 13 statistical tests to measure features of the file. The
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most successful statistics were the average, kurtosis, distribution of averages, standard devi-
ation, and distribution of standard deviations. In their tests, these statistics were sufficient
to determine the type of the file. The paper focuses on window sizes and their effects on
statistics. A success rate was not stated.

Moody and Erbacher [50] implemented Erbachers work in a test method called Statistical

Analysis for Data Type Identification (SÁDI). Their approach tries to identify the type of
a file without relying on meta-data. Their tests showed false positive rate of 13.6% for
Windows DLL and EXE data.

Veenman [51] applies Fishers Linear Discriminant(FLD) classifier to the entropy based
fileprint and a measure based on the Kolmogorov complexity [52], a measurement for code
complexity. Unlike the entropy, the Kolmogorov complexity measures substring order. To
calculate the Kolmogorov complexity, Veenman uses the formulas by Lempel and Ziv [53].
Compared to other papers in this section, tests were conducted with a large set of 450MB.
They achieved a 0.78 positive rate on the test set.

A variation of Veenmans approach has been done by Calhoun and Coles [54]. They also
applied the FLD to the classification problem. Additionally, several different statistics and
the use of the longest common sub-sequence algorithm were applied which led to better
results. They compared different statistics to discern different file-types from each other.
The Shannon entropy lead to an 78.5% average detection rate.
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3 Related Methods

In this section, we introduce a small set of basic methods that we will use later in our
detection scheme. The related methods discussed here are mature methods that have been
proved to be successful in a wide range of applications. We start with the Shannon-entropy
that extracts information about the order of our input data. The short-term Fourier analysis
is then applied to analyze our data further. The final step is the classification that is aided
by using an artificial neural network, a method from the field of artificial intelligence.

3.1 Shannon Entropy

The Shannon-entropy [55] is a measure of uncertainty in the information theory. It describes
the information-density of a data sample. A high information-density of a data sample
denotes that it has a low order and thus often a poor compressibility. The Shannon-entropy
is a lightweight measurement that can be computed with low computational overhead. It
can be computed as

H(X) = −
n∑

i=1

p(Xi) log2 p(Xi),

with X a symbol sequence composed of a finite alphabet.
The Xi represents one character of the alphabet of X, and p(Xi) is the probability of

the occurrence of Xi within the measured sample X.
As an example, we use an alphabet of only two characters, {A,B}. With a two character

alphabet, our entropy result will be in the range between 0 and log2(2) = 1. For a first
example, let X = AAAA, which yields p(X1) = p(A) = 1 and p(X2) = p(B) = 0. This
results in the minimum entropy of H(X) = 0. The order of data is often confused with
randomness. In the next example we show an example that has a high entropy but also a
low order. If we change the sample to X = ABAB, our formula yields the maximum entropy
of 1. This example shows that a low orderliness leads to high entropy, even if the symbols are
not random. This sample is not random, because the sequence can be described with simple
deterministic

”
rule“ of generation. Another sample X = ABBB results in an entropy-value

between the two extremes of H(X) = 0.8113. This illustrates that a low orderliness yields
a higher entropy.

On the byte-level, we have an alphabet with 256 possible values Xi that show relative
frequencies given by p(Xi). The resulting H(X) yields entropy-values ranging from 0 to
log2(256) = 8.

3.2 Short-Term Fourier Transform

The Fourier transform can convert a signal from the time domain to the frequency domain.
Thus the Fourier transform gives a change in the view of a signal that can often help to
gain a better understanding of its characteristics. The Fourier transform of a signal is a
representation containing a sum of complex exponentials of varying frequencies, magnitudes
and phases. The Fourier integral transform is defined by

φ(t) =

∫ ∞
∞

eixtf(x)dx

The application of the Fourier transform to identify the frequency composition of noisy
signal is called Fourier analysis.

The mathematical concept of the Fourier analysis uses the idea that any signal can be
approximated by a sum of sinusoidal signals. The approximation improves as more sinusoidal
signals are added. As a mathematical concept, the Fourier analysis is only applicable to
continuous functions, with the implicit assumption that a function has a periodic character.

An example of the discrete Fourier transform (DFT) is shown in plot 2. Figure 2(a) is
produced by adding two sinusoidal signals of 50 Hz and 120 Hz. The plot uses a sampling-
frequency of 1 Hz. The second figure 2(b) added zero-mean random noise to the signal.
The last figure 2(c) shows the application of the Fourier analysis to signal 2(b), resulting in
two spikes at 50 Hz and 120 Hz. The y-axis shows the magnitude (amplitude) of the initial
signal of figure 2(a). The amplitude means the maximum absolute value of the signal (a
periodically varying quantity). In the field of signal processing applications, the resulting
Fourier-transformed data has to be multiplied with the initial sampling-frequency, resulting
in correct frequency scales. For our purposes of pattern detection, this

”
normalization“ is not

important. Note that in the first two diagrams the x-axis is labeled time. Whereas the third
diagram uses frequency as the x-axis label. The label changed because of the transform
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(b) Figure 2(a) with random noise added.
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(c) Fourier transform of figure 2(b), showing spikes at 50 Hz and 120 Hz.

Figure 2: Example of the frequency analysis using the Fourier transform.

from time to frequency using the Fourier transform. The result of the Fourier transform
shows a magnitude and a phase (of the sinusoidal signal). For our pattern detection, we
are only interested in the magnitude. The phase shift would be important for the correct
reconstruction of a signal by using the inverse Fourier transform.

The mathematical concept of the Fourier analysis can only be applied to stationary-
signals. To extend the Fourier transform to non-stationary signals, a window based variant
can be applied [56], which is called the discrete short term Fourier transform (STFT). The
STFT can be computed by

STFT{m,ω} =

∞∑
n=−∞

X(n)W (n−m)e−iωn,

where the function X(n) is the signal-function that is to be transformed to the frequency
domain. The STFT multiplies a window function, denoted as W (n−m) with the input data
in X(n), to protect the result from so called

”
leakage effects“. We will talk about leakage

effects in section 3.2.1, where we discuss the effects of different window functions. In the
discrete case, the window function has a finite length m with n as the time index. The
resulting STFT (m,ω) contains the magnitude and the phase.

There are two problems with the Fourier analysis using the STFT. First it can only
measure the signal for a limited amount of time. The second problem is that the STFT only
calculates results for certain frequency ranges, the so called bins. These bins cummulate the
magnitude of frequencies within intervals. A limit on measurement time is fundamental to
any frequency analysis. The frequency sampling problem is especially prevalent in numerical
methods like the STFT.

3.2.1 Window Function

The application of a window technique delivers results that are not completely accurate.
The windowing measures the signal only for a limited amount of time and thus can cut
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out parts of the signal, leading to numerical errors. This effect is called the leakage effect.
The leakage effect impedes the result from being accurate. There are frequencies for which
the magnitude is not represented correctly by the STFT. This leakage effect is provoked by
the windowing that separates a signal on unfavorable positions. The leakage effect can be
minimized, by amplifying parts of the signal before the Fourier transform is applied. In the
STFT, the amplification is done by multiplying the signal of each window with a special
function, called the window function.

There are many window functions with varying impact on the frequency domain. A
window function has to be selected carefully, depending on the application needs. In [57],
Harris gave an overview of the effect of many different window functions for the discrete
Fourier transform. From Harris table we selected the Hann window [58] (called Hanning
window in Harris table) for our application. This window was chosen due to the low impact
on leakage and the time-dependent, non-repetitive type of signals that we are processing.
The Hann window is a window function that is defined by

w(n) =
1

2

(
1− cos

(
2π

n

N

))
, 0 ≤ n ≤ N,

where N is the width of the window that can be selected according to application needs.
The parameter n is the position within this window. Figure 3 shows a Hann window with a
width of N = 64. If the Hann window is multiplied with a signal window X(n) within the
STFT, the magnitude of the edges of the window will be decreased. In the STFT scheme,
this window function is multiplied with every STFT-window that is processed.
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Figure 3: Hann Window with a width of N = 64 samples

3.3 Artificial Neural Networks

A classifier is the implementation of an algorithm that can separate a set of input data to
different output classes. In the field of machine learning, there are numerous algorithms for
the classification of data. In this context, a class is data from a set where each class is
discriminable from each other class with respect to some observables.

A well known classifier is
”
Artificial Neural Networks“ (ANN) (see [59]). We will use

ANNs in this work to discriminate executable- from non-executable code.
Artificial Neuronal Networks are inspired by neurons found in biological brains. Artificial

neurons are small units with a very limited functionality. Many of those neurons can be put
together in a network to deliver complex results.

3.3.1 Artificial Neurons

A single neuron can be seen as some mathematical line that divides a two dimensional space
in two regions. Given such an intersection, a single neuron can be used as a classifier for
a problem with two input parameters. On a plot, the X and Y axis would represent the
numerical input parameters of the neuron. The formula of the neuron could then be used
to determine which output class is assigned to which input.

The output of the neuron with two inputs oi is determined by

fact(o1 · w1 + o2 · w2 − θ),
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with the two input parameters oi , the internal weights of the neuron wi and the neuron
bias θ. The weights and the bias are numbers that are determined during the training phase
of the neuron. The result of this formula is fed to an activation function fact, such as a
sigmoid function (flog = 1

1+e−x ). The activation function is used for two reasons. First it
will give smooth transitions between classes. For example, if one input-set is on the side
of class 0 and near the border of class 1, the activation might deliver values close to 0.5.
The second reason for an activation-function in a neuron is that it delivers an upper bound
for the output of the neuron. Let us consider a network of neurons, where the output of
one neuron is the input of another. In such a typical setup, the results would be growing
numerically in every new layer of neurons. To limit these growing outputs, the activation
function is used. For this reason, most activation functions have the limits

lim
n→−∞

= 0

and
lim

n→+∞
= 1.

For practical applications, differentiable functions such as the sigmoid function are used. For
theoretical observation (for easier mathematical handling) the non differentiable Heaviside
step function is used. If the Heaviside step function is applied as fact, defined as

fact(X) =

{
1 ifX ≥ 0

0 otherwise
,

we can transform the output neuron function to show that it is a simple line function. The
equation of the dividing line would be

o1 · w1 + o2 · w2 = θ

If this equation is solved for o2, we get

o2 = −w1

w2
· o1 +

1

w2
· θ,

which for the argument o1 is the equation of a straight line y = mx+ b.
If we combine multiple layers of neurons, we can describe more complex classes of prob-

lems. These layers of neurons raise the simple two dimensional representation of a single
neuron to a hyperspace with neurons describing the class boundaries within the hyperspace.
In the hyperspace, very complex problems can be represented. The

”
knowledge“ of a neural

network consists of its weights and the bias of every neuron.

3.3.2 Training of Artificial Neural Networks

Training of the neural net consists of adjusting the weights and the bias of all neurons. The
activation function is predefined and the same for all neurons. For most of the practical
applications, a type of sigmoid function is used.

The training of an ANN requires a set of training data that has to be prepared manually.
Often not the raw data is used for classification, but a specific set of features that support
the class finding problem. By using features of the problem domain, the learning of a
feature-to-class relationship can be supported.

One practical example of using features are in image processing and in the classification
of objects in two dimensional images. In the domain of image object classification, we
often encounter the problem that objects are rotated to a certain degree. The goal is that
classification should deliver the same results, no matter what the rotation angle was. If
the raw data is used, then the neural net would need to

”
learn“ all of the rotation variants.

Thus the neural network would have to store more information, and would grow bigger than
necessary. A more subtle approach is to select features that are rotation-invariant. Carefully
selecting the right features can substantially support the ANN training process.

For the classification scheme, we do not use the data stream directly as an input to our
ANN. Instead we change the view on the data by decomposing a signal into its constituent
frequencies. Thus a

”
higher“ level of information of features, using the frequency distribution

is used. In practice, the problem of finding the right feature set is most challenging.
Training data consists of typical input samples together with the desired class output of

the neural net. For our problem, we need to find samples of our desired classes and label
them accordingly. As the network topology, we use a feed forward network [59], where every
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neuron layer is connected with the next layer. After constructing the training data, the
training of the net can be initialized.

The training method is a computationally intense process that does not need manual
intervention. In a training method called Backpropagation, the weights are adjusted in
small steps. Backpropagation needs to know what rate of error is acceptable for the user.
Then Backpropagation iterates until the desired error rate has been reached. For every
iteration, a sample is picked and its neural net output is computed. The difference between
the desired output of the neural net and the actual output is used to change the weights
and bias. The change starts at the output neurons and is propagated backwards until the
input neurons are reached. The Backpropagation can be seen as a gradient-descent-method,
because it descends in small steps within the

”
space“ of potential settings to get nearer to

the desired output.
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4 A proposed Binary Detection Method for Executable
Code Fragments

With the basic methods shown in the last section we will now take a closer look at the details
of our binary code detection method. In our approach, we will first use the Shannon entropy
to generate an entropy-function of the input data. Then we will use the a frequency analysis
to the entropy-function. The frequency analysis is conducted by an application of the short
term fourier transform on the entropy-function. The data obtained through the frequency
analysis supports the binary classification in code and non-code classes. The classification
is conducted by artificial neural networks.

4.1 Extraction of a Statistical Function

We use the Shannon-entropy described in 3.1 to extract a statistical signal function from the
input data that we call the

”
entropy function“ . The signal function is generated through

the application of the Shannon-entropy of small, overlapping windows of the size we of input
data.

The adjustable parameters of an entropy-function are the window-size and the step-size.
The step-size is the amount of bytes that the entropy window is shifted on every iteration.
This method was already suggested in [60] with a window-size of 256 bytes and a step-size
of 128.

The windowing is done with a simple scheme shown in figure 5. Formula 2 defines
windowing with the start position i, the end position j of the n-th window. The step size s,
and the window size w are constant.

in = in−1 + s (1)

jn = in + w (2)

Figure 4: Calculating the window indices of start i and end j.

Raw Data

windown

in6 windown+1 jn+2

?
windown+2

w� -s� -

Figure 5: Generalized windowing scheme

Plotting the resulting values shows an entropy-function of the raw data stream, which de-
notes sections of different levels of entropy. The plot 6 shows characteristic areas of high
and low entropy for different file-types. Sub-figure 6(b) shows a ELF-ARM 32 file, which
contains code and data. Such an entropy plot can disclose the overall file-structure with
areas of different entropy levels. In file types that contain different types of data the result-
ing entropy-function can show information about the file at a different perspective, without
knowledge of the exact type of the content. One example are PDF files shown in figure 6(g).
The PDF-file contains multiple data-types such as text and images. The different entropy
levels represent the position within the file.
The entropy function allows a coarse overview of file-contents. Different entropy levels can
give hints about the content of the data while still containing noise. Generating an entropy
function requires 2 parameters. The window size we and the overlap with the previous
window oe. The figures 7-13 show the effect of selected parameters for we and oe on the
entropy function of a PDF file. Figure 14 shows the effects on different settings for the
Fourier window size.
In [61] the authors have used the average and standard deviations to cope with that problem
of noise. That approach seems to work if a rough file-type identification is required. The
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Figure 6: Typical Entropy Functions for different filetypes (plotted with we = 64 and oe = 8)
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Figure 7: Entropy function of a PDF file with selected parameters for we = 256 and various
oe.
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Figure 8: Entropy Function of a PDF File with selected parameters for we = 256 and various
oe.

detection of embedded malware can be more difficult because the malware sections can be
very small compared to the rest of the file. Thus we need further algorithms to extract more
information out of the entropy function to detect embedded binary code.

4.2 Signal Analysis

The entropy function that we built in the previous section can be regarded as a discrete
signal that can be analyzed with signal processing methods. In this section we will apply a
frequency analysis to the entropy-function. In the last section, we showed that the entropy-
function delivers a noisy, non-stationary signal, that needs further examination.
We use the short term Fourier-Transform to convert the entropy-function from the time into
the frequency space. The regular fourier-transform is only applicable to stationary-signals.
With non-stationary signals, the overlapping is important to prevent the missing of lower
frequencies that are larger than one window.
The resulting transform yields complex values that are not required for this purpose of
signal analysis, thus we use the absolute of the transformation. The complex values of the
transform would be required for a back transformation from frequency to the time space.
This method focuses on the detection of small chunks of embedded malware code. To fulfill
the requirements of an accurate detection of small units, this method has to work with small
windows.
The result of the Fourier transform shows the magnitude of the high and low frequencies,
that were present within the entropy function at that specific byte position.
The windowing method is the same as the entropy-function generation, shown in formula 2,
but this time applied on the stream of entropy values. We call the result of this windowing
operation an entropy spectrum.

4.3 Classifier

The entropy spectrum, shown in the last section still leads to noisy signals. The automatic
detection of noisy binary-instruction code is not trivial, thus we apply our Artificial Neural
Networks (ANNs), introduced in section 3.3 to avoid the problems of noise. We want to
use ANNs to sort small windows of Byte streams in the instruction-code-class or the non-
instruction-code class, which are our predefined classes for this particular problem. To detect
binary instruction code, we processed the data according to the scheme described in sections
4.1 and 4.2. Now we describe the steps that are required to send the preprocessed data to
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Figure 9: Entropy Function of a PDF File with selected parameters for we = 128 and oe.

20



 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  2000  4000  6000  8000 10000 12000 14000 16000
en

tr
op

y

bytestream

(a) oe:60 we:64

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  200  400  600  800 1000 1200 1400 1600 1800 2000

en
tr

op
y

bytestream

(b) oe:32, we:64

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  200  400  600  800  1000 1200 1400 1600 1800

en
tr

op
y

bytestream

(c) oe:28, we:64

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  200  400  600  800  1000  1200  1400

en
tr

op
y

bytestream

(d) oe:16, we:64

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  200  400  600  800  1000  1200

en
tr

op
y

bytestream

(e) oe:12, we:64

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  200  400  600  800  1000  1200

en
tr

op
y

bytestream

(f) oe:8, we:64

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  100  200  300  400  500  600  700  800  900 1000

en
tr

op
y

bytestream

(g) oe:4, we:64

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  100  200  300  400  500  600  700  800  900 1000

en
tr

op
y

bytestream

(h) oe:2, we:64

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  100  200  300  400  500  600  700  800  900 1000

en
tr

op
y

bytestream

(i) oe:1, we:64

Figure 10: Entropy Function of a PDF File with selected parameters for we = 64 and oe.
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Figure 11: Entropy Function of a PDF File with selected parameters for we = 32 and oe.

22



 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  2000  4000  6000  8000 10000 12000 14000 16000

en
tr

op
y

bytestream

(a) oe:12 we:16

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  1000  2000  3000  4000  5000  6000  7000  8000

en
tr

op
y

bytestream

(b) oe:8 we:16

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  500 1000 1500 2000 2500 3000 3500 4000 4500 5000

en
tr

op
y

bytestream

(c) oe:4 we:16

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  500  1000 1500 2000 2500 3000 3500 4000 4500

en
tr

op
y

bytestream

(d) oe:2, we:16

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  500  1000  1500  2000  2500  3000  3500  4000

en
tr

op
y

bytestream

(e) oe:1 we:16

Figure 12: Entropy Function of a PDF File with selected parameters for we = 16 and oe.
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Figure 14: Entropy Spectras of a ELF-ARM-32 file with variations on wf and of , for we =
{64}, oe = {8}.
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an ANN classification algorithm.
We base our input on wn consecutive entropy-spectra. We calculate three different statistical
properties for every band of the spectras, separately for the real and imaginary values. The
number of spectral bands is determined by half the size of the Fourier transform window
wf . The statistical properties that were used on every band-vector X are:

• arithmetic mean, mean(X)

• median, median(X)

• mean absolute deviation, mad(X) = mean(|X −mean(X)|)

We use these statistics as our input for the ANN.

we oe wf of wn overhead (%) minimal input size (byte)

256 252 4 2 10 600 80
32 16 4 2 10 150 320
64 4 16 2 10 28.57 8400
64 8 16 4 10 33.33 6720
32 16 4 2 1 150 32
64 16 8 2 1 38.89 288

Table 1: Example of parameters and their implications on the system

parameter description unit

we window size of the entropy calculation byte
oe amount overlap of the entropy calculation byte
wf window size of the STFT entropy values
of overlap of the STFT entropy values
wn number of STFT units (entropy-spectra) fed to the ANN FFT windows

Table 2: Parameters of the classification scheme

4.4 Overhead and Minimal Malware Size

Before testing our method on real world data in section 5.2, let us consider the implication of
changing the systems parameters (see table 2). The system parameters affect the detection
accuracy and overhead of the system. The obvious constraints are we > oe and wf > of ,
because the overlap with the previous window must be smaller than the window itself. The
overhead generated by our method should be as small as possible while delivering a high
detection accuracy. We define the overhead in the percentage of bytes generated in the
processing steps compared to the input data (= 100%). With

entropyoverhead =
inputsize
we − oe

,

we calculate the overhead generated in the entropy step. With

fourieroverhead =
entropyoverhead

wf − of
· wf ,

we calculate the overhead generated in the Fourier transform step. The size of the basic
type double in Java is 64-Bits (8 Byte). Thus the total overhead in bytes is given by

overheadtotal = (entropyoverhead + fourieroverhead) · 8.
The minimum amount of data that is required for the scheme prior to a classification is
given by

minimumdata = (we − oe) · (wf − of ) · wn.

In Table 1, we show some examples of the overhead and their minimal input size. The table
shows that a very high entropy overlap of oe = 252 leads to a small detection size but it also
leads to six times the amount of data during processing. The parameters in line 3 lead to
a small overhead but the scheme requires about 8000 bytes of data before classification can
take place. In Section 5, we test our scheme on different settings and for parameters shown
in Table 2.
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5 Evaluation of Entropy based Malware Detection

In this section we describe how we evaluate the proposed method. For a thorough test of the
method, files that are typically used on a mobile phone are required. We choose to include
the typical filetypes shown in table 3 in column one. We assume that typical operation
of a mobile includes data transfer of those filetypes. The binary filetype selected for these
tests include ELF-ARM-32. The ELF -format is a container format for executable code
and can contain executable code of different processor architectures. Most of the current
Android mobiles use an ARM-Processor. Thus the ELF-ARM-32-Format is used for native
executables on those platforms.
We limit the testing to one processor architecture, to show the feasibility of our approach.
Nevertheless the method is also applicable to other processor architectures.

5.1 Collecting Test-Data

Testing a statistical malware detection method can lead to a bias on the properties of the
test-set, when the test-data is not carefully selected. One reason for such a bias can be the
focus on non-obvious properties that are prevalent in the test-set. A typical filetype can be
generated by different programs. These programs could leave certain patterns that statistical
methods can focus on, while learning binary and non-binary code patterns. One example
are various tools that all can produce PDF-data. In our tests we want to avoid a bias on a
particular software. To circumvent these biases the test-set has to be large enough and the
contents of one filetype have to stem from different programs. To obtain a representative
amount of files for each type we use the Google search engine. When downloading a certain
amount of files for each filetype, we assume that we get files generated by different programs
for each filetype. The files from the ELF-ARM-32 were generated by the GCC-compiler4

which is the most commonly used compiler for the ELF-ARM-32 format. We do not know
how much data is needed from each filetype to avoid a bias. Testing a large parameter space
is a computationally intense task. Thus we limit the set of test-data to 1MB per filetype.

5.1.1 Test-Data from the Internet

To gather data from the Internet, we conducted scripted searches. The following steps were
performed for every file type in table 3.
We started with search words extracted from a large Word list of an English-German dic-
tionary 5. From this word list, we selected (German and English) words at random. The
random selection used the Python

”
random.shuffle()“ method 6. These random words were

used to search on Google, using the Google-option
”
filetype:“ (e.g.,

”
filetype:pdf“) to narrow

down our search results to certain file types. From the Google search results, we obtained
all links from the first three page results that linked to our desired document type.
In this way we gathered 1000 links per file type. The next step was to download the
files, which again was randomized (using Python

”
random.shuffle“) in the order of links and

downloaded test-data until we reached a 1 MB size limit of data per file-type.
Some sets contained large files that were larger than the 1MB limit. To make sure that we
have a larger variety of files, we decided to drop files that were larger than 100 KB, which
is approximately 1

10 of our test-set size. Ín this way we made sure that the test-set for each
file type contained at least 10 files. The contents of the test-data is shown in table 3. The
samples of ELF-code stems from two different Debian-Linux installations.

5.1.2 Preparing and Labeling

To start the tests we have to seperate the filetype in two classes. One class includes files
which contain only executable content the other another class contains only non-executable
content. The ELF-File-Format contains, by definition, both types. Thus we had to strip
the non-executable part from the ELF-files, keeping only the ARM-32 executable machine
code. The different ELF-formatted-sections, can be extracted using the Linux tool objcopy
7. We removed the non-executable sections of our ELF-Files and used only the executable
sections (Text-sections) for training. While stripping down the content of the files, the size
of the test-set size declined because the executable section is often only a small part of the
whole ELF-file. Thus we had to add more files to keep the 1 MB per file-format limit.

4http://gcc.gnu.org/
5http://www-user.tu-chemnitz.de/~fri/ding/
6The Python

”
random.shuffle()“ is based on a pseudo-random number generator.

7http://www.gnu.org/software/binutils
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file type number of files source

doc 21

data from the Internet as described in 5.1.1

htm 90
odt 8
pdf 35
ppt 15
xls 39
text 10

JavaScript 14
JPEG 13

ELF-ARM-32 41 Debian Linux

Table 3: contents of the 1MB per file-type test-data set

parameter value
we {256, 32, 64}
oe {4, 8, 16, 32, 252}
wf {4, 8, 16}
of {2, 4, 8}
wn {1, 4, 10}

Table 4: parameters of our scheme for the conducted tests

By definition the non-binary formats do not contain binary executable code, thus we did
not have to change them.

5.2 Testing with Various Parameters

We conduct tests of our method with different parameters of p = {we, oe, wf , of , wn}.
Searching the best parameters leads to a multi-dimensional optimization problem. The
variations of parameters are shown in table 4. To focus our tests on interesting parameters,
we have to observe some practical constraints on the parameters discussed in section 4.4.
The Results of our tests are shown in the tables 5,6,7 and 8.
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5.2.1 Interpretation

The results of the tests are shown in the last section the tables 5,6,7 and 8, starting at page
29.
The tables show the classification results with accumulated results for binary and non-binary
classes. There are 4 possible outcomes for a classification, which is represented by the 4 result
columns. Some data can be either

• non-binary and correctly classified as non-binary or

• non-binary but classified as binary (false positive) or

• binary but classified as non-binary (false negative) or

• binary classified as binary.

The most dangerous are the false negatives, where a real-world system could not detect an
attack with malware code. Wrong classification in the form of false positives can also be
problematic, depending on the actions a real-world implementation chooses. A real-world
system might choose to invest processing time on a false positive, draining system resources.
Because this method is intended to scan any incoming data in real-time, either a high false
positive or a false positive rate should be avoided.
The test-results show many parameter settings with a high detection rate. Choosing a best
setting,based on the detection rates, would be easy but the detection rates should not be
the only result considered. Because the results show many parameter settings with nearly
equal (high) detection rates, we also have to observe the implications on a real-world system.
We should not only consider the detection rates for binary and non-binary data, but also
the overhead and the minimal detection size. The overhead and the minimal detection size
were discussed in section 4.4. With the overhead and the minimal detection size in mind,
we can not choose an absolute winner of the test. Instead we can show favourable and less
favourable settings for a detection system.
In tables 6 and 7 we can see extreme results, where the settings led to a unrealistic high
detection rate of 100%. Such high detection rates can not be expected outside the testing
environment. These extreme results can be explained with the small amount of data to
be checked with those settings. With some of the settings, the minimum amount that the
method can classify is very large. This leads to a situation where larger but less chunks of
the testset-data have to be classified, thus increasing the chance for a correct classification.
For one of the extreme results from table 6 (we = 64, oe = 4, wf = 16, of = 2 and wn = 10),
the minimal detection size is 8400 byte. It means that the scheme has to load 8400 bytes
before a decision is made if malware is prevalent. In such large chunks a decision on the
binary or non-binary class is easier than deciding it on a very small chunk. In a real-world
application,where data is scanned in real-time, a warning after more than 8kb of data has
passed our scheme, might be too late. We assume that the classifier has memorized the
exact content of some files, leading to such extreme results. The influence of system settings
on the minimum detection size was explained in section 4.4. Examples for this problem are
given in table 1 on page 26.
Results show that large entropy windows of we = 256 do not lead to significantly higher
detection rates than smaller entropy window sizes. Instead the extremely large entropy
windows dramatically increase the processing overhead. For example the setting (we = 256,
oe = 252, wf = 4, of = 2 and wn = 10) leads to an overhead of 600%.
Let us take a closer look at the implications of individual parameters on the detection rate.
The selection of one parameter might have side effects on the performance of others. We
discuss the effects of the parameters individually, because we want to show the effects of each
individual parameter on the detection rate. The entropy window size we changes the amount
of bytes that are considered during the creation of the entropy function. As explained above,
very large entropy window settings of we = 256 lead to a huge overhead while having little
effect on the detection rate. Let us take a closer look at the results of the remaining we

settings {32, 64}. In table 9 we show the average, median and standard deviation of selected
parameters for the results in the tables 5,6,7 and 8. We see that we = 32 has a higher average
false positive rate with 20.08%, compared to a rate of 7.94% for the we = 64 setting. The
performance for the true positives is slightly better with 99.52% average rate, when we = 64
windows are used. The overall performance seems to be better with we = 64 windows.
The parameter oe changes the overlap with the last entropy window and thus has a direct
influence on the overhead. As explained above, a large entropy window of we = 256 does
not help the detection process. Thus huge overlaps, such as oe = 256, can also be ruled out
as ideal candidates. Table 10 shows the performance for the remaining oe = {4, 8, 16, 32}
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classified as is

we = 32
binary non-binary

binary [98.91 / 98.83 / 0.38] [20.08 / 20.54 / 8.64]
non-binary [1.09 / 1.17 / 0.38] [79.92 / 79.46 / 8.64]

we = 64
binary non-binary

binary [99.52 / 99.46 / 0.22] [7.94 / 8.93 / 5.03]
non-binary [0.48 / 0,54 / 0.22] [92.06 / 91.07 / 5.03]

Table 9: Test-results for we settings {32, 64} in the form of [average / median / standard
deviation]

settings. We can see that the detection rate for binaries does not differ much, between the
parameter settings. With non-binaries we can see that the oe = 32 setting leads to the best
average detection rate of 90.52%. When oe = 32 is applied in our tests, we test this setting
with we = 64, leading to an overlap of 50%. The overlap leads to a higher overhead in
general. For our tests with oe = 32, we have an overhead of at least 53.57 % (we = 64,
oe = 32, wf = 16, of = 2, wn = 1 ) and a maximum overhead of 75% with (we = 64,
oe = 32, wf = 16, of = 2, wn = 10 ). When looking at the result-tables, we can see that
the average detection rate is slightly lower for oe = 16, but the best results of oe = 16 can
outperform the detection rate of most of the oe = 32 settings.

classified as is

oe = 4
binary non-binary

binary [99.18 / 99.29 / 0.46] [14.09 / 12.17 / 9.61]
non-binary [0.82 / 0.71 / 0.46] [85.91 / 87.83 / 9.61]

oe = 8
binary non-binary

binary [99.32 / 99.39 / 0.40] [11.70 / 10.85 / 7.50]
non-binary [0.68 / 0.61 / 0.40] [88.30 / 89.15 / 7.50]

oe = 16
binary non-binary

binary [99.22 / 99.36 / 0.45] [14.30 / 11.56 / 10.46]
non-binary [0.78 / 0.64 / 0.45] [85.70 / 88.44 / 10.46]

oe = 32
binary non-binary

binary [99.44 / 99.40 / 0.19] [9.48 / 10.89 / 4.68]
non-binary [0.56 / 0.60 / 0.19] [90.52 / 89.11 / 4.68]

Table 10: Test-results for oe settings {4, 8, 16, 32} in the form of [average / median / standard
deviation]

The parameter wf sets the window size of the Fourier window. A higher setting leads to
a better frequency resolution, while lowering the time resolution of the frequency-analysis.
In table 11, we can see statistics on the test-results for wf . We can see a decline in false
positives, when the fourier window grows. The average false positive rate shrinks from
19.39% (with wf = 4) down to 10.10% (with wf = 16). When looking at the true positive
rate, we can see only a slight increase in the detection rate, when the window becomes
larger. The true-negative rate declines with growing windows, while the biggest increase is
between wf = 4(80.61%) to wf = 8(86.83%). The results strenghten the assumption that
either wf = 8 or wf = 16 is a good seeting for the parameter.

classified as is

wf = 4
binary non-binary

binary [99.07 / 99.16 / 0.32] [19.39 / 17.90 / 9.41]
non-binary [0.93 / 0.84 / 0.32] [80.61 / 82.10 / 9.41]

wf = 8
binary non-binary

binary [99.27 / 99.39 / 0.40] [13.17 / 11.29 / 8.01]
non-binary [0.73 / 0.61 / 0.40] [86.83 / 88.71 / 8.01]

wf = 16
binary non-binary

binary [99.35 / 99.45 / 0.43] [10.17 / 8.48 / 8.01]
non-binary [0.65 / 0.55 / 0.43] [89.83 / 91.52 / 8.01]

Table 11: Test-results for wf settings {4, 8, 16} in the form of [average / median / standard
deviation]
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The overlap with the last Fourier window is set by the parameter of . Statistics on the
test-results for of are shown in table 12. The average true-positive rate shows only a slight
increase (99.24% with of = 2 to 99.31% with of = 8), when the overlap gets larger. Even
the true-negative rate shows only an increase of about 3% when changing of = 2 to of = 8.
Considering the increase in overhead, with larger overlaps, we assume that of = 2 is a
reasonable setting.

classified as is

of = 2
binary non-binary

binary [99.24 / 99.32 / 0.41] [14.17 / 11.96 / 9.75]
non-binary [0.76 / 0.68 / 0.41] [85.83 / 88.04 / 9.75]

of = 4
binary non-binary

binary [99.30 / 99.42 / 0.43] [11.58 / 10.35 / 8.01]
non-binary [0.70 / 0.58 / 0.43] [88.42 / 89.65 / 8.01]

of = 8
binary non-binary

binary [99.31 / 99.38 / 0.40] [10.91 / 10.16 / 7.09]
non-binary [0.69 / 0.62 / 0.40] [89.09 / 89.84 / 7.09]

Table 12: Test-results for of settings {2, 4, 8} in the form of [average / median / standard
deviation]

Let us consider the effects of parameter wn. When the parameter wn is greater than 1, the
entropy spectras are first accumulated and then given to the neural network for classification.
The wn parameter has direct implications on the minimal detection size, as it is a factor of
the minimal-size shown in the formulas in section 4.4. The test-results show that there is no
significant increase in the detection accuracy with settings larger than wn = 1. Nevertheless
there might be differences when classification results for individual filetypes are observed.
We continue with the assumption that the parameters (we = 64, oe = 16, wf = 8, of = 2
and wn = 1) are a good setting to archieve a good accuracy, while having a reasonable
overhead. Table 5 displays the results of the test with the parameters we = 64, oe = 16,
wf = 8, of = 2 and wn = 1. Results show a tradeoff between a low minimal detection
size of only 288 bytes, a 99.45% detection rate on binaries and a 87.56% detection rate on
non-binaries.
The results look promising, but we have to go into more detail and look at the classification
performance for each individual filetype. In section 7 we employ our scheme on a larger
set of test-data, with 10MB per filetype. The results in that section are shown on a per
filetype basis. The more detailed results of the above favoured test-setting for the parameters
we = 64, oe = 16, wf = 8, of = 2 and wn = 1 can be found in table 53 on page 46.
In section 6 we apply our scheme on actual malware.

6 Application to Real World Malware samples

In this section we test our scheme on two actual malware samples. We show that our scheme
is effective on real-world malware samples.

6.1 Android.RootSmart Malware

The Android Malware RootSmart uses a vulnerability8 in the android volume manager dae-
mon, which is widely exploited to jailbreak or root Android 2.2 and 2.3 devices. The exploit
code itself is not included in the initial malware application. During execution time of the
initial application, the malware loads the exploit code file shell.zip from a web page to avoid
initial detection by AV-Programs. An in depth explanation of the RootSmart malware can
be found on http://resources.infosecinstitute.com/rootsmart-android-malware/.
We retrieved the shellcode shell.zip, extracted the zip-file and tested our scanner on the
malware. One of the files called exploit contains the GingerBreak exploit. In figure 15 we
can see the entropy spectra. The spectrum shows a great amount of changes within a small
range of the bytestream. This can be a hint for executable code. The detection process
itself is executed by the neural-network, which can not be shown graphically. The malware
was successfully detected by our method. In a real-world scenario we had prevented the
installation of the malware.

8GingerBreak exploit http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-1823
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Figure 15: Entropy-Spectrum of the RootSmart exploit

6.2 Webkit Vulnerability

Webkit is an Android 2.0-2.1 based reverse Shell Exploit. It was published in 20109.
Part of the exploit consists of 11Kb Arm-Opcodes encoded in JavaScript as shown in the
shortened Listing 1. The exploit uses a bug in the JavaScript interpreter to load and execute
binary code. The binary code itself is not just embedded in JavaScript, but also encoded.
The recoding of executable code can make a detection harder. The peak in the spectra
marks the beginning of the codeblock, market with

”
scode“ in the JavaScript code. We

show in figure 16 the entropy spectra. The code was successfully detected as binary code.
This attack uses binary code which is encoded in escaped letters within JavaScript. Even
this encoded version of malware could be successfully detected.

Listing 1: Webkit Vulnerability exploited in JavaScript.

<html>
<head>
<s c r i p t>
// source : h t t p ://www. e x p l o i t−db . com/ e x p l o i t s /15423/
// bug = w e b k i t code e x e c u t i o n CVE−2010−1807 h t t p :// cve . mitre . org / cgi−b in /cvename . c g i ?name=CVE−2010−1807
// l i s t e d as a s a f a r i bug but a l s o works on android : )
// t e s t e d = moto dro id 2 . 0 . 1 , moto dro id 2.1 , emulater 2 .0 − 2.1
// patched= android 2.2
// author = mj
// hardcoded to re turn a s h e l l to 1 0 . 0 . 2 . 2 por t 2222
//
f unc t i on s p l o i t ( pop )

{
var span = document . createElement ( ”div ” ) ;
document . getElementById ( ”pwn” ) . appendChild ( span ) ;
span . innerHTML = pop ;
}

f unc t i on heap ( )
{
var scode = unescape ( ”\u3c84\u0057\u3c80\u0057\u3c7c

\u0057\u3c78\u0057\u3c74\u0057\u3c70\u0057
\u3c6c\u0057\u3c68\u0057\u3c64\u0057\u3c60
\u0057\u3c5c\u0057\u3c58\u0057\u3c54\u0057 . . . ” ) ;

// . . . .
// L i s t i n g shortened , 11 kb l i s t o f encoded opcodes f o l l o w s here . . .

9http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1807
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Figure 16: Entropy-Spectrum of the Webkit exploit

//
do {

scode += scode ;
} while ( scode . l ength < 0x1000 ) ;
t a r g e t = new Array ( ) ;
for ( i = 0 ; i < 1000 ; i++)

t a r g e t [ i ] = scode ;
for ( i = 0 ; i <= 1000 ; i++)
{

i f ( i >999)
{
s p l o i t (−parseF loat ( ”NAN( f f f f e 0 0 5 7 2 c 6 0 ) ” ) ) ;
}
document . wr i t e ( ”The t a r g e t s ! ! ” + t a r g e t [ i ] ) ;
document . wr i t e ( ”<br />” ) ;
}

}
</s c r i p t>
</head>
<body id=”pwn”>
woot
<s c r i p t>
heap ( ) ;
</s c r i p t>
</body>
</html>
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7 Systematical Exploration of the Parameter Space

In this section, we show the result of 126 classification-tests. In addition to the results of
section 5.2 we show performance per filetype and we use a larger testset of 10MB per filetype.
A larger testset is required because we want to have a larger variance in the files included in
the tests. When we have found out more about favourable parameters, future work should
look at larger testsets. The conducted tests use variations on the parameters shown in table
13. We show the detection performance for each tested data type.

parameter settings used
we {32, 64}
oe {4, 8, 16}
wf {4, 8, 16}
of {2, 4, 8}
wn {1, 4, 10}

Table 13: Parameters used during test of the parameter space

The first group of tests begins in section 7.1, with the parameter setting we = 64 and
alterations on the other parameters. In section 7.2 on page 53 we use the setting we = 32.
Section 7.3 on page 64 gives a discussion of the test results.

7.1 Tests with we = 64

File type % classified as binary % classified as non-binary
elf-arm-32 81.5981039445 18.4018960555

doc 3.05228407261 96.9477159274
htm 2.84347231716 97.1565276828

javascript 1.87573462191 98.1242653781
jpeg 0.322646611075 99.6773533889
pdf 3.43357856196 96.566421438
ppt 2.07811607574 97.9218839243
txt 0.0 100.0
xls 1.29689041049 98.7031095895

Table 14: Parameter:we:64, oe:4, wf :4,of :2, wn:1

File type % classified as binary % classified as non-binary
elf-arm-32 90.2784048157 9.72159518435

doc 2.66849440256 97.3315055974
htm 3.08954203691 96.9104579631

javascript 1.68473292412 98.3152670759
jpeg 0.245398773006 99.754601227
pdf 3.02892899247 96.9710710075
ppt 1.88919643249 98.1108035675
txt 0.0 100.0
xls 1.25158715763 98.7484128424

Table 15: Parameter:we:64, oe:4, wf :4,of :2, wn:4
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File type % classified as binary % classified as non-binary
elf-arm-32 92.9458239278 7.05417607223

doc 2.13616632397 97.863833676
htm 3.28092959672 96.7190704033

javascript 1.02857142857 98.9714285714
jpeg 0.102249488753 99.8977505112
pdf 2.64142387484 97.3585761252
ppt 1.41695957821 98.5830404218
txt 0.0 100.0
xls 1.20167781431 98.7983221857

Table 16: Parameter:we:64, oe:4, wf :4,of :2, wn:10

File type % classified as binary % classified as non-binary
elf-arm-32 84.6670428894 15.3329571106

doc 2.52236197265 97.4776380273
htm 2.58040261116 97.4195973888

javascript 1.28318150651 98.7168184935
jpeg 0.207907293797 99.7920927062
pdf 4.36320353681 95.6367964632
ppt 1.8156654694 98.1843345306
txt 0.0 100.0
xls 1.1699486447 98.8300513553

Table 17: Parameter:we:64, oe:4, wf :8,of :2, wn:1

File type % classified as binary % classified as non-binary
elf-arm-32 92.7088036117 7.29119638826

doc 2.89278859336 97.1072114066
htm 8.43587640142 91.5641235986

javascript 4.13401253918 95.8659874608
jpeg 0.163599182004 99.836400818
pdf 3.76819480343 96.2318051966
ppt 2.10914843132 97.8908515687
txt 0.0 100.0
xls 2.42176870748 97.5782312925

Table 18: Parameter:we:64, oe:4, wf :8,of :2, wn:4

File type % classified as binary % classified as non-binary
elf-arm-32 94.4695259594 5.53047404063

doc 3.25677065478 96.7432293452
htm 11.3846153846 88.6153846154

javascript 2.49877511024 97.5012248898
jpeg 0.13633265167 99.8636673483
pdf 4.45578231293 95.5442176871
ppt 1.91166776533 98.0883322347
txt 0.0 100.0
xls 2.34693877551 97.6530612245

Table 19: Parameter:we:64, oe:4, wf :8,of :2, wn:10

File type % classified as binary % classified as non-binary
elf-arm-32 86.5537998495 13.4462001505

doc 2.66398592611 97.3360140739
htm 3.69568684636 96.3043131536

javascript 1.88069350573 98.1193064943
jpeg 0.220404453533 99.7795955465
pdf 4.60924569796 95.390754302
ppt 2.0539970563 97.9460029437
txt 0.0 100.0
xls 1.45111554508 98.5488844549

Table 20: Parameter:we:64, oe:4, wf :8,of :4, wn:1
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File type % classified as binary % classified as non-binary
elf-arm-32 92.7012791573 7.29872084274

doc 2.82398099068 97.1760190093
htm 2.93474298214 97.0652570179

javascript 1.16248693835 98.8375130617
jpeg 0.163606616979 99.836393383
pdf 3.28314892073 96.7168510793
ppt 1.62565905097 98.374340949
txt 0.0 100.0
xls 1.16089243606 98.8391075639

Table 21: Parameter:we:64, oe:4, wf :8,of :4, wn:4

File type % classified as binary % classified as non-binary
elf-arm-32 95.1091045899 4.89089541008

doc 3.17641681901 96.823583181
htm 8.77392889699 91.226071103

javascript 2.44937949053 97.5506205095
jpeg 0.204498977505 99.7955010225
pdf 3.33333333333 96.6666666667
ppt 1.53778558875 98.4622144112
txt 0.0 100.0
xls 2.04081632653 97.9591836735

Table 22: Parameter:we:64, oe:4, wf :8,of :4, wn:10

File type % classified as binary % classified as non-binary
elf-arm-32 87.3040958778 12.6959041222

doc 2.98280687725 97.0171931228
htm 2.07353058458 97.9264694154

javascript 1.05142857143 98.9485714286
jpeg 0.230652986558 99.7693470134
pdf 4.90437266884 95.0956273312
ppt 1.86851211073 98.1314878893
txt 0.0 100.0
xls 1.07936507937 98.9206349206

Table 23: Parameter:we:64, oe:4, wf :16,of :2, wn:1

File type % classified as binary % classified as non-binary
elf-arm-32 93.0979978925 6.90200210748

doc 3.07101727447 96.9289827255
htm 10.5934907466 89.4065092534

javascript 3.84087791495 96.159122085
jpeg 0.190900413618 99.8090995864
pdf 3.61904761905 96.380952381
ppt 2.09166410335 97.9083358966
txt 0.0 100.0
xls 2.34920634921 97.6507936508

Table 24: Parameter:we:64, oe:4, wf :16,of :2, wn:4

File type % classified as binary % classified as non-binary
elf-arm-32 59.9472990777 40.0527009223

doc 9.04 90.96
htm 4.7885075818 95.2114924182

javascript 1.37142857143 98.6285714286
jpeg 0.397772474145 99.6022275259
pdf 7.22222222222 92.7777777778
ppt 5.76923076923 94.2307692308
txt 0.0 100.0
xls 2.14285714286 97.8571428571

Table 25: Parameter:we:64, oe:4, wf :16,of :2, wn:10
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File type % classified as binary % classified as non-binary
elf-arm-32 88.294389886 11.705610114

doc 3.53691137158 96.4630886284
htm 2.9735456969 97.0264543031

javascript 1.49882445141 98.5011755486
jpeg 0.204512918399 99.7954870816
pdf 5.18332086253 94.8166791375
ppt 2.08264680683 97.9173531932
txt 0.0 100.0
xls 1.48299319728 98.5170068027

Table 26: Parameter:we:64, oe:4, wf :16,of :4, wn:1

File type % classified as binary % classified as non-binary
elf-arm-32 95.1219512195 4.87804878049

doc 3.12585686866 96.8741431313
htm 3.82827454197 96.171725458

javascript 2.46865203762 97.5313479624
jpeg 0.190891737115 99.8091082629
pdf 3.83673469388 96.1632653061
ppt 2.03005536515 97.9699446349
txt 0.0 100.0
xls 1.68707482993 98.3129251701

Table 27: Parameter:we:64, oe:4, wf :16,of :4, wn:4

File type % classified as binary % classified as non-binary
elf-arm-32 79.8870056497 20.1129943503

doc 5.9670781893 94.0329218107
htm 17.0314637483 82.9685362517

javascript 11.2745098039 88.7254901961
jpeg 0.204638472033 99.795361528
pdf 6.05442176871 93.9455782313
ppt 4.021094265 95.978905735
txt 0.341064120055 99.6589358799
xls 5.6462585034 94.3537414966

Table 28: Parameter:we:64, oe:4, wf :16,of :4, wn:10

File type % classified as binary % classified as non-binary
elf-arm-32 88.0577921589 11.9422078411

doc 3.19426038477 96.8057396152
htm 2.71157088821 97.2884291118

javascript 1.35188087774 98.6481191223
jpeg 0.254499181967 99.745500818
pdf 5.16052965717 94.8394703428
ppt 2.01678456874 97.9832154313
txt 0.0 100.0
xls 1.29699333364 98.7030066664

Table 29: Parameter:we:64, oe:4, wf :16,of :8, wn:1

File type % classified as binary % classified as non-binary
elf-arm-32 92.7453341361 7.25466586394

doc 3.19926873857 96.8007312614
htm 3.37283500456 96.6271649954

javascript 1.48902821317 98.5109717868
jpeg 0.199963642974 99.800036357
pdf 3.51895519681 96.4810448032
ppt 1.66988925998 98.33011074
txt 0.0 100.0
xls 1.45137880987 98.5486211901

Table 30: Parameter:we:64, oe:4, wf :16,of :8, wn:4

41



File type % classified as binary % classified as non-binary
elf-arm-32 75.6024096386 24.3975903614

doc 8.77513711152 91.2248628885
htm 12.3518687329 87.6481312671

javascript 6.59699542782 93.4030045722
jpeg 0.863636363636 99.1363636364
pdf 8.66213151927 91.3378684807
ppt 7.16483516484 92.8351648352
txt 0.0909504320146 99.909049568
xls 5.26077097506 94.7392290249

Table 31: Parameter:we:64, oe:4, wf :16,of :8, wn:10

File type % classified as binary % classified as non-binary
elf-arm-32 82.4262640449 17.5737359551

doc 3.20169733672 96.7983026633
htm 3.65975544923 96.3402445508

javascript 2.42107508532 97.5789249147
jpeg 0.327642879864 99.6723571201
pdf 3.68289637953 96.3171036205
ppt 2.14563236184 97.8543676382
txt 0.00212136318798 99.9978786368
xls 1.56064838327 98.4393516167

Table 32: Parameter:we:64, oe:8, wf :4,of :2, wn:1

File type % classified as binary % classified as non-binary
elf-arm-32 89.8876404494 10.1123595506

doc 2.37546912317 97.6245308768
htm 3.44079618918 96.5592038108

javascript 1.5602145295 98.4397854705
jpeg 0.186622555881 99.8133774441
pdf 3.31795674806 96.6820432519
ppt 1.5951775609 98.4048224391
txt 0.0 100.0
xls 1.36702217708 98.6329778229

Table 33: Parameter:we:64, oe:8, wf :4,of :2, wn:4

File type % classified as binary % classified as non-binary
elf-arm-32 93.4691011236 6.5308988764

doc 1.64196609447 98.3580339055
htm 6.36895268474 93.6310473153

javascript 2.11793387171 97.8820661283
jpeg 0.159049941682 99.8409500583
pdf 2.72986985504 97.270130145
ppt 1.4148041829 98.5851958171
txt 0.0 100.0
xls 1.4390011639 98.5609988361

Table 34: Parameter:we:64, oe:8, wf :4,of :2, wn:10

File type % classified as binary % classified as non-binary
elf-arm-32 87.0694195723 12.9305804277

doc 2.60043500512 97.3995649949
htm 5.24737631184 94.7526236882

javascript 2.6284512708 97.3715487292
jpeg 0.25130423718 99.7486957628
pdf 4.39930169814 95.6006983019
ppt 2.21128709826 97.7887129017
txt 0.0 100.0
xls 1.67920515506 98.3207948449

Table 35: Parameter:we:64, oe:8, wf :8,of :2, wn:1
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File type % classified as binary % classified as non-binary
elf-arm-32 94.5427728614 5.45722713864

doc 2.87871033777 97.1212896622
htm 8.99578920505 91.0042107949

javascript 3.18156884257 96.8184311574
jpeg 0.114518386563 99.8854816134
pdf 2.78059928898 97.219400711
ppt 1.91929133858 98.0807086614
txt 0.0 100.0
xls 1.85396825397 98.146031746

Table 36: Parameter:we:64, oe:8, wf :8,of :2, wn:4

File type % classified as binary % classified as non-binary
elf-arm-32 85.5110642782 14.4889357218

doc 5.91810620601 94.081893794
htm 16.1455009572 83.8544990428

javascript 9.0077732053 90.9922267947
jpeg 0.190900413618 99.8090995864
pdf 5.77777777778 94.2222222222
ppt 3.56813288219 96.4318671178
txt 0.0 100.0
xls 4.60317460317 95.3968253968

Table 37: Parameter:we:64, oe:8, wf :8,of :2, wn:10

File type % classified as binary % classified as non-binary
elf-arm-32 86.6533235015 13.3466764985

doc 2.82326850904 97.176731491
htm 4.05324940456 95.9467505954

javascript 2.25811366753 97.7418863325
jpeg 0.2417610383 99.7582389617
pdf 4.54949426552 95.4505057345
ppt 2.28614778972 97.7138522103
txt 0.0 100.0
xls 1.62734102211 98.3726589779

Table 38: Parameter:we:64, oe:8, wf :8,of :4, wn:1

File type % classified as binary % classified as non-binary
elf-arm-32 92.7658378986 7.23416210142

doc 2.46502900034 97.5349709997
htm 5.31643416128 94.6835658387

javascript 1.99926856028 98.0007314397
jpeg 0.169664065151 99.8303359348
pdf 3.70746571864 96.2925342814
ppt 1.50906257689 98.4909374231
txt 0.0 100.0
xls 1.5830017777 98.4169982223

Table 39: Parameter:we:64, oe:8, wf :8,of :4, wn:4

File type % classified as binary % classified as non-binary
elf-arm-32 93.9936775553 6.00632244468

doc 2.62316058861 97.3768394114
htm 8.65589111017 91.3441088898

javascript 1.98110332216 98.0188966778
jpeg 0.16967126193 99.8303287381
pdf 2.6455026455 97.3544973545
ppt 1.53783063359 98.4621693664
txt 0.0 100.0
xls 1.43915343915 98.5608465608

Table 40: Parameter:we:64, oe:8, wf :8,of :4, wn:10
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File type % classified as binary % classified as non-binary
elf-arm-32 88.1882989184 11.8117010816

doc 3.25421704732 96.7457829527
htm 4.18341521513 95.8165847849

javascript 1.65333333333 98.3466666667
jpeg 0.163301662708 99.8366983373
pdf 5.57736463966 94.4226353603
ppt 2.16018372327 97.8398162767
txt 0.0 100.0
xls 1.46666666667 98.5333333333

Table 41: Parameter:we:64, oe:8, wf :16,of :2, wn:1

File type % classified as binary % classified as non-binary
elf-arm-32 93.3628318584 6.63716814159

doc 6.77814272917 93.2218572708
htm 17.0637284098 82.9362715902

javascript 9.09090909091 90.9090909091
jpeg 0.41567695962 99.5843230404
pdf 7.58518518519 92.4148148148
ppt 5.02440424921 94.9755957508
txt 0.0 100.0
xls 4.35555555556 95.6444444444

Table 42: Parameter:we:64, oe:8, wf :16,of :2, wn:4

File type % classified as binary % classified as non-binary
elf-arm-32 22.8782287823 77.1217712177

doc 9.70873786408 90.2912621359
htm 12.2114668652 87.7885331348

javascript 4.2689434365 95.7310565635
jpeg 0.14847809948 99.8515219005
pdf 7.85185185185 92.1481481481
ppt 5.09691313711 94.9030868629
txt 0.0 100.0
xls 4.44444444444 95.5555555556

Table 43: Parameter:we:64, oe:8, wf :16,of :2, wn:10

File type % classified as binary % classified as non-binary
elf-arm-32 89.2014327855 10.7985672145

doc 3.55063655556 96.4493634444
htm 5.66543320148 94.3345667985

javascript 2.04809362714 97.9519063729
jpeg 0.254501495196 99.7454985048
pdf 5.37709497207 94.6229050279
ppt 2.26993110236 97.7300688976
txt 0.0 100.0
xls 1.71417687766 98.2858231223

Table 44: Parameter:we:64, oe:8, wf :16,of :4, wn:1

File type % classified as binary % classified as non-binary
elf-arm-32 94.395280236 5.60471976401

doc 4.04402354748 95.9559764525
htm 5.48749361919 94.5125063808

javascript 1.90197512802 98.098024872
jpeg 0.229065920081 99.7709340799
pdf 3.96140172676 96.0385982732
ppt 1.9438976378 98.0561023622
txt 0.0 100.0
xls 1.2192024384 98.7807975616

Table 45: Parameter:we:64, oe:8, wf :16,of :4, wn:4
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File type % classified as binary % classified as non-binary
elf-arm-32 21.1801896733 78.8198103267

doc 16.122840691 83.877159309
htm 9.18953414167 90.8104658583

javascript 3.47666971638 96.5233302836
jpeg 0.636537237428 99.3634627626
pdf 10.1587301587 89.8412698413
ppt 11.1384615385 88.8615384615
txt 0.254614894971 99.745385105
xls 8.57142857143 91.4285714286

Table 46: Parameter:we:64, oe:8, wf :16,of :4, wn:10

File type % classified as binary % classified as non-binary
elf-arm-32 88.7062789718 11.2937210282

doc 3.33091653516 96.6690834648
htm 4.10871506954 95.8912849305

javascript 1.47507009631 98.5249299037
jpeg 0.224804886325 99.7751951137
pdf 5.66700524801 94.332994752
ppt 2.16936641378 97.8306335862
txt 0.0 100.0
xls 1.36290527385 98.6370947261

Table 47: Parameter:we:64, oe:8, wf :16,of :8, wn:1

File type % classified as binary % classified as non-binary
elf-arm-32 91.8235459399 8.17645406013

doc 2.66166183245 97.3383381675
htm 3.99863876127 96.0013612387

javascript 1.60936356986 98.3906364301
jpeg 0.118764845606 99.8812351544
pdf 2.65786355172 97.3421364483
ppt 1.39435695538 98.6056430446
txt 0.0 100.0
xls 1.28682695564 98.7131730444

Table 48: Parameter:we:64, oe:8, wf :16,of :8, wn:4

File type % classified as binary % classified as non-binary
elf-arm-32 81.307097681 18.692902319

doc 6.61262798635 93.3873720137
htm 11.2717992344 88.7282007656

javascript 6.89024390244 93.1097560976
jpeg 0.212134068731 99.7878659313
pdf 4.27603725656 95.7239627434
ppt 4.92206726825 95.0779327317
txt 0.0 100.0
xls 4.61473327688 95.3852667231

Table 49: Parameter:we:64, oe:8, wf :16,of :8, wn:10

File type % classified as binary % classified as non-binary
elf-arm-32 82.1666114907 17.8333885093

doc 3.19025469034 96.8097453097
htm 3.72658920027 96.2734107997

javascript 2.35337138081 97.6466286192
jpeg 0.280837604973 99.719162395
pdf 3.69994196169 96.3000580383
ppt 2.19849742981 97.8015025702
txt 0.0 100.0
xls 1.45922513241 98.5407748676

Table 50: Parameter:we:64, oe:16, wf :4,of :2, wn:1
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File type % classified as binary % classified as non-binary
elf-arm-32 89.3697706615 10.6302293385

doc 2.33221231174 97.6677876883
htm 3.33564215668 96.6643578433

javascript 1.6194754989 98.3805245011
jpeg 0.178136474352 99.8218635256
pdf 3.03975623912 96.9602437609
ppt 1.59221117008 98.4077888299
txt 0.0 100.0
xls 1.26968004063 98.7303199594

Table 51: Parameter:we:64, oe:16, wf :4,of :2, wn:4

File type % classified as binary % classified as non-binary
elf-arm-32 93.4085778781 6.5914221219

doc 2.38530433193 97.6146956681
htm 6.20670798396 93.793292016

javascript 1.95899177223 98.0410082278
jpeg 0.190874386475 99.8091256135
pdf 3.17402738732 96.8259726127
ppt 1.57293497364 98.4270650264
txt 0.0 100.0
xls 1.46925448939 98.5307455106

Table 52: Parameter:we:64, oe:16, wf :4,of :2, wn:10

File type % classified as binary % classified as non-binary
elf-arm-32 85.0248306998 14.9751693002

doc 2.27278958191 97.7272104181
htm 3.40132334445 96.5986766555

javascript 1.92767307918 98.0723269208
jpeg 0.166325835037 99.833674165
pdf 3.84971161171 96.1502883883
ppt 1.80313175515 98.1968682448
txt 0.0 100.0
xls 1.34679218588 98.6532078141

Table 53: Parameter:we:64, oe:16, wf :8,of :2, wn:1

File type % classified as binary % classified as non-binary
elf-arm-32 92.9564746252 7.04352537475

doc 2.67602544418 97.3239745558
htm 7.53581975282 92.4641802472

javascript 2.08463949843 97.9153605016
jpeg 0.152705061082 99.8472949389
pdf 3.34095113723 96.6590488628
ppt 1.60286829063 98.3971317094
txt 0.0 100.0
xls 1.46930779277 98.5306922072

Table 54: Parameter:we:64, oe:16, wf :8,of :2, wn:4

File type % classified as binary % classified as non-binary
elf-arm-32 95.39503386 4.60496613995

doc 2.933918289 97.066081711
htm 11.1019961717 88.8980038283

javascript 3.05642633229 96.9435736677
jpeg 0.136351240796 99.8636487592
pdf 3.2380952381 96.7619047619
ppt 1.74004745584 98.2599525442
txt 0.0 100.0
xls 2.31292517007 97.6870748299

Table 55: Parameter:we:64, oe:16, wf :8,of :2, wn:10
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File type % classified as binary % classified as non-binary
elf-arm-32 82.9591283934 17.0408716066

doc 2.80194472876 97.1980552712
htm 3.1552468967 96.8447531033

javascript 1.661268415 98.338731585
jpeg 0.192681729773 99.8073182702
pdf 4.28040264805 95.719597352
ppt 1.97711815258 98.0228818474
txt 0.0 100.0
xls 1.31867733217 98.6813226678

Table 56: Parameter:we:64, oe:16, wf :8,of :4, wn:1

File type % classified as binary % classified as non-binary
elf-arm-32 92.6077534313 7.39224656875

doc 2.90247112151 97.0975288785
htm 4.564345607 95.435654393

javascript 1.64037195695 98.359628043
jpeg 0.159965098524 99.8400349015
pdf 3.32293404919 96.6770659508
ppt 1.64499121265 98.3550087873
txt 0.0 100.0
xls 1.2842838485 98.7157161515

Table 57: Parameter:we:64, oe:16, wf :8,of :4, wn:4

File type % classified as binary % classified as non-binary
elf-arm-32 93.8892233594 6.11077664058

doc 2.86967647596 97.130323524
htm 8.45789281808 91.5421071819

javascript 1.93312434692 98.0668756531
jpeg 0.127249590983 99.872750409
pdf 3.19245419917 96.8075458008
ppt 1.37082601054 98.6291739895
txt 0.0 100.0
xls 1.63250498821 98.3674950118

Table 58: Parameter:we:64, oe:16, wf :8,of :4, wn:10

File type % classified as binary % classified as non-binary
elf-arm-32 88.0952380952 11.9047619048

doc 2.85970187448 97.1402981255
htm 3.95559525329 96.0444047467

javascript 1.46292401938 98.5370759806
jpeg 0.273589107336 99.7264108927
pdf 5.42153377349 94.5784662265
ppt 2.26364027803 97.736359722
txt 0.0 100.0
xls 1.36499269888 98.6350073011

Table 59: Parameter:we:64, oe:16, wf :16,of :2, wn:1

File type % classified as binary % classified as non-binary
elf-arm-32 93.1731984829 6.82680151707

doc 3.27617097517 96.7238290248
htm 7.35068912711 92.6493108729

javascript 2.9992684711 97.0007315289
jpeg 0.12725884449 99.8727411555
pdf 3.50431691214 96.4956830879
ppt 1.89468503937 98.1053149606
txt 0.0 100.0
xls 1.65100330201 98.348996698

Table 60: Parameter:we:64, oe:16, wf :16,of :2, wn:4
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File type % classified as binary % classified as non-binary
elf-arm-32 70.2845100105 29.7154899895

doc 10.4286628279 89.5713371721
htm 13.7843012125 86.2156987875

javascript 4.20860018298 95.791399817
jpeg 0.4455760662 99.5544239338
pdf 8.57142857143 91.4285714286
ppt 4.73846153846 95.2615384615
txt 0.0 100.0
xls 2.92063492063 97.0793650794

Table 61: Parameter:we:64, oe:16, wf :16,of :2, wn:10

File type % classified as binary % classified as non-binary
elf-arm-32 87.4029257721 12.5970742279

doc 3.25729326607 96.7427067339
htm 1.84293995406 98.1570600459

javascript 0.987460815047 99.012539185
jpeg 0.152696733381 99.8473032666
pdf 5.77352124939 94.2264787506
ppt 1.78213645471 98.2178635453
txt 0.0 100.0
xls 0.90335219852 99.0966478015

Table 62: Parameter:we:64, oe:16, wf :16,of :4, wn:1

File type % classified as binary % classified as non-binary
elf-arm-32 86.2355491329 13.7644508671

doc 3.46567229656 96.5343277034
htm 12.7105666156 87.2894333844

javascript 9.05956112853 90.9404388715
jpeg 0.043630017452 99.9563699825
pdf 2.63387026556 97.3661297344
ppt 1.81396329888 98.1860367011
txt 0.0 100.0
xls 3.09098824554 96.9090117545

Table 63: Parameter:we:64, oe:16, wf :16,of :4, wn:4

File type % classified as binary % classified as non-binary
elf-arm-32 18.1571815718 81.8428184282

doc 10.5320899616 89.4679100384
htm 8.15098468271 91.8490153173

javascript 3.13479623824 96.8652037618
jpeg 0.38188761593 99.6181123841
pdf 5.38922155689 94.6107784431
ppt 5.16877637131 94.8312236287
txt 0.0545553737043 99.9454446263
xls 2.8307022319 97.1692977681

Table 64: Parameter:we:64, oe:16, wf :16,of :4, wn:10

File type % classified as binary % classified as non-binary
elf-arm-32 86.7204430532 13.2795569468

doc 3.21696216414 96.7830378359
htm 3.14265922928 96.8573407707

javascript 1.40536022151 98.5946397785
jpeg 0.199963642974 99.800036357
pdf 5.57570920699 94.424290793
ppt 1.9016485641 98.0983514359
txt 0.0 100.0
xls 1.17544623422 98.8245537658

Table 65: Parameter:we:64, oe:16, wf :16,of :8, wn:1
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File type % classified as binary % classified as non-binary
elf-arm-32 94.2692029858 5.73079701421

doc 3.42205323194 96.5779467681
htm 7.07306402217 92.9269359778

javascript 2.52873563218 97.4712643678
jpeg 0.363583478767 99.6364165212
pdf 3.86010738645 96.1398926136
ppt 2.02474690664 97.9752530934
txt 0.0 100.0
xls 2.24931069511 97.7506893049

Table 66: Parameter:we:64, oe:16, wf :16,of :8, wn:4

File type % classified as binary % classified as non-binary
elf-arm-32 94.7621914509 5.23780854907

doc 5.4113345521 94.5886654479
htm 11.6338439096 88.3661560904

javascript 4.17972831766 95.8202716823
jpeg 0.327272727273 99.6727272727
pdf 5.80551523948 94.1944847605
ppt 3.69198312236 96.3080168776
txt 0.0 100.0
xls 3.15674891147 96.8432510885

Table 67: Parameter:we:64, oe:16, wf :16,of :8, wn:10

File type % classified as binary % classified as non-binary
elf-arm-32 80.0405288818 19.9594711182

doc 2.78419164011 97.2158083599
htm 3.81191938708 96.1880806129

javascript 2.49440608757 97.5055939124
jpeg 0.27629163309 99.7237083669
pdf 3.12619023149 96.8738097685
ppt 2.32500922623 97.6749907738
txt 0.000606097339233 99.9993939027
xls 1.49699512691 98.5030048731

Table 68: Parameter:we:64, oe:32, wf :4,of :2, wn:1

File type % classified as binary % classified as non-binary
elf-arm-32 89.430176565 10.569823435

doc 2.53442183502 97.465578165
htm 3.63574501179 96.3642549882

javascript 2.0930556523 97.9069443477
jpeg 0.220552593311 99.7794474067
pdf 3.47746179145 96.5225382086
ppt 1.74098460529 98.2590153947
txt 0.0 100.0
xls 1.49701322886 98.5029867711

Table 69: Parameter:we:64, oe:32, wf :4,of :2, wn:4

File type % classified as binary % classified as non-binary
elf-arm-32 92.9574638844 7.04253611557

doc 2.79639332277 97.2036066772
htm 5.94847490582 94.0515250942

javascript 2.7949499347 97.2050500653
jpeg 0.206010664081 99.7939893359
pdf 3.88149939541 96.1185006046
ppt 1.78090216755 98.2190978325
txt 0.00606097339233 99.9939390266
xls 1.75343128363 98.2465687164

Table 70: Parameter:we:64, oe:32, wf :4,of :2, wn:10
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File type % classified as binary % classified as non-binary
elf-arm-32 84.0125203154 15.9874796846

doc 2.37969038437 97.6203096156
htm 3.07498815209 96.9250118479

javascript 1.99555961865 98.0044403814
jpeg 0.192681729773 99.8073182702
pdf 3.56035186361 96.4396481364
ppt 1.74334821272 98.2566517873
txt 0.0 100.0
xls 1.40571718784 98.5942828122

Table 71: Parameter:we:64, oe:32, wf :8,of :2, wn:1

File type % classified as binary % classified as non-binary
elf-arm-32 89.7303154346 10.2696845654

doc 1.74733148121 98.2526685188
htm 4.16332482683 95.8366751732

javascript 1.62992372793 98.3700762721
jpeg 0.065440267578 99.9345597324
pdf 2.42327504897 97.576724951
ppt 1.37785588752 98.6221441125
txt 0.0 100.0
xls 1.14633969383 98.8536603062

Table 72: Parameter:we:64, oe:32, wf :8,of :2, wn:4

File type % classified as binary % classified as non-binary
elf-arm-32 93.7989163155 6.20108368453

doc 2.32133065253 97.6786693475
htm 8.69485964273 91.3051403573

javascript 2.45559038662 97.5444096134
jpeg 0.0908925649882 99.909107435
pdf 3.13803736623 96.8619626338
ppt 1.63444639719 98.3655536028
txt 0.0 100.0
xls 1.77761654272 98.2223834573

Table 73: Parameter:we:64, oe:32, wf :8,of :2, wn:10

File type % classified as binary % classified as non-binary
elf-arm-32 85.3972712681 14.6027287319

doc 2.8293265423 97.1706734577
htm 3.76459723184 96.2354027682

javascript 2.27419158236 97.7258084176
jpeg 0.220552593311 99.7794474067
pdf 3.92367870573 96.0763212943
ppt 1.92611858986 98.0738814101
txt 0.0 100.0
xls 1.53208058236 98.4679194176

Table 74: Parameter:we:64, oe:32, wf :8,of :4, wn:1

File type % classified as binary % classified as non-binary
elf-arm-32 90.4414125201 9.55858747994

doc 2.47112150899 97.528878491
htm 4.11218587469 95.8878141253

javascript 1.40707718027 98.5929228197
jpeg 0.184197770238 99.8158022298
pdf 3.48730350665 96.5126964933
ppt 1.48092604743 98.5190739526
txt 0.0 100.0
xls 1.20924833124 98.7907516688

Table 75: Parameter:we:64, oe:32, wf :8,of :4, wn:4
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File type % classified as binary % classified as non-binary
elf-arm-32 92.3956661316 7.60433386838

doc 2.77845478918 97.2215452108
htm 10.5237574432 89.4762425568

javascript 3.83141762452 96.1685823755
jpeg 0.169655841008 99.830344159
pdf 3.94195888755 96.0580411125
ppt 1.62858816637 98.3714118336
txt 0.0 100.0
xls 2.16471157335 97.8352884267

Table 76: Parameter:we:64, oe:32, wf :8,of :4, wn:10

File type % classified as binary % classified as non-binary
elf-arm-32 85.8206334715 14.1793665285

doc 2.73382522284 97.2661747772
htm 2.77317000553 97.2268299945

javascript 1.23727677211 98.7627232279
jpeg 0.190872073295 99.8091279267
pdf 5.49324982014 94.5067501799
ppt 1.80841466415 98.1915853358
txt 0.0 100.0
xls 1.15969018496 98.840309815

Table 77: Parameter:we:64, oe:32, wf :16,of :2, wn:1

File type % classified as binary % classified as non-binary
elf-arm-32 91.5425681371 8.45743186288

doc 2.32042313598 97.679576864
htm 6.61902331121 93.3809766888

javascript 1.38990490124 98.6100950988
jpeg 0.0848320325755 99.9151679674
pdf 2.6240054173 97.3759945827
ppt 1.23031496063 98.7696850394
txt 0.0 100.0
xls 1.11750761937 98.8824923806

Table 78: Parameter:we:64, oe:32, wf :16,of :2, wn:4

File type % classified as binary % classified as non-binary
elf-arm-32 13.6331693605 86.3668306395

doc 8.31911262799 91.680887372
htm 8.12420246704 91.875797533

javascript 1.28048780488 98.7195121951
jpeg 0.212134068731 99.7878659313
pdf 5.63082133785 94.3691786622
ppt 4.38884331419 95.6111566858
txt 0.0 100.0
xls 1.82049110923 98.1795088908

Table 79: Parameter:we:64, oe:32, wf :16,of :2, wn:10

File type % classified as binary % classified as non-binary
elf-arm-32 86.1365278112 13.8634721888

doc 2.76000731128 97.2399926887
htm 3.0040102078 96.9959897922

javascript 1.31654563502 98.683454365
jpeg 0.159965098524 99.8400349015
pdf 5.60089962636 94.3991003736
ppt 1.77855887522 98.2214411248
txt 0.0 100.0
xls 1.18265916924 98.8173408308

Table 80: Parameter:we:64, oe:32, wf :16,of :4, wn:1
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File type % classified as binary % classified as non-binary
elf-arm-32 94.8711774621 5.12882253792

doc 4.51886516525 95.4811348347
htm 11.7106606388 88.2893393612

javascript 5.01567398119 94.9843260188
jpeg 0.305410122164 99.6945898778
pdf 4.30996952547 95.6900304745
ppt 2.65748031496 97.342519685
txt 0.0 100.0
xls 2.93135974459 97.0686402554

Table 81: Parameter:we:64, oe:32, wf :16,of :4, wn:4

File type % classified as binary % classified as non-binary
elf-arm-32 91.5713425647 8.42865743528

doc 6.21572212066 93.7842778793
htm 15.020051039 84.979948961

javascript 6.06060606061 93.9393939394
jpeg 0.327272727273 99.6727272727
pdf 5.11611030479 94.8838896952
ppt 3.05799648506 96.9420035149
txt 0.0 100.0
xls 4.20899854862 95.7910014514

Table 82: Parameter:we:64, oe:32, wf :16,of :4, wn:10

File type % classified as binary % classified as non-binary
elf-arm-32 86.115012641 13.884987359

doc 2.80749640533 97.1925035947
htm 3.90083849799 96.099161502

javascript 1.4662858735 98.5337141265
jpeg 0.186625948278 99.8133740517
pdf 5.44135429262 94.5586457074
ppt 1.82073813708 98.1792618629
txt 0.0 100.0
xls 1.29873270775 98.7012672923

Table 83: Parameter:we:64, oe:32, wf :16,of :8, wn:1

File type % classified as binary % classified as non-binary
elf-arm-32 93.0325895007 6.96741049928

doc 3.5776954572 96.4223045428
htm 8.51643009916 91.4835699008

javascript 3.24602953469 96.7539704653
jpeg 0.261780104712 99.7382198953
pdf 4.35329399245 95.6467060075
ppt 2.13723284589 97.8627671541
txt 0.0 100.0
xls 2.29273483603 97.707265164

Table 84: Parameter:we:64, oe:32, wf :16,of :8, wn:4

File type % classified as binary % classified as non-binary
elf-arm-32 93.095142513 6.90485748695

doc 7.0679990251 92.9320009749
htm 12.4696159456 87.5303840544

javascript 5.01567398119 94.9843260188
jpeg 0.339393939394 99.6606060606
pdf 6.14268440145 93.8573155985
ppt 3.32786501055 96.6721349895
txt 0.0 100.0
xls 4.86211901306 95.1378809869

Table 85: Parameter:we:64, oe:32, wf :16,of :8, wn:10
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7.2 Tests with we = 32

File type % classified as binary % classified as non-binary
elf-arm-32 61.3581103026 38.6418896974

doc 2.54756358247 97.4524364175
htm 2.80059329197 97.199406708

javascript 5.17955906328 94.8204409367
jpeg 0.241753347966 99.758246652
pdf 3.06920794122 96.9307920588
ppt 1.98516635315 98.0148336469
txt 0.00053033235929 99.9994696676
xls 1.92406375809 98.0759362419

Table 86: Parameter:we:32, oe:4, wf :4,of :2, wn:1

File type % classified as binary % classified as non-binary
elf-arm-32 75.941011236 24.058988764

doc 2.49482909355 97.5051709065
htm 2.06273258905 97.937267411

javascript 4.24488054608 95.7551194539
jpeg 0.203583925353 99.7964160746
pdf 3.20150659134 96.7984934087
ppt 1.23016361176 98.7698363882
txt 0.0 100.0
xls 1.99128153039 98.0087184696

Table 87: Parameter:we:32, oe:4, wf :4,of :2, wn:4

File type % classified as binary % classified as non-binary
elf-arm-32 86.0077247191 13.9922752809

doc 2.54811024042 97.4518897596
htm 3.81711855396 96.182881446

javascript 4.06064299863 95.9393570014
jpeg 0.180256600573 99.8197433994
pdf 3.35925514469 96.6407448553
ppt 1.39935414424 98.6006458558
txt 0.0 100.0
xls 2.23256798222 97.7674320178

Table 88: Parameter:we:32, oe:4, wf :4,of :2, wn:10
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File type % classified as binary % classified as non-binary
elf-arm-32 69.7258578464 30.2741421536

doc 2.82269027171 97.1773097283
htm 1.78787878788 98.2121212121

javascript 3.87393152626 96.1260684737
jpeg 0.181317894804 99.8186821052
pdf 3.43109249032 96.5689075097
ppt 1.35781396565 98.6421860344
txt 0.0 100.0
xls 1.82357795835 98.1764220416

Table 89: Parameter:we:32, oe:4, wf :8,of :2, wn:1

File type % classified as binary % classified as non-binary
elf-arm-32 84.3568945539 15.6431054461

doc 2.5460593654 97.4539406346
htm 2.51355661882 97.4864433812

javascript 3.58383616749 96.4161638325
jpeg 0.152691182084 99.8473088179
pdf 2.7677267822 97.2322732178
ppt 1.13182013902 98.868179861
txt 0.0 100.0
xls 2.07592686643 97.9240731336

Table 90: Parameter:we:32, oe:4, wf :8,of :2, wn:4

File type % classified as binary % classified as non-binary
elf-arm-32 86.8843824072 13.1156175928

doc 2.54318618042 97.4568138196
htm 10.350877193 89.649122807

javascript 6.56 93.44
jpeg 0.190870049308 99.8091299507
pdf 3.11061736232 96.8893826377
ppt 1.64539443334 98.3546055667
txt 0.0 100.0
xls 3.71428571429 96.2857142857

Table 91: Parameter:we:32, oe:4, wf :8,of :2, wn:10

File type % classified as binary % classified as non-binary
elf-arm-32 72.5245786517 27.4754213483

doc 2.94155276457 97.0584472354
htm 2.20733652313 97.7926634769

javascript 4.39724524622 95.6027547538
jpeg 0.197221927685 99.8027780723
pdf 3.90190228316 96.0980977168
ppt 1.34806811076 98.6519318892
txt 0.0 100.0
xls 1.95001692907 98.0499830709

Table 92: Parameter:we:32, oe:4, wf :8,of :4, wn:1

File type % classified as binary % classified as non-binary
elf-arm-32 82.3525280899 17.6474719101

doc 2.63988399864 97.3601160014
htm 3.1941136441 96.8058863559

javascript 3.57752315943 96.4224768406
jpeg 0.173898290707 99.8261017093
pdf 3.11904862669 96.8809513733
ppt 1.36143689002 98.63856311
txt 0.0 100.0
xls 2.11613340105 97.883866599

Table 93: Parameter:we:32, oe:4, wf :8,of :4, wn:4
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File type % classified as binary % classified as non-binary
elf-arm-32 89.220505618 10.779494382

doc 2.53758396418 97.4624160358
htm 8.01701222754 91.9829877725

javascript 4.76916044492 95.2308395551
jpeg 0.190859930018 99.80914007
pdf 3.34356152788 96.6564384721
ppt 1.92741439409 98.0725856059
txt 0.0 100.0
xls 3.04729658237 96.9527034176

Table 94: Parameter:we:32, oe:4, wf :8,of :4, wn:10

File type % classified as binary % classified as non-binary
elf-arm-32 77.7299821791 22.2700178209

doc 3.31753554502 96.682464455
htm 2.28871273864 97.7112872614

javascript 3.26382592928 96.7361740707
jpeg 0.215253293747 99.7847467063
pdf 4.32528514294 95.6747148571
ppt 1.25224255472 98.7477574453
txt 0.0 100.0
xls 2.10346998482 97.8965300152

Table 95: Parameter:we:32, oe:4, wf :16,of :2, wn:1

File type % classified as binary % classified as non-binary
elf-arm-32 87.3156342183 12.6843657817

doc 2.64218540081 97.3578145992
htm 8.70924519875 91.2907548013

javascript 4.48047791764 95.5195220824
jpeg 0.192992874109 99.8070071259
pdf 3.46615316249 96.5338468375
ppt 2.2534806947 97.7465193053
txt 0.0 100.0
xls 2.81481481481 97.1851851852

Table 96: Parameter:we:32, oe:4, wf :16,of :2, wn:4

File type % classified as binary % classified as non-binary
elf-arm-32 37.6152427781 62.3847572219

doc 9.51847704367 90.4815229563
htm 12.058057313 87.941942687

javascript 4.74666666667 95.2533333333
jpeg 0.519673348181 99.4803266518
pdf 4.92592592593 95.0740740741
ppt 5.382131324 94.617868676
txt 0.0371333085778 99.9628666914
xls 3.59259259259 96.4074074074

Table 97: Parameter:we:32, oe:4, wf :16,of :2, wn:10

File type % classified as binary % classified as non-binary
elf-arm-32 79.584957337 20.415042663

doc 3.38088536336 96.6191146366
htm 2.39242081087 97.6075791891

javascript 3.43755714025 96.5624428598
jpeg 0.209950375366 99.7900496246
pdf 5.15473734328 94.8452626567
ppt 1.57158234661 98.4284176534
txt 0.0 100.0
xls 2.00298384281 97.9970161572

Table 98: Parameter:we:32, oe:4, wf :16,of :4, wn:1
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File type % classified as binary % classified as non-binary
elf-arm-32 86.1567635904 13.8432364096

doc 2.55885363357 97.4411463664
htm 8.71506954192 91.2849304581

javascript 4.51636496617 95.4836350338
jpeg 0.0763455910421 99.923654409
pdf 2.78059928898 97.219400711
ppt 1.45177165354 98.5482283465
txt 0.0 100.0
xls 2.64126984127 97.3587301587

Table 99: Parameter:we:32, oe:4, wf :16,of :4, wn:4

File type % classified as binary % classified as non-binary
elf-arm-32 51.1591148577 48.8408851423

doc 4.19065898912 95.8093410109
htm 9.50861518826 90.4913848117

javascript 2.9263831733 97.0736168267
jpeg 0.445434298441 99.5545657016
pdf 4.31746031746 95.6825396825
ppt 4.64472470009 95.3552752999
txt 0.0 100.0
xls 2.4126984127 97.5873015873

Table 100: Parameter:we:32, oe:4, wf :16,of :4, wn:10

File type % classified as binary % classified as non-binary
elf-arm-32 76.7021313951 23.2978686049

doc 3.25614124872 96.7438587513
htm 1.56515821708 98.4348417829

javascript 2.97120219412 97.0287978059
jpeg 0.139966916911 99.8600330831
pdf 4.49870921325 95.5012907867
ppt 1.27942261954 98.7205773805
txt 0.0 100.0
xls 1.88551476034 98.1144852397

Table 101: Parameter:we:32, oe:4, wf :16,of :8, wn:1

File type % classified as binary % classified as non-binary
elf-arm-32 85.4052535468 14.5947464532

doc 2.67826680314 97.3217331969
htm 6.63490983328 93.3650901667

javascript 4.08387175424 95.9161282458
jpeg 0.127248048863 99.8727519511
pdf 3.09801929914 96.9019807009
ppt 1.4598540146 98.5401459854
txt 0.0 100.0
xls 2.35333954118 97.6466604588

Table 102: Parameter:we:32, oe:4, wf :16,of :8, wn:4

File type % classified as binary % classified as non-binary
elf-arm-32 88.7600983491 11.2399016509

doc 5.07570910642 94.9242908936
htm 13.7175669928 86.2824330072

javascript 6.06522401707 93.9347759829
jpeg 0.33934252386 99.6606574761
pdf 6.13756613757 93.8624338624
ppt 4.18289932335 95.8171006766
txt 0.0 100.0
xls 4.25396825397 95.746031746

Table 103: Parameter:we:32, oe:4, wf :16,of :8, wn:10
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File type % classified as binary % classified as non-binary
elf-arm-32 60.5179405768 39.4820594232

doc 2.65242899441 97.3475710056
htm 2.88353314833 97.1164668517

javascript 5.41647077261 94.5835292274
jpeg 0.238117959275 99.7618820407
pdf 3.09413909116 96.9058609088
ppt 1.94364996727 98.0563500327
txt 0.0 100.0
xls 1.9081131083 98.0918868917

Table 104: Parameter:we:32, oe:8, wf :4,of :2, wn:1

File type % classified as binary % classified as non-binary
elf-arm-32 75.3002076624 24.6997923376

doc 2.34309317542 97.6569068246
htm 2.48072471429 97.5192752857

javascript 4.617875986 95.382124014
jpeg 0.210855418621 99.7891445814
pdf 3.18485200232 96.8151479977
ppt 1.30748818164 98.6925118184
txt 0.0 100.0
xls 2.07316851976 97.9268314802

Table 105: Parameter:we:32, oe:8, wf :4,of :2, wn:4

File type % classified as binary % classified as non-binary
elf-arm-32 81.5213302235 18.4786697765

doc 1.72264107836 98.2773589216
htm 3.29915698337 96.7008430166

javascript 3.59801488834 96.4019851117
jpeg 0.081799591002 99.918200409
pdf 2.22181917113 97.7781808289
ppt 0.984139536927 99.0158604631
txt 0.0 100.0
xls 1.95891715413 98.0410828459

Table 106: Parameter:we:32, oe:8, wf :4,of :2, wn:10

File type % classified as binary % classified as non-binary
elf-arm-32 69.3068189513 30.6931810487

doc 2.49208372743 97.5079162726
htm 1.98496240602 98.015037594

javascript 4.12952769017 95.8704723098
jpeg 0.154051695932 99.8459483041
pdf 3.24155943086 96.7584405691
ppt 1.3602214314 98.6397785686
txt 0.0 100.0
xls 1.8092776493 98.1907223507

Table 107: Parameter:we:32, oe:8, wf :8,of :2, wn:1

File type % classified as binary % classified as non-binary
elf-arm-32 83.2866817156 16.7133182844

doc 2.78554586829 97.2144541317
htm 4.12314759118 95.8768524088

javascript 3.65175143014 96.3482485699
jpeg 0.201766822991 99.798233177
pdf 3.17771248232 96.8222875177
ppt 1.80840407023 98.1915959298
txt 0.0 100.0
xls 2.17663383577 97.8233661642

Table 108: Parameter:we:32, oe:8, wf :8,of :2, wn:4
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File type % classified as binary % classified as non-binary
elf-arm-32 83.0248306998 16.9751693002

doc 3.13913639479 96.8608636052
htm 10.1982228298 89.8017771702

javascript 7.93495297806 92.0650470219
jpeg 0.177232447171 99.8227675528
pdf 2.38062848592 97.6193715141
ppt 1.70027678924 98.2997232108
txt 0.0136388434261 99.9863611566
xls 3.5913481159 96.4086518841

Table 109: Parameter:we:32, oe:8, wf :8,of :2, wn:10

File type % classified as binary % classified as non-binary
elf-arm-32 70.298251422 29.701748578

doc 2.88594222632 97.1140577737
htm 2.25655046708 97.7434495329

javascript 4.35935275757 95.6406472424
jpeg 0.18358963173 99.8164103683
pdf 4.20505658735 95.7949434127
ppt 1.36285751944 98.6371424806
txt 0.0227287191003 99.9772712809
xls 1.9344306897 98.0655693103

Table 110: Parameter:we:32, oe:8, wf :8,of :4, wn:1

File type % classified as binary % classified as non-binary
elf-arm-32 80.2865226028 19.7134773972

doc 2.65389676853 97.3461032315
htm 2.83256170027 97.1674382997

javascript 3.55762198307 96.4423780169
jpeg 0.134511215327 99.8654887847
pdf 3.12681369704 96.873186303
ppt 1.1563741169 98.8436258831
txt 0.0 100.0
xls 2.02423275049 97.9757672495

Table 111: Parameter:we:32, oe:8, wf :8,of :4, wn:4

File type % classified as binary % classified as non-binary
elf-arm-32 86.3506395786 13.6493604214

doc 2.55894717602 97.441052824
htm 7.66496536639 92.3350346336

javascript 4.16612250229 95.8338774977
jpeg 0.15451736048 99.8454826395
pdf 2.9745170944 97.0254829056
ppt 1.52021089631 98.4797891037
txt 0.0 100.0
xls 2.69363323055 97.3063667695

Table 112: Parameter:we:32, oe:8, wf :8,of :4, wn:10

File type % classified as binary % classified as non-binary
elf-arm-32 74.6971452649 25.3028547351

doc 3.12180143296 96.878198567
htm 1.72892277266 98.2710772273

javascript 3.15414152496 96.845858475
jpeg 0.146329049497 99.8536709505
pdf 4.04380257102 95.956197429
ppt 1.28863601415 98.7113639859
txt 0.0 100.0
xls 1.89505761356 98.1049423864

Table 113: Parameter:we:32, oe:8, wf :16,of :2, wn:1
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File type % classified as binary % classified as non-binary
elf-arm-32 82.3640960809 17.6359039191

doc 2.31576253838 97.6842374616
htm 6.89039173153 93.1096082685

javascript 4.71749862863 95.2825013714
jpeg 0.101794121389 99.8982058786
pdf 3.23768410361 96.7623158964
ppt 1.66092519685 98.3390748031
txt 0.0 100.0
xls 2.52698412698 97.473015873

Table 114: Parameter:we:32, oe:8, wf :16,of :2, wn:4

File type % classified as binary % classified as non-binary
elf-arm-32 71.9704952582 28.0295047418

doc 2.68714011516 97.3128598848
htm 15.1563497128 84.8436502872

javascript 7.04160951075 92.9583904893
jpeg 0.286350620426 99.7136493796
pdf 4.69841269841 95.3015873016
ppt 3.87573054445 96.1242694556
txt 0.0 100.0
xls 4.34920634921 95.6507936508

Table 115: Parameter:we:32, oe:8, wf :16,of :2, wn:10

File type % classified as binary % classified as non-binary
elf-arm-32 76.532731377 23.467268623

doc 3.22138450994 96.7786154901
htm 1.38076229015 98.6192377098

javascript 3.10700152803 96.892998472
jpeg 0.212678936605 99.7873210634
pdf 4.28501469148 95.7149853085
ppt 1.37871039173 98.6212896083
txt 0.0 100.0
xls 1.93720411384 98.0627958862

Table 116: Parameter:we:32, oe:8, wf :16,of :4, wn:1

File type % classified as binary % classified as non-binary
elf-arm-32 86.7256637168 13.2743362832

doc 2.69796007896 97.302039921
htm 7.60144372744 92.3985562726

javascript 4.02821316614 95.9717868339
jpeg 0.141797556719 99.8582024433
pdf 3.26477309827 96.7352269017
ppt 1.52905198777 98.4709480122
txt 0.0 100.0
xls 2.50326512843 97.4967348716

Table 117: Parameter:we:32, oe:8, wf :16,of :4, wn:4

File type % classified as binary % classified as non-binary
elf-arm-32 25.2821670429 74.7178329571

doc 3.45489443378 96.5451055662
htm 7.54716981132 92.4528301887

javascript 4.27115987461 95.7288401254
jpeg 0.163621488956 99.836378511
pdf 2.72108843537 97.2789115646
ppt 2.21460585289 97.7853941471
txt 0.0 100.0
xls 1.76870748299 98.231292517

Table 118: Parameter:we:32, oe:8, wf :16,of :4, wn:10
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File type % classified as binary % classified as non-binary
elf-arm-32 75.1339312587 24.8660687413

doc 3.04320807136 96.9567919286
htm 1.85924427189 98.1407557281

javascript 3.4008985477 96.5991014523
jpeg 0.170868703761 99.8291312962
pdf 4.03010791693 95.9698920831
ppt 1.28644487795 98.7135551221
txt 0.0 100.0
xls 1.92994866772 98.0700513323

Table 119: Parameter:we:32, oe:8, wf :16,of :8, wn:1

File type % classified as binary % classified as non-binary
elf-arm-32 87.7076811943 12.2923188057

doc 4.51089340547 95.4891065945
htm 10.1130149471 89.8869850529

javascript 8.21230801379 91.7876919862
jpeg 0.18177852105 99.818221479
pdf 4.90459261409 95.0954073859
ppt 1.54657293497 98.453427065
txt 0.00727378527786 99.9927262147
xls 3.15629081411 96.8437091859

Table 120: Parameter:we:32, oe:8, wf :16,of :8, wn:4

File type % classified as binary % classified as non-binary
elf-arm-32 79.9518362432 20.0481637568

doc 5.17272893438 94.8272710656
htm 15.475756471 84.524243529

javascript 8.85579937304 91.144200627
jpeg 0.272677694965 99.727322305
pdf 4.46218030111 95.5378196989
ppt 3.3216168717 96.6783831283
txt 0.0 100.0
xls 3.68220569563 96.3177943044

Table 121: Parameter:we:32, oe:8, wf :16,of :8, wn:10

File type % classified as binary % classified as non-binary
elf-arm-32 53.60566192 46.39433808

doc 2.39761183118 97.6023881688
htm 2.68636403681 97.3136359632

javascript 5.05097554393 94.9490244561
jpeg 0.235694009797 99.7643059902
pdf 2.57420175865 97.4257982413
ppt 1.65719156115 98.3428084388
txt 0.000303044996121 99.999696955
xls 1.7076886801 98.2923113199

Table 122: Parameter:we:32, oe:16, wf :4,of :2, wn:1

File type % classified as binary % classified as non-binary
elf-arm-32 72.4102646416 27.5897353584

doc 2.16397996856 97.8360200314
htm 2.13378698584 97.8662130142

javascript 4.93304776333 95.0669522367
jpeg 0.189040498291 99.8109595017
pdf 2.98289099813 97.0171090019
ppt 1.37426044168 98.6257395583
txt 0.00121217998448 99.99878782
xls 2.01816225106 97.9818377489

Table 123: Parameter:we:32, oe:16, wf :4,of :2, wn:4
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File type % classified as binary % classified as non-binary
elf-arm-32 80.2668539326 19.7331460674

doc 1.89472401608 98.1052759839
htm 2.1629503615 97.8370496385

javascript 3.78303077794 96.2169692221
jpeg 0.163596703829 99.8364032962
pdf 2.99860951575 97.0013904843
ppt 1.12471442798 98.875285572
txt 0.0 100.0
xls 1.90453157592 98.0954684241

Table 124: Parameter:we:32, oe:16, wf :4,of :2, wn:10

File type % classified as binary % classified as non-binary
elf-arm-32 66.5352494169 33.4647505831

doc 2.78359088708 97.2164091129
htm 2.2100504894 97.7899495106

javascript 4.23261766703 95.767382333
jpeg 0.196311881413 99.8036881186
pdf 3.47319833504 96.526801665
ppt 1.98232079152 98.0176792085
txt 0.0954597523501 99.9045402476
xls 1.88001632431 98.1199836757

Table 125: Parameter:we:32, oe:16, wf :8,of :2, wn:1

File type % classified as binary % classified as non-binary
elf-arm-32 80.6236080178 19.3763919822

doc 2.21158064044 97.7884193596
htm 2.66851372535 97.3314862747

javascript 3.49997388079 96.5000261192
jpeg 0.163594721344 99.8364052787
pdf 2.99985490424 97.0001450958
ppt 1.25830375031 98.7416962497
txt 0.0 100.0
xls 2.03148806501 97.968511935

Table 126: Parameter:we:32, oe:16, wf :8,of :2, wn:4

File type % classified as binary % classified as non-binary
elf-arm-32 45.7035364936 54.2964635064

doc 3.02504112594 96.9749588741
htm 6.32519139628 93.6748086037

javascript 5.83779548126 94.1622045187
jpeg 0.436284311943 99.5637156881
pdf 2.91103654666 97.0889634533
ppt 2.60105448155 97.3989455185
txt 0.0181834712247 99.9818165288
xls 2.80246689643 97.1975331036

Table 127: Parameter:we:32, oe:16, wf :8,of :2, wn:10

File type % classified as binary % classified as non-binary
elf-arm-32 65.6678236793 34.3321763207

doc 2.45216003314 97.5478399669
htm 1.99588064816 98.0041193518

javascript 4.25656027443 95.7434397256
jpeg 0.187829838285 99.8121701617
pdf 3.12316742136 96.8768325786
ppt 1.96298964905 98.0370103509
txt 0.0 100.0
xls 1.85612885283 98.1438711472

Table 128: Parameter:we:32, oe:16, wf :8,of :4, wn:1
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File type % classified as binary % classified as non-binary
elf-arm-32 78.7800963082 21.2199036918

doc 2.29316437188 97.7068356281
htm 2.02201861618 97.9779813838

javascript 3.80302291565 96.1969770843
jpeg 0.179350460494 99.8206495395
pdf 3.10746759528 96.8925324047
ppt 1.14112988261 98.8588701174
txt 0.0 100.0
xls 1.96377179617 98.0362282038

Table 129: Parameter:we:32, oe:16, wf :8,of :4, wn:4

File type % classified as binary % classified as non-binary
elf-arm-32 85.1123595506 14.8876404494

doc 2.18106494456 97.8189350554
htm 5.28010693887 94.7198930611

javascript 3.71789290379 96.2821070962
jpeg 0.163596703829 99.8364032962
pdf 2.76299879081 97.2370012092
ppt 1.20093731693 98.7990626831
txt 0.0 100.0
xls 2.2008585767 97.7991414233

Table 130: Parameter:we:32, oe:16, wf :8,of :4, wn:10

File type % classified as binary % classified as non-binary
elf-arm-32 73.514747191 26.485252809

doc 2.87438428897 97.125615711
htm 1.52046783626 98.4795321637

javascript 3.51048269137 96.4895173086
jpeg 0.199346821054 99.8006531789
pdf 3.49563046192 96.5043695381
ppt 1.19328316897 98.806716831
txt 0.00212138568913 99.9978786143
xls 1.82622312511 98.1737768749

Table 131: Parameter:we:32, oe:16, wf :16,of :2, wn:1

File type % classified as binary % classified as non-binary
elf-arm-32 85.2387640449 14.7612359551

doc 2.81473899693 97.1852610031
htm 3.93841442668 96.0615855733

javascript 3.98586055583 96.0141394442
jpeg 0.161180861893 99.8388191381
pdf 2.88640595903 97.113594041
ppt 1.30402690068 98.6959730993
txt 0.0 100.0
xls 2.12459793465 97.8754020653

Table 132: Parameter:we:32, oe:16, wf :16,of :2, wn:4

File type % classified as binary % classified as non-binary
elf-arm-32 84.7261235955 15.2738764045

doc 2.75111964171 97.2488803583
htm 10.4210974054 89.5789025946

javascript 6.55288021945 93.4471197806
jpeg 0.318133616119 99.6818663839
pdf 2.83597883598 97.164021164
ppt 2.46052901374 97.5394709863
txt 0.0212179079143 99.9787820921
xls 2.98412698413 97.0158730159

Table 133: Parameter:we:32, oe:16, wf :16,of :2, wn:10
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File type % classified as binary % classified as non-binary
elf-arm-32 73.924035394 26.075964606

doc 2.92800614114 97.0719938589
htm 1.98498049652 98.0150195035

javascript 3.44260154107 96.5573984589
jpeg 0.169050951593 99.8309490484
pdf 3.98476466854 96.0152353315
ppt 1.22842782328 98.7715721767
txt 0.0 100.0
xls 1.82289777262 98.1771022274

Table 134: Parameter:we:32, oe:16, wf :16,of :4, wn:1

File type % classified as binary % classified as non-binary
elf-arm-32 84.3607031062 15.6392968938

doc 2.85129404884 97.1487059512
htm 4.60809332847 95.3919066715

javascript 3.39567443318 96.6043255668
jpeg 0.159965098524 99.8400349015
pdf 2.89487049264 97.1051295074
ppt 1.20913884007 98.7908611599
txt 0.0 100.0
xls 1.97344554886 98.0265544511

Table 135: Parameter:we:32, oe:16, wf :16,of :4, wn:4

File type % classified as binary % classified as non-binary
elf-arm-32 25.5568934377 74.4431065623

doc 7.56717236337 92.4328276366
htm 10.5541378053 89.4458621947

javascript 3.91849529781 96.0815047022
jpeg 0.527176876931 99.4728231231
pdf 3.99056774896 96.009432251
ppt 4.60456942004 95.39543058
txt 0.0727404982724 99.9272595017
xls 3.13803736623 96.8619626338

Table 136: Parameter:we:32, oe:16, wf :16,of :4, wn:10

File type % classified as binary % classified as non-binary
elf-arm-32 76.6071428571 23.3928571429

doc 3.20218352849 96.7978164715
htm 2.01961284678 97.9803871532

javascript 4.2662116041 95.7337883959
jpeg 0.221764420746 99.7782355793
pdf 4.25740299626 95.7425970037
ppt 1.3801506684 98.6198493316
txt 0.0 100.0
xls 2.1028319911 97.8971680089

Table 137: Parameter:we:32, oe:16, wf :16,of :8, wn:1

File type % classified as binary % classified as non-binary
elf-arm-32 83.0818619583 16.9181380417

doc 2.41263342594 97.5873665741
htm 3.96636368055 96.0336363194

javascript 3.80302291565 96.1969770843
jpeg 0.174503150751 99.8254968492
pdf 3.16324062878 96.8367593712
ppt 1.17161870841 98.8283812916
txt 0.0 100.0
xls 2.13795104963 97.8620489504

Table 138: Parameter:we:32, oe:16, wf :16,of :8, wn:4
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File type % classified as binary % classified as non-binary
elf-arm-32 70.8868378812 29.1131621188

doc 3.38776504996 96.61223495
htm 8.36067565925 91.6393243407

javascript 8.06339254615 91.9366074538
jpeg 0.290838584586 99.7091614154
pdf 3.88149939541 96.1185006046
ppt 2.80023432923 97.1997656708
txt 0.0 100.0
xls 2.95078002177 97.0492199782

Table 139: Parameter:we:32, oe:16, wf :16,of :8, wn:10

7.3 Discussion of the Test Tesults

In this section we discuss the result of 126 tests, shown in the tables 14 to 139, which are
shown on pages 38 to 64. We start the discussion with the parameter entropy window-size
parameter we. The size of the entropy window changes the resolution of the entropy-window.
To show the effects of the entropy-window on the classification results, we divide the 126
tests into two subsets with the settings we = 32 (including 54 tests) and we = 64 (including
72 tests). The size of the test-sets differs for reasons explained in section 4.
In section 5.2 we started our discussion with the parameter we. Let us again consider the
effects of the entropy window-size we on the results of the correct classification of elf-arm-
32 binaries. In our tests, we tested settings for we = 32 and we = 64. In our discussion
we use average classification rates, calculated over a range of the 126 executed tests. The
average values are in some test unreasonably low. Because these values are averages, they
include results with classification rates with far more than 90%, while also including much
lower detection rates. When considering statistics on the settings using we = 32, we have
an average classification rate of 74.36% and a median of 78.26% with a standard deviation
of 14.61%. When considering we = 64, we have an average classification rate of 84.85%
and a median of 89.40% with a standard deviation of 17.20%. This shows that the larger
entropy-window increase the detection rate of the smaller windows of more than 10%.
In the next step we stay with the setting we = 64 and consider the effects of the entropy-
window-overlap oe. In our tests, we tested settings for oe = {4, 8, 16, 32}. Each Oe setting
is a subset of the 72 tests with the setting we = 64. Thus each Oe test-result-set holds the
results for 18 tests. The accumulated results are shown in table 140. The mean and median
results are much closer to each other than the above we comparison. The setting oe = 4 has
the lowest standard deviation and thus seems to be the most stable. Nontheless we select
our best result based on the median, because there is a higher variance and we do not want
to base our selection on peaks within the data. Thus the setting oe = 32 is our selection for
a best match.

oe setting mean median standard deviation
oe = 4 87.28% 89.29% 8.80 %
oe = 8 82.08% 88.95% 22.20 %
oe = 16 84.82% 88.73% 17.75 %
oe = 32 85.22% 90.09% 18.31 %

Table 140: Aggregated test-results with mean, median and standard deviation of the results
with we = 64 and variations on oe.

With the selection of we = 64 and oe = 32 we have left 18 test-results. The next step
is to determine the best wf setting. Within the set of 18 test-results we have wf settings
of {4, 8, 16}. The best results are delivered by a setting of wf = 16,of = 4 and wn = 4,
which shows a elf-arm-32 detection accuracy of 94.87 %. The set of 18 tests shows that
a high setting of wn = 10 leads to worse results than smaller settings. An accumulation
of many samples seems to blur the results in a way that a binary pattern is harder to
detect. The results are blurred, because we are working with averages, which can hide small
binary-patterns within larger non-binary patterns.
The best result {we = 64, oe = 32, wf = 16, of = 4, wn = 4} leads to a high overall detection
accuracy, shown in table 81 on page 52. Until this point we did not consider the overhead
and the minimum data size, which was discussed in section 4.4. The choosen seeting leadsto
a low overhead in data processing of 58.33 %. The minimal size of malware that can be
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detected is 1536 bytes, which can be too large to detect small chunks of real world malware.
When the overhead and minimum-size are also considered, the setting {we = 64, oe =
16, wf = 8, of = 2, wn = 1} is more favourable. The overhead and minimum-size for the
test samples are shown in the tables 141 and 142.
The test-results are shown in table 53 on page 46. The detection rate of binaries is slightly
lower but the detection rate is not lower than 96 % for any non-binary file. The overhead is
38.0 % and the minimum detection size is 288 bytes and thus much more favourable.
In conclusion we found out that the entropy-window we may not be to small. Otherwise
the entropy curve shows less details and the real existing entropy is underrated. The effects
have been shown in the figures starting on on page 18, starting with figure 7 to page 24 with
figure 13. An underrated entropy can stop a correct detection. The test-data shows that an
overlap of less than 1

4 of the window size leads to a decline in detection accuracy. This is
true for both entropy- and Fourier-overlaps.

65



we oe wf of wn overhead (%) minimum data size (byte)
32 4 4 2 1 85.7142857143% 56
32 4 4 2 4 85.7142857143% 224
32 4 4 2 10 85.7142857143% 560
32 4 8 2 1 66.6666666667% 168
32 4 8 2 4 66.6666666667% 672
32 4 8 2 10 66.6666666667% 1680
32 4 8 4 1 85.7142857143% 112
32 4 8 4 4 85.7142857143% 448
32 4 8 4 10 85.7142857143% 1120
32 4 16 2 1 61.2244897959% 392
32 4 16 2 4 61.2244897959% 1568
32 4 16 2 10 61.2244897959% 3920
32 4 16 4 1 66.6666666667% 336
32 4 16 4 4 66.6666666667% 1344
32 4 16 4 10 66.6666666667% 3360
32 4 16 8 1 85.7142857143% 224
32 4 16 8 4 85.7142857143% 896
32 4 16 8 10 85.7142857143% 2240
32 8 4 2 1 100.0% 48
32 8 4 2 4 100.0% 192
32 8 4 2 10 100.0% 480
32 8 8 2 1 77.7777777778% 144
32 8 8 2 4 77.7777777778% 576
32 8 8 2 10 77.7777777778% 1440
32 8 8 4 1 100.0% 96
32 8 8 4 4 100.0% 384
32 8 8 4 10 100.0% 960
32 8 16 2 1 71.4285714286% 336
32 8 16 2 4 71.4285714286% 1344
32 8 16 2 10 71.4285714286% 3360
32 8 16 4 1 77.7777777778% 288
32 8 16 4 4 77.7777777778% 1152
32 8 16 4 10 77.7777777778% 2880
32 8 16 8 1 100.0% 192
32 8 16 8 4 100.0% 768
32 8 16 8 10 100.0% 1920
32 16 4 2 1 150.0% 32
32 16 4 2 4 150.0% 128
32 16 4 2 10 150.0% 320
32 16 8 2 1 116.666666667% 96
32 16 8 2 4 116.666666667% 384
32 16 8 2 10 116.666666667% 960
32 16 8 4 1 150.0% 64
32 16 8 4 4 150.0% 256
32 16 8 4 10 150.0% 640
32 16 16 2 1 107.142857143% 224
32 16 16 2 4 107.142857143% 896
32 16 16 2 10 107.142857143% 2240
32 16 16 4 1 116.666666667% 192
32 16 16 4 4 116.666666667% 768
32 16 16 4 10 116.666666667% 1920
32 16 16 8 1 150.0% 128
32 16 16 8 4 150.0% 512
32 16 16 8 10 150.0% 1280

Table 141: Overhead and minimal size for detection according to formulas in section 4.4 for
we = 32
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we oe wf of wn overhead (%) minimum data size (byte)
64 4 4 2 1 40.0% 120
64 4 4 2 4 40.0% 480
64 4 4 2 10 40.0% 1200
64 4 8 2 1 31.1111111111% 360
64 4 8 2 4 31.1111111111% 1440
64 4 8 2 10 31.1111111111% 3600
64 4 8 4 1 40.0% 240
64 4 8 4 4 40.0% 960
64 4 8 4 10 40.0% 2400
64 4 16 2 1 28.5714285714% 840
64 4 16 2 4 28.5714285714% 3360
64 4 16 2 10 28.5714285714% 8400
64 4 16 4 1 31.1111111111% 720
64 4 16 4 4 31.1111111111% 2880
64 4 16 4 10 31.1111111111% 7200
64 4 16 8 1 40.0% 480
64 4 16 8 4 40.0% 1920
64 4 16 8 10 40.0% 4800
64 8 4 2 1 42.8571428571% 112
64 8 4 2 4 42.8571428571% 448
64 8 4 2 10 42.8571428571% 1120
64 8 8 2 1 33.3333333333% 336
64 8 8 2 4 33.3333333333% 1344
64 8 8 2 10 33.3333333333% 3360
64 8 8 4 1 42.8571428571% 224
64 8 8 4 4 42.8571428571% 896
64 8 8 4 10 42.8571428571% 2240
64 8 16 2 1 30.612244898% 784
64 8 16 2 4 30.612244898% 3136
64 8 16 2 10 30.612244898% 7840
64 8 16 4 1 33.3333333333% 672
64 8 16 4 4 33.3333333333% 2688
64 8 16 4 10 33.3333333333% 6720
64 8 16 8 1 42.8571428571% 448
64 8 16 8 4 42.8571428571% 1792
64 8 16 8 10 42.8571428571% 4480
64 16 4 2 1 50.0% 96
64 16 4 2 4 50.0% 384
64 16 4 2 10 50.0% 960
64 16 8 2 1 38.8888888889% 288
64 16 8 2 4 38.8888888889% 1152
64 16 8 2 10 38.8888888889% 2880
64 16 8 4 1 50.0% 192
64 16 8 4 4 50.0% 768
64 16 8 4 10 50.0% 1920
64 16 16 2 1 35.7142857143% 672
64 16 16 2 4 35.7142857143% 2688
64 16 16 2 10 35.7142857143% 6720
64 16 16 4 1 38.8888888889% 576
64 16 16 4 4 38.8888888889% 2304
64 16 16 4 10 38.8888888889% 5760
64 16 16 8 1 50.0% 384
64 32 16 4 1 58.3333333333% 384
64 32 16 4 4 58.3333333333% 1536
64 32 16 4 10 58.3333333333% 3840
64 32 16 8 1 75.0% 256
64 32 16 8 4 75.0% 1024
64 32 16 8 10 75.0% 2560

Table 142: Overhead and minimal size for detection according to formulas in section 4.4 for
we = 64
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8 Conclusions and Outlook

The proposed method can detect a variety of embedded shellcode attacks. Finding embedded
malware with a high degree of certainty has become a lightweight process. A proof-of-concept
of our method has been demonstrated in 2012 at the CeBit and at the SIGCOMM [1]. The
demonstration has shown that a protection with a low system overhead is possible.
We need to consider that the method has its limitations. There are cases when malware
is detected, when there is none. For this reason, we suggest that this method is used to
scan the vast majority of incoming data, with a low system impact. In cases of uncertainty,
another method with a higher complexity can be applied. While recoding executable code,
the detection of malware can be avoided in some cases. Detection of malware can be avoided
by recoding machine code instructions in a way that the purpose of the data is completely
hidden[62]. Those sophisticated recoding methods can only be detected while the code
execution is transferred to those sections. Nevertheless some simple forms of recoding can
be detected by our method, this has been demonstrated in section 6.2.
There are several directions of improvement that have not been considered in this paper. To
get more accurate results, we considered using Wavelet transforms instead of Fourier trans-
forms. Wavelet transforms can achieve a higher frequency-time resolution. The classification
algorithm may be improved. As a classification Algorithm the C4.5 Algorithm discussed in
section 2.2 seems to perform as good as the ANN-Classifier (in terms of correct results) but
with significantly less time during the training phase of the classifier. The performance of
alternative classifiers could be tested. Future work could also use larger testsets, to include
more variance in the filetypes.
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