Guarding Android —
An Implementation Framework for

Mobile Sandboxes
Theodor Nolte

Projekt 1
»December 11, 2013«

Fakultét Technik und Informatik Faculty of Engineering and Computer Science
Department Informatik Department of Computer Science

Contents 2

Contents
1 Introduction 3
2 Problem Description and Related Work 5
2.1 Integrating Malware Detectors and Defense Mechanisms on Mobile Devices . . 5
22 RelatedWork 5
2.2.1 Malware Detection and Analysis on Mobile Devices 5
2.2.2 Malware Defense on Mobile Devices 6
3 Background Work 7
3.1 Entropy-Spectral Analysis 7
3.2 Appsicht: An App Verification and Process Authentication Architecture on Android 9
4 A Flexible Framework of a Mobile Sandbox 11
4.1 Objectives 11
4.2 Conceptof Core Components 12
4.3 Implementation L 13
4.3.1 Components of the Framework 13
4.3.2 Controller: Control Flow and Data Exchange of the SKIMS-App 15
4.4 Usecase: EntropyAnalyzer e 20
45 EvaluationofResults 24
5 Summary and Outlook 28

1 Introduction 3

1 Introduction

Mobile devices have become widely used, mostly as smartphones or tablets. In December
2012 was the first time when the majority of mobile phones sold in the European Union where
smartphones [8]. In the worldwide smartphone sales share for 2012, Googles Android dom-
inates with 68,3 %, Apples iOS 18,8 %, and others (inclusive BlackBerry OS and Windows
Phone) add to 12,9 % [9].

Because of its enormous deployment mobile devices like smartphones or tablets have be-
come more interesting for attackers. Mainly Android is in the focus of attacks, due to its biggest
market share and because of its relatively open Application market (Google Play [7]). For the
last three month of 2012, the share of newly detected malicious software (malware) families for
mobile devices was for Android at 96 % [4]. While in 2010 and 2011 most Android’s malware
was deployed in the Chinese language area [29], it seems that the malware authors now are
acting more in a world-wide scale.

Mobile devices are limited in resources in many aspects. Processors and all other hardware-
components are optimized for low power consumption. The operating system and further soft-
ware of a mobile device must account for the limited availability of resources, too.

Mobile devices largely host private data like contacts, calendar entries, location tracks, pri-
vate messages, and payment credentials. The more mobile devices are in use for online pay-
ments, the more they will come into the focus of attacks, trying to misuse these functionalities
to gain illegal profit.

Because mobile devices provide several wireless interfaces and because of their mobility,
new strategies on attacking these devices are possible. In general, malware implements func-
tionality the user does not want. This could happen in very different ways and many kinds of
malware exist. The authors of malware continuously create new exploitation mechanisms and
it is required to have the ability to align the defeating strategies to new attacks.

Oberheide and Jahanian elaborated in [11] that mechanisms of malware-defense for secur-
ing traditional computing should not just be taken to mobile environments without justification.

Because the mobile device resources are limited, the performance gap to traditional com-
puting environments will hold on. New mechanisms of malware detection and defense, but
also adoptions of traditional mechanisms are needed to provide mobile devices with effective
security mechanisms. The challenge here is to not cut down the mobile devices usability.

A framework for malware detection and defense on mobile devices must account for all the
aspects mentioned above. It should be secure, flexible, dynamically and statically modifiable,
easy to use, and it must use resources carefully —and it must be able to find malicious software,
of course.

In this report, we introduce a framework for malware detection and defense on mobile de-
vices. The framework acts in the paradigm of a sandbox in order to protect the mobile device.
Our focus is on guarding of mobile devices. This means to achieve a framework which acts
dynamically in awareness for current threats against a mobile device.

1 Introduction

The remainder of this report is structured as follows. In section 2, the problem of integrating
malware detectors will be discussed along with related work. In section 3, background work
will be presented. In section 4, a flexible framework for malware detection on mobile devices
will be introduced. Finally, this paper concludes in section 5 and gives an outlook.

2 Problem Description and Related Work 5

2 Problem Description and Related Work

2.1 Integrating Malware Detectors and Defense Mechanisms on Mobile Devices

The domain of malware defense has two big challenges. First to detect and possibly under-
stand malware, and second to defend malware from execution to hinder the evolvement of
malicious behavior.

In order to detect and understand malware, information could be achieved by analyzing po-
tentially malicious software and found malware in a dedicated environment where sufficient
calculating resources are available. Also detection mechanisms of malicious behavior in pro-
ductive environments are possible in order to hinder malware infections on such devices.

The detection of malware is not an easy task. It is highly desirable that malicious code will
be detected correctly. But it is more important that non-malware will not be recognized as
malware (low false positive rate). Even false positive rates bigger than one percent are not
acceptable for malware detection mechanisms. It would be fatal if an anti virus software moves
an operation system relevant file into quarantine.

Detection mechanisms based on malware signatures are a common method to identify mal-
ware. Such a signature could be seen as a feature vector which clearly identifies a special
malware after it has been analyzed. But only small changes in the code of the malware will
achieve that the signature does not match to the changed malware. Malware signatures can
only be created after the identification of malware and must be updated in a regular manner.
Therefore, signature based detection mechanisms are not able to detect zero day exploits.

To overcome the limitation not to be able to detect new unknown malware, signature based
malware detection mechanisms are often combined with detection mechanisms based on
heuristics which try to detect malicious code patterns. Also mechanisms will be used which an-
alyze the behavior of software executed within sandboxes. But both, the heuristic and behavior
based methods have a significant lower rate of malware recognition.

Oberheide et al. exposed [11] that this traditional malware detection mechanisms should not
be used on mobile devices without an adoption in respect to the special requirement of mobile
devices. The most important requirement here is that a malware detection mechanism must
not use much calculation resources.

To hinder malicious behavior on mobile devices, itis common to execute potentially untrusted
software within sandboxes.

2.2 Related Work
2.2.1 Malware Detection and Analysis on Mobile Devices

The analysis of malware is a special kind of analysis of software. In general two kind of analysis
of software exist: static and dynamic. Static analysis means to analyze the files of a software
while the software is not executed. For a dynamic analysis, the softwares behavior on execu-

2 Problem Description and Related Work 6

tion is observed. To limit the risk of harmful behavior in the latter case the software must be
executed in a sandbox.

Due to the limited resources of mobile devices, malware detection approaches often fall
back in processing analysis off-device. Blasing et al. [2] present Android Application Sandbox
(AASandbox) to statically and dynamically analyze android applications (Apps). Both, the static
and the dynamic analysis, will be made off-device, for example on a desktop computer with
sufficient resources for calculation. While the dynamic analysis requires more resources than
the static analysis, the static analysis also benefits from the higher calculating resources off-
line, too. Both analysis are executed fully automatically.

The BMBF research project MobWorm [5, 16] presented a forensic tool-chain for malware
analysis named Android Data Extractor Lite (ADEL). It extracts data stored in the SQLite
databases of an Android device using its Developer Interface. The extracted data will then
be parsed and prepared for an analysis report.

Work has also been done in analyzing malware on the mobile device itself. Schmidt et
al. [13] proposed an approach of static malware detection based on searches for suspicious
patterns of Linux function calls. This method is lightweight enough to operate on the mobile
device itself.

2.2.2 Malware Defense on Mobile Devices

Malware detection can be a part of an active malware defense when it is used in order to
isolate detected malware and suppress its execution. But more common on mobile devices
are passive malware defense strategies. This means to hinder potential malicious activities of
software by design and has the advantage not to use extra resources. This concept of defense
is often called sandboxing.

Egners et al. [3] summarize the sandboxing mechanisms used in Android, iOS, and Windows
Phone for installed Apps. The sandboxing mechanisms have in common that installed Apps
only have the possibility to interact with its environment via defined interfaces.

3 Background Work 7

3 Background Work

3.1 Entropy-Spectral Analysis

Schmidt et al. [15, 14] presented a lightweight method of malware detection based on entropy
spectral analysis. The method was elaborated more further in [1].

Novel in this method is the combination of an entropy based statistical analysis with a short-
term Fourier transformation (STFT). In this approach, no special signatures of malware are
required. This method is implemented in the EntropyAnalyzer. The EntropyAnalyzer will be
presented in section 4.4.

The analysis results in an evaluation of the existence of binary code for Android devices
(elf-arm-32). If the context of the data defines that the data must not be binary, but the analysis
found out that the data contains binary data, it is suspected to be malicious. For example, if
the data is a downloaded PDF file and the analysis of this file detects binary code, the code is
guessed to be malicious.

The method belongs to the data mining domain. In a process named preprocessing feature
vectors will be extracted from the raw data. This feature vectors then are the input for a neural
network which represents the actual data mining step. Here, the output of the neural network
is the classification if a feature vector belongs to the class of feature vectors of binary code or
the class of feature vectors of non-binary data.

The topology used for the neural network is a feed forward network. Before the neural
network is able to classify feature vectors it must be trained for this task. In a special training
method called backpropagation using data samples of binary code and non-binary data the
neural network will be specialized for its classification task. While this training needs high
calculating time it will be applied off-device on a desktop computer with higher calculating
resources instead on a mobile device.

The processing of the analysis can be grouped into four parts. First the data preparation,
second and third to apply entropy and STFT calculations on the prepared data (preprocessing)
to gain the feature extraction, and fourth the classification of the data based on the calculation
results (feature vectors). Each step is described in more detail below. Figure 1 depicts an
activity diagram illustrating the entropy analysis process.

Data preparation On a sliding window, the raw data will be divided which leads to a sequence
of overlapping data windows.

Entropy calculation For each of this data windows the Shannon-entropy H(.X) will be calcu-
lated byte-wise.

STFT calculation Then over the entropy values of several windows a short-term Fourier trans-
formation ST FT (m, w) will be applied.

Classification The values from the STFT calculation of several data windows will be inserted
as a feature vector into a neural network together with statistical data of the windows

3 Background Work

((1) Data preparation

raw data 3 select data window } A

I > data window

|/

-

(2) Entropy calculation

BN

ld of data window

[\ t I
data window > calculate entropy g entropy values

/

(3) STFT calculation

calculate statistics

EPZEN

feature vectors:
entropy values of several e
. . > frequency values and statistics
overlapping data windows L N N
of several overlapping data windows

_)C short-time fourier transformation)—

—

(4) Classification

feature vectors: -
. put frequency values get classification — .
frequency values and statistics . classification rating
X . into neuronal net from neuronal net
of several overlapping data windows

Figure 1: Steps of the entropy analysis: (1) Data preparation, (2) entropy calculation, (3) STFT
calculation and (4) classification

—~
)

3 Background Work 9

(arithmetic mean, median, absolute deviation from median). The result of the neural
network will be the rating whether the input belongs to the class of executable binaries.
Therefore the neural network was trained before with two classes: binary and non-binary
data.

These four parts constitute a pipeline, resulting in the result-function. If the result for a window
group rates for binary code, the contained data chunk possibly contains binary code.

In future, this method should be optimized in order to lower the false positive rate (that non-
binary data will be determined as binary code). Further, the neural network could be extended
in order to be able to classify feature vectors into several classes of data types (for example
text files, xml/html, binary data).

3.2 Appsicht: An App Verification and Process Authentication Architecture on
Android

Ugus et al. [24] presented a security architecture for the measurement of the runtime integrity
of processes and Apps on Linux-based mobile devices called Appsicht. The implementation
runs on Android. It uses a whitelist to define the Apps which are allowed to be executed on the
mobile device. For every allowed App, a hash of its code will be stored in the whitelist. The
execution of other Apps or any whitelisted App which code has been altered, will be prohibited.
For trustworthiness, the hashing mechanism, the whitelist itself, and the processes which re-
alize this security architecture are secured against any modification. In order to achieve this,
Appsicht is based on a Mobile Trusted Module (MTM) as a trust-anchor [25].

The MTM is a dedicated chip providing a software interface with security related function-
alities like the calculation of SHA-1 hashes, the creation of RSA-2048 certificates, generation
of random numbers, and secure storage of Critical Security Parameters (CSPs) for example
private keys or hashed measurements of system states. This functionalities cannot be manip-
ulated by software. Also physical manipulation of the chip or the extraction of CSPs is hindered
by hardware design. The applied MTM standard version 1.0 [21] is the mobile version of the
Trusted Platform Module (TPM) standard version 1.2 [20] that shares parts of its interface defi-
nition. [19] Both standards are defined by the Trusted Computing Group (TCG) [23] an industrial
non-profit standardization organization.

Appsicht uses the MTM functionalities for a whitelisting of dedicated versions of Apps. On
Android, an App is a single, zipped file (*.dex). On setup, a hash value will be calculated for
every allowed App by the MTM and inserted into the whitelist. Just before an App will be exe-
cuted, its hash will be computed again and the result will be validated against the corresponding
value in the whitelist. Only if they match, the App will be started.

This authorization and validation mechanism is achieved by extending the Linux based An-
droid operating system with new and modified kernel modules. Also the Zygote process, the
process which starts all Apps, is modified. All the functionalities of Appsicht must be trustwor-

3 Background Work 10

thy. It will be achieved in extending an assumed secure boot process in validating the integrity
of all components of Appsicht.

The intended use of Appsicht is to control that on enterprise smartphones only a predefined
set of Apps could be run which has been defined before by an administrator of the company.
Appsicht also can be used by the framework presented in this report in order to ensure the
integrity of its components (cf. chapter 5).

The authors of [24] mentioned that no MTM chip was available for mobile devices. On an
OMAP4430 Panda-Board [12] running with Android 2.3.3 (Kernel 2.6.35) they used a software
implementation emulating the MTM instead.

TPM 2.0. [22] the successor of the TPM 1.2 standard is a complete redesign focused on
flexibility. It is suited not only for business environments on desktop computers but also for var-
ious kinds of consumer devices. This standard seems to be more promising for success: Every
tablet which complies with the Windows 8 Hardware Certification Requirements [10] must be
equipped with a TPM 2.0 chip. Future implementations of Appsicht should be adoptable for
using TPM 2.0 instead of MTM 1.0.

4 A Flexible Framework of a Mobile Sandbox 11

4 A Flexible Framework of a Mobile Sandbox

On mobile devices, new detection and defense strategies are needed. Common methods of
malware detection used on desktop computers like virus scans based on malware signatures
consume too much of resources. A big challenge in general and also on mobile devices is to
detect unknown malware (zero day exploits).

4.1 Objectives

The goal of this work is to integrate versatile methods of malware analysis, detection, and
defense on mobile devices. The methods are developed within the SKIMS-Project [17] and
focus on novel approaches. For example, the Entropy-Spectral Analysis (cf. chapter 3.1),
requires its integration in the wider context.

Therefore, we want to create a framework which is able to integrate threat detectors with
defense components on a mobile device. The framework must be extensible with respect to
the integration of further mechanisms for analysis, detection, and defense, and has to be build
up of modules. Further, it must be adaptable to future requirement changes as it is intended
for the implementation on different mobile platforms and architectural changes of new platform
versions. Due to the restricted resources on mobile devices, the framework must use the
detection and defense mechanisms in a lightweight manner. The framework should interfere
with the user as little as possible. Also, the framework must use as little resources as possible.

In order to defend the mobile system against a current threat, the execution of malicious
software must be avoided. This means to disable or change functionalities of the mobile system
and to prevent malicious software to be executed and suspicious data to be used.

Detection and defense must interact with each other. This could be realized by mutually in-
teracting components. But a central controller which manages the events from the sensors and
analyzers and which triggers the defense mechanisms has several advantages. The fact that
the components only communicate via a controller and not directly at each other, correlates to
loose coupling. This conduces the extension with new components for detection and defense.
Also it is easier to keep track of all.

As mentioned in 2.2.1, the analysis of malicious software could be achieved statically and
dynamically. To recognize malicious behavior of executed software and in the interaction with
other systems we need appropriately placed sensors.

For example, a sensor could be a receiver listening for warning messages from other de-
vices. Or a honeypot on a mobile device listening on unused ports could act as a sensor.
When a file was caught by the honeypot, an analyzer, which is not a sensor, could then search
whether malicious data is hidden in the file. Both, sensors and the analyzers are able to detect
threats.

4 A Flexible Framework of a Mobile Sandbox 12

Controller
(Prevention)
Request
Event
(Analysis) Event
Request
—— — = -_— _— _ T~
(Actuator |:| Sensor I:I |
| Analyzer |:| |
\ Processors }
~——— —_— R P R R —_— R P _

Figure 2: Logical context of the framework

4.2 Concept of Core Components

Figure 2 shows the logical context of the framework with one controller and several processors.
The following roles exist:

Controller Based on the incoming events the controller evaluates the current threat level and
effects protective actions in sending appropriate requests to actuators.

Sensor A Sensor detects security related events and sends them to the controller. For exam-
ple, the Honeypot Droidspot in the SKIMS demo setup takes this role.

Analyzer Triggered by requests coming from the controller the analyzer starts analyses. Re-
sults of such analyses will be send as events to the controller. The EntropyAnalyzer is
an example for an analyzer.

Actuator An actuator is a defense component. It can enable and disable security related
configurations of the mobile system, for example switching the Wifi connection on or off.

A processor could be an actuator, analyzer, sensor or two or three of them at the same time.
All these components are loosely coupled since the clients will communicate only with the
controller using well defined interfaces. They do not communicate among each other.

Based on incoming events, a controller evaluates the current threat level and reacts by send-
ing appropriate messages to the mobile devices actuators.

4 A Flexible Framework of a Mobile Sandbox 13

Controller:
SKIMS-App

— - - -y - - - - N
(i Event Sensor: |
(Prevention) . . ,
(Analysis) Honeypot 'DroidSpot
| Request |
Request
| Event |
| Analyzer: |
‘EntropyAnalyzer’
| Sensor and Actuator: |
TrustModul-App
\ Processors /
~—_— — e e e e e e e e e e e e e

Figure 3: Business context diagram of the implementation framework

4.3 Implementation
4.3.1 Components of the Framework

The business context of the framework is shown in figure 3. It is implemented for mobile devices
with Android and consists of several components which are realized as Android-applications

(Apps):

SKIMS-App The SKIMS-App is the controller of the framework. It signalizes the current threat
level to the mobile devices user by a symbolic traffic light with the states green (no threat),
yellow (threat possible) and red (threat detected). Figure 4 shows several views of the
SKIMS-App. Its business logic and interaction with the other components is described in
subsection 4.3.2.

DroidSpot DroidSpot [26, 28], a honeypot App, is a sensor of the framework. Beside of faking
an email-server in spoofing SMTP, IMAP and POP3 services, and also spoofing an ssh
service, it listens for FTP connection attempts. On an Android device in production mode
no FTP service is active. So, every access via FTP can be considered as an attack. An
attacker can start an anonymous-session with a faked directory-list and is empowered
to upload a file. At the begin of the FTP-session, DroidSpot informs the SKIMS-App
about the misuse of the mobile device. Also, if a file was uploaded, DroidSpot sends an
appropriate message to the SKIMS-App. Figure 5 shows the view of Droidspot.

4 A Flexible Framework of a Mobile Sandbox 14

& 19:41

SKIMS Main Screen

SKIMS Main Screen

THREAT STATE MODULES EVENT HISTORY THREAT STATE MODULES EVENT HISTORY

D ——
SKIMS
IP: 192.168.24.235
Linkspeed: 65 Mbps

Threat State

Internet Acc

[
Ty

SKIMS-App

e ¢

Droidspot Entropy Analyz. TrustDemo ResetDemo

(a) Home screen with SKIMS-App (b) Modules of the SKIMS-App (c) Current threat state and used in-
thermometer widget in the upper left ternet connectivity
area

Figure 4: Several views of the SKIMS-App

Start Droidspot

Observed uploads
ftpstor.1383349817.NPlabXZvU2mM
0 Bytes, modified: 1 50
ftpstor.1383350047.5VS0uZvG76ha

ftpstor.1383350:
odified: 1

P
ftpstor.1383350250.Acm5BBOUc6zy

ftpstor.1383351176.bZV77X4S9fdf
516! odified: 1 01:12
ftpstor.1383351220.970jfvxGgzB6
13

5165 odified: 1

ftpstor.1383351612.FQW00QYFUAY:
516 odified: 1 20
ftpstor.1383351793.bf40qc17h0Sb
516! odified: 1
ftpstor.1383351817.89CxjgdnbYxG
516! odified: 1
ftpstor.1383352065.xjgkohmz0J6D
516 s, modified: 11/2/2013 01:27
ftpstor.1383352260.BIUt
5 odified: 1
352318 .0F4cxTFy

©

Figure 5: View of Droidspot

4 A Flexible Framework of a Mobile Sandbox 15

Row Name Java Data Type Meaning

id int Primary key

moduleid int Id of module (processor) which originated the event
(1: Droidspot, 2: EntropyAnalyzer, 3: Trust-Module)

timestamp long When the event was created

category String General category of the event

value int Threat level of the event (evaluated by processor)

infotext String Information for user presentation

data String Additional context sensitive information (optional)

Table 1: Database scheme of table threatdb of the controller (SKIMS-App)

EntropyAnalyzer The EntropyAnalyzer is an analyzer component and is presented in detail
in subsection 4.4.

Trust-Module The Trust-Module App [18] is a sensor and also an actuator. Two mobile devices
where this App is installed on, are able do determine whether they can trust each other.
Itis a transient kind of trust. If they have the same member in its contacts and if both trust
this member, than they trust each other. Now, if one mobile device registers an attack
originated from its Internet connection, it could initiate a handover to use the Internet
connectivity of the trusted neighbor. Figure 6 shows several views of the Trust-Module.

The components were developed and implemented by several groups. In meetings we de-
veloped and discussed the interface definition of the interaction of the components.

4.3.2 Controller: Control Flow and Data Exchange of the SKIMS-App

Every event sent from a processor will be received by the SKIMS-App which stores all events
in a sqlite database table named threatdb. The threatdb database scheme is shown in Table 1.
As of the id which is created by the SKIMS-App, all data of an entry comes from a received
event.

The incoming interface of the SKIMS-App utilizes the Android framework and is realized by
a ContentProvider class of the Android framework. With this class the method insert () will
be provided with the following signature:

public synchronized Uri insert (Uri uri, ContentValues values);

The parameter values of type ContentValues represents a dictionary of key-value-pairs.
A processors event here is a ContentValues object which has set the keys moduleid,
timestamp, category, value, and infotext. Optionally a value for the key data
could be set, but not every event needs additional data. The data types of the values are listed
in the second column of Table 1.

4 A Flexible Framework of a Mobile Sandbox

16

[aa] Saving screenshot...

My contact list

Alfred Smith
030109523098
+49172045346723

Benjamin Miller
+1243493455
142534564

Bobby Brown
4736259133

Browdy Smith
5892425380
bsmith@yahoo.com

Eve McQueen

eve.mcqueen@hot...

Naomy Millworth
+3348209852385
milli@myemail.com

Bob's entries

Encryption of remote entries

Wait

(a) Double encryption of local and remote contacts

]

My contact list

Alfred Smith
030109523098
+49172045346723

Benjamin Miller
+1243493455
142534564

Bobby Brown
4736259133

bsmith@yahoo.com
Eve McQueen
eve.mcqueen@hot...
n th

myemail.com

Compar

Bob's entries

94546
EEE31

n of double encrypted entries

Alfred Smith:
23 outgoing calls (total 144 min.)
19 incoming calls (total 332 min.)
56/76 messages sent/received
Trust towards contact: 86 %
Bobby Brown:
2 outgoing calls (total 4 min.)
0 incoming calls (total 0 min.)
5/3 messages sent/received
Trust towards contact: 3 %

Trust towards other phone: 81 %

aluation of trust towards the mutual contacts

(c) Trust evaluation of mutual contacts

Figure 6: Several views of the Trust-Module App

—_ -

- O ©O 0O NO O~ WDN =

4 A Flexible Framework of a Mobile Sandbox 17

ContentValues vals = new ContentValues ();
vals.put("moduleid", 1);
vals.put("timestamp", System.currentTimeMillis ());
vals.put("category", "FTP_Login_Attempt");
vals.put("value", 2);
vals.put("infotext",

"Attempted_login_to FTP_honeypot_— root;letmein");
ContentResolver cres = getContentResolver();
Uri eventdbUri =

new Uri(content://com. escrypt.skims.threatdbprovider/events);
cres.insert(eventdbUri, vals);

Listing 1: Creation of a Droidspot event

In Listing 1 the creation of an event and its forwarding in Droidspot is shown. Other events
originated by this module and by other modules will be created in the same manner. After
creation, Droidspot 'sends’ the event to the SKIMS-App by storing the event in the database
table threatdb. For this task a ContentResolver instance will be used (as a counterpart of the
ContentProvider).

Figure 7 shows the control flow of the controller (SKIMS-App). If in the controllers database
an event originated by a processor will be stored, the business logic unit of the controller will be
informed about the event (step 1 and 2 in the Figure). For example, the Droidspot App sends a
FTP-upload-event to the controller SKIMS-App. This event will be stored into the threatdb and
the controllers business logic unit will be triggered. Then, the business logic sends an order
request to the analyzer processor EntropyAnalyzer (step 3). This order request will be stored
into the threatdb, too. So the SKIMS-App can keep track of everything (step 3b). When the
analyzer processes an analysis from the request it sends events belonging to this analysis to
the controller, for example the start of the analysis or its result (step 4). This again triggers the
controllers business logic (step 2).

Table 2 lists all categories and values used in event messages by the modules (processors)
of the SKIMS demo. In a first draft, the category defines to which class the event belongs to.
The value stands for the threat level of this event. Droidspot follows this semantic and sends
events following this scheme, but while the value every time is 2 it becomes meaningless.

We have worked out, that an evaluation of the threat level should only be made by the
controller and not by the processors. Because only the controller is aware of all events from
all processors. This leads to another semantic. category stands for the general category of an
event, value represents the class of the event within that category. The EntropyAnalyzer and
the Trust-Module follow this semantic.

As the processors are stateless in the sense of the current threat level, another mechanism
for the request messages is used instead of the pair of ContentProvider and ContentResolver.

4 A Flexible Framework of a Mobile Sandbox 18

category meaning value meaning
Droidspot (moduleid: 1)
0 Unknown 2
1 FTP Login Attempt 2
2 FTP Anonymous Login 2
3 FTP Download Attempt 2
4 FTP Upload Attempt 2
5 FTP Active Bounce 2
6 Malware Upload 2
7 SMTP Mail Attempt 2
8 POP3 Login Attempt 2
9 IMAP Login Attempt 2
10 SSH Login Attempt 2
EntropyAnalyzer (moduleid: 2)
1 no malware found
2 analysis started
1 entropy analyzer event 3 malware found
4 analysis finished
5 analysis aborted
Trust-Module (moduleid: 3)
1 failed
1 connection (attempt) 2 connected, but low trust in peer
3 success
2 peer discovery 1 no peer found
3 one peer found

Table 2: Categories and data values of the events sent by the modules

action

4 A Flexible Framework of a Mobile Sandbox

19

Controller (SKIMS-App)

business logic

(2) new event in
database

(3) trigger action

(3b) save action
info

threatdb

(1) store Event (4) store Event
Processor A Processor B
(Droidspot) (EntropyAnalyzer)

Figure 7: Flow control of the controller

Also the Android framework will be utilized. Every processor which is able to receive requests
from the controller has a BroadcastReceiver. If — for example — the SKIMS-App sends an order
request to the EntropyAnalyzer, the SKIMS-App sends an (broadcast) Intent to the Broadcas-

tReceiver of the EntropyAnalyzer.

The broadcast messages to the different modules of the SKIMS demo framework does not
have a common structure yet (as the events have it). The values used in broadcast messages

sent to the EntropyAnalyzer are shown in Table 3.

Both mechanisms of the Android framework, for storing values in a sqlite database and
sending an intent message via broadcast, use inter-process communication (IPC) calls which

uri start analysis

— (not set) -

RESUME_ENTROPY_ANALYZER file:///path/to/file -

http:///url/ito/file true

Switch to EntropyAnalyzer
.. and open an analysis
.. and start an analysis

START_BACKGROUND_ANALYSIS file:/path/to/file -

Start new analysis in background

Table 3: Values of Intent messages sent by the controller SKIMS-App to control the processor Entropy-

Analyzer

4 A Flexible Framework of a Mobile Sandbox 20

Content

=] T =l

<<system>> <<system>>
SKIMS-App EntropyAnalyzer

Broadcast
-Receiver

O CO
aul aul

User

Figure 8: Technical context diagram of the EntropyAnalyzer App

are completely capsuled by the Android API [6].

4.4 Usecase: EntropyAnalyzer

The EntropyAnalyzer is a Java-application for the Android framework (App). It was constructed
by the author as a demo-application showing the entropy analysis on a smartphone.

Its general functionality is to select a file locally or via http from any server and to analyze the
file while downloading it. In real time the result of the analysis will be plotted. Also current status
messages (for example "binary code detected") will be send by an Intent to the Controller-App,
the SKIMS-App.

The analysis was already described in detail in 3.1. On a sliding window over the data stream
of the file the EntropyAnalyzer rates for binary code (elf-arm-32) or non-binary data. If at least
one chunk was recognized as binary code the raw data possibly contains binary code.

Implementation of the EntropyAnalyzer Figure 8 shows the technical context of the En-
tropyAnalyzer App. Apart from user interaction, the EntropyAnalyzer only interacts with the
SKIMS-App.

The EntropyAnalyzer supplies an asynchronous (incoming) interface which is realized by
a BroadcastReceiver class of the Android-API. This allows the SKIMS-App to start an anal-
ysis. The BroadcastReceiver receives Intent-Objects (requests) from the SKIMS-App. Such
an request contains a URI addressing the data to be analyzed. The analysis then will start in
foreground or in background. It is also possible to bring the EntropyAnalyzer into foreground
showing a running or already finished analysis which was started before as a background
analysis.

4 A Flexible Framework of a Mobile Sandbox 21

The EntropyAnalyzer informs the SKIMS-App by Events into a shared database provided
by the SKIMS-App using a ContentProvider instance. Life-cycle events inform the SKIMS-
App if an analysis had been started, finished, or aborted. Analysis-related events report if the
analyzed data was determined as binary or non-binary. In order to allocate an event to an
analysis-order originated from the SKIMS-App the each event contains the URI of the data
being analyzed.

Figure 9 shows the classdiagram of the EntropyAnalyzer App. One part of the EntropyAna-
lyzer - the App-part - is for the interaction with the user and with the SKIMS-App. Only there,
the Android-API will be used. All other functionalities are placed in the part 'Analysis’ and the
part 'Entropy-Analysis’. Both do not use the Android-framework. The goal of this separation
is to keep the core implementation platform-agnostic and make the implementation portable to
other mobile platforms.

The AnalysisController singleton-object manages the analyses, following a model-view-controller
pattern. The property class Analysis holds the meta information like an internal used analysis-
id, the current state of the analysis and the (intermediate) results. The states are: initial,
running, and done. This class is loosely coupled with the analysis process which happens in
the class EntropyAnalyzer. The analysis process runs in an own background-thread. Results
of type EntropyAnalyzerStatusMessage reach the class Analysis utilizing the Observer pattern.
So the way back from the class EntropyAnalyzer to the class Analysis is loosely coupled, too.
The GUI shows a graph of the analysis progress (cf. figure 12) and needs the intermediate re-
sults. Therefore, the ObserverService class from the GUI observes with the interface Interme-
diateResultsObserver the Analysis which uses the class AnalysisObservable. The SKIMS-App
in contrast only needs to know if the state of an analysis has changed. This will be achieved
by the class OtherAppNotifierService which observes with the interface LifeCycleObserver the
class Analysis. If a new life cycle event occurs it notifies the SKIMS-App in writing an event into
the event database using the BroadcastReceiver.

Figure 10 shows the steps of an analysis which was initiated by the SKIMS-App. The Intent
coming from the SKIMS-App contains the URI about the data which has to be analyzed. This
URI is passed to the AnalysisController which opens the data belonging to the URI as a data
stream and creates a new analysis with this data stream.

Usage of the EntropyAnalyzer The EntropyAnalyzer provides an user interface with an in-
tuitive design:

e On start there is the face plan (view of the StartActivity, Figure 11(a)). In the upper left is
a text field showing the currently selected source-URI. Because we haven't selected any
source this field is still empty.

On the right-hand side to the text view is placed an image showing the SKIMS-thermometer.
It visualizes the current threat level: A green thermometer stands for 'everything is fine’
because no threat was detected. Either by result or because nothing was analyzed (ini-
tial threat level). A yellow thermometer means that the current threat level is unknown.

4 A Flexible Framework of a Mobile Sandbox

22

Analysis
b,
Observer | - - - - - ______ R Observable
+notify () +registerObserver (observer:0Object)
A +deleteObserver (observer:Object)
1
Entropy Analysis :
1
== mmmm e m e mm === 2 =~| EntropyAnalyzer
I
|
:observable
1
- I
Analysis |
+id: Int I

+source: URI

+state: AnalysisState

done,

running,

initial

+intermediateResults: List<Result>
+ratedAsBinary: Boolean

EntropyAnalyzerStatusMessage

+probabitlity: double

+start ()
+stop ()

Wo o™

1

AnalysisController

—instance: AnalysisController

AnalysisObservable

~AnalysisController ()

+getInstance(): AnalysisController
+newAnalysis (uri:URI): Int

return:

analysis_id

+startAnalysis (id:Int)
+stopAnalysis (id:Int)
+getAnalysis(id:Int): Analysis

+getAnalysis (uri:URI): Analysis

+intermediateResultObservers

+lifeCycleObservers

+registerIntermediateResultObserver (observer:Object)
+deletelIntermediateResultObserver (observer:Object)
t+registerLifeCycleObserver (observer:0Object)

+deleteLifeCycleObserver (observer:Object)

0

AnalysisService

+analysis: List<Analysis>

observer observer

__________ PR

! 1

Y |

IntermediateResultObserver 1

1

+notifyIntermediateResult (probability:Double, 1

timestamp) 1

1

I ;
LifeCycleObserver

+notifyLifeCycle (ratedAsBinary:Boolean, state:String,

timestamp)

| z

(——-f———\

1
ObserverService |

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

oo - 2T | C] startActivity |

|

1 GUI

1 N— — = = = _</

1

1 - - - - - - r— - - -

|

oo ShEmerIee (- Receiver OtherAppNotifierService

A |
PP External Interface

e — — — e e — —

(uses the Android-Framework)

Figure 9: Classdiagram of the EntropyAnalyzer App

/

23

4 A Flexible Framework of a Mobile Sandbox

(1xe104u1
‘anfeA ‘dwelsawi
‘A10Ba1ed ‘prajnpow
B N H)sanjeAjuau0D
() @3epdn
q ()oT1oAos3TTAITI0U
> snyels "
snjels
A ||||||||||||||||||||||||
() @3epdn
snjeis
() unx
|||||||||||||||||||||||| V e
| N
() I9AIDSqOPPE
.......................... > () 3xe3s
824nos < () sTsATeuylaels ol
+—— N ——— 0 0 0 N
S BEEE e EE e e e T L TR E >
H () Z72A19SODTOAD9ITT
P I93sTbax () sTSATeuysnaIssqo
< p!
I
............................ N S
: : 92Inos ‘pl () sTSATeUYMBU
. . | () stsATeuyizels
b un
: ' (un)usmy)
JazAeuyAdosjug sisAleuy Jg|joauosisAleuy aoInIasIailoNddyIayl0 Janieoay

Figure 10: Sequence diagram showing the interactions of an analysis running in background

4 A Flexible Framework of a Mobile Sandbox 24

This state will appear if an analysis had been started but no result was received (till now).
The thermometer will switch to red if some result of the analysis was greater than 0.5.

On the center is a (currently empty) pane for a plot showing the analysis results — the
probabilities of binary data — over the byte stream. The graph will be plotted in a healthful
green if the data was recognized as non-binary. If the result is bigger than 0.5 the sliding
window was recognized to be binary code and the graph will be filled with an alarming
red.

On the bottom are two buttons. The upper and bigger one is for the selection of a
source, to start and to stop an analysis (texts ‘Select Source’, 'Start Analyzer’ and 'Stop
Analyzer’). The other resets the App.

e The first action is to select the source we want to analyze. (So we have to push the
button 'Select Source’.) Three ways of selection are possible (Figure 11(b)): First is the
ability to scan a QR Code (Quick Response Code) in which an URI was encoded. This
is the main use case (Figure 11(c)). Further it's possible to select a local file (via an
external file browser App) or to type the URI by hand.

e After the source was determined we are back to the face plan. Now we can see the
selected URI. If the URI is an http-URL it is highlighted as a link. Pushing on it would
open the link by the web-browser-App of the Android device.

e After pushing 'Start Analyzer’ the EntropyAnalyzer will download the file via http or open
the local data stream. While loading the entropy-analysis will be running in background.
New results will be plotted (the thermometer will change it’s color accordantly) and send
as status messages to the SKIMS-App (Figures 12(a), 12(b)).

4.5 Evaluation of Results

Demonstrator The SKIMS-App, the EntropyAnalyzer and the other Apps presented in this
section are prototypes with a focus to work as a demonstrator. They show as a proof-of-concept
that the framework can be implemented. More further, it was reached a good usability. Even
the calculation time intensive analysis of the EntropyAnalyzer performs well. The components
of the prototype all use the Android framework and integrate well into the Android user envi-
ronment. But the complexity of integration was kept low due to the consequent implementation
of the components as modules. The modules communicate only using interfaces based on the
Android framework and are easy to expand or to exchange.

The demonstrator was presented at the CEBIT 2012 in Hannover and at the ACM SIG-
COMM 2012 in Helsinki during a demo session [27]. Figure 13 shows a picture taken from the
demo session.

4 A Flexible Framework of a Mobile Sandbox 25

SKIMS Entropy Analyzer SKIMS Entropy Analyzer

Analyzing Source:

Threat Level

Probability

Byte [#]

Select Source

(a) Initial face plan of the Entropy- (b) View of the activity SourceSe- (c) Selection of a malware sample
Analyzer lection via QR Code

Figure 11: Several views of the EntropyAnalyzer

[aa] Screenshot wird gespeichert...
SKIMS Entropy Analyzer SKIMS Entropy Analyzer SKIMS Entropy Analyzer

Analyzing Source: Analyzing Source: Analyzing Source:

Threat Level Threat Level Threat Level

Z Z =
2 a 2
S S £l
3 2 8
o 2 2
o [a

Byte P#]

Stop Analyzer Stop Analyzer Stop Analyzer

(a) Starting an analysis (b) Running an analysis - no binary (c) Running an analysis - binary
code detected code detected

Figure 12: Progress of an analysis

4 A Flexible Framework of a Mobile Sandbox 26

Figure 13: Presentation of the SKIMS Approach at the ACM SIGCOMM 2012 in Helsinki

In the presentation the interaction of the frameworks components was shown. At first, a file
was uploaded to Droidspot using a graphical FTP client. Then, Droidspot notifies the SKIMS-
App which orders the EntropyAnalyzer for an analysis of the file. If the EntropyAnalyzer reports
the SKIMS-App that the file contains binary data, the SKIMS-App orders the Trust-Module for
initiating a handover of the Internet connectivity.

Extensibility The implemented methods of malware analysis, detection, and defense have
been developed over time. The client-modules were not available at the same time and its
interfaces have been changed during its development. It has been shown that the framework
was able to integrate all this different methods of malware detection and defense and that it is
extendible for new components. Also requirement changes could be achieved in extending the
interfaces parameters.

If a new method of malware detection arises, a module which implements this new feature
could be integrated into the framework. Using the same technology new methods of defense
could be adapted, too.

Complexity of Integration The modularity of the frameworks is shown by the fact that the
controller and clients of the framework are realized as Apps. They are loosely coupled and
interchangeable with alternative implementation as they communicate using interfaces only.
The complexity of integration of the framework at all is not significant higher as the sum of the
complexities of its modules.

Open Aspects The SKIMS-App provides a single interface for all clients to be informed on
new (status-) events. Such an event contains a dictionary (key-value pairs) with the keys mod-
uleid, timestamp, category, value, infotext, data. The moduleid identifies a client. category,

4 A Flexible Framework of a Mobile Sandbox 27

category meaning value meaning

Droidspot (moduleid: 1)

FTP Login Attempt
FTP Anonymous Login
FTP Download Attempt
FTP Upload Attempt
FTP Active Bounce
FTP Data Upload

1 FTP

SMTP SMTP Mail Attempt

POP3 POP3 Login Attempt

IMAP IMAP Login Attempt

- k| -k - O A W N =

alh N

SSH SSH Login Attempt

EntropyAnalyzer (moduleid: 2)

no malware found
analysis started
malware found
analysis finished
analysis aborted

6 entropy analyzer event

A H WON =

Trust-Module (moduleid: 3)

failed
connected, but low trust in peer
success

7 connection (attempt)

no peer found
one peer found

W =WN =

8 peer discovery

Table 4: Categories and data values of the events sent by the modules (optimized version of
Table 2)

value, infotext, and data differ between different clients in its values and in its semantic, too
(cf. Table 2). In the other way — from the controller to a client — for every client an individual
interface will be used. This means that for every new client the controller must be adjusted
to its specific in- and outgoing interfaces. In order to become a framework where new clients
easily can be added, a more generic in- and outgoing interface is desirable.

Table 4 shows an optimized version of Table 2. The category identifier is not unique within
one module anymore, but unique over all modules. The former categories of the Droidspot are
moved to values and are subdivided into (real) categories. This changes make the structure of
all events consistent and provide a step to achieve a more generic interface.

5 Summary and Outlook 28

5 Summary and Outlook

Several approaches for malware detection on android focus on the analysis off-device or in a
forensic manner. This paper introduced a framework which focus is to guard a mobile device
while it is in productive usage. A flexible framework was presented with one controller placed
in the middle and several clients around. Novel lightweight detection and defense strategies
are implemented in a prototype as a proof-of-concept.

Due to the fact that the implementation of the framework was achieved as a prove of concept
and for demonstration purposes, some of the adopted mechanisms are too simple for a use in
productive mobile environments:

e The messages of the communication between the controller (SKIMS-App) and the clients
(DroidSpot, EntropyAnalyzer, TrustModul) should be secured in using encryption.

e The Apps are developed by different developers. In order to be able to communicate
to each other we discussed and agreed to interface definitions. But until now they are
individual for each client. It is desirable to extract a common interface for all clients.

e A common interface would allow to extend the controller for an automatic registering and
unregistering of clients. Then, for a new client only a new App needs to be installed.
Challenge for this feature is to ensure that only authorized clients can be added to the
framework.

Notably for the last point the integrity of the controller is important. It could be achieved in
using Appsicht (cf. chapter 3.2) to guarantee that an unmodified controller is executed on a
mobile device.

The entropy-spectral analysis depends on the context of the analyzed data. Because of the
fact that the context of traffic data in browsers is clear, it should be promising to implement the
entropy based analysis as a browser plugin, for example in Mozilla Firefox and Google Chrome
for Android.

References 29

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

Benjamin Jochheim. On the Automatic Detection of Embedded Malicious Binary
Code using Signal Processing Techniques — Project Report. http://inet.cpt.
haw—hamburg.de/teaching/ss—-2012/master—-projects/benjamin_
jochheim_prl.pdf, October 2012.

Thomas Blésing, Aubrey-Derrick Schmidt, Leonid Batyuk, Seyit A. Camtepe, and Sahin
Albayrak. An android application sandbox system for suspicious software detection. In 5th
International Conference on Malicious and Unwanted Software (Malware 2010), Nancy,
France, 2010.

André Egners, Bjérn Marschollek, and Ulrike Meyer. Hackers in Your Pocket: A Survey of
Smartphone Security Across Platforms. In RWTH Aachen University, Technical Report,
AIB-2012-07, Aachen, DE, May 2012.

F-Secure. Mobile Threat Report Q4 2012. http://www.f-secure.com/
static/doc/labs_global/Research/Mobile%$20Threat%$20Report%
2004%202012.pdf, 7. March 2013.

Felix Freiling, Sven Schmitt, and Michael Spreitzenbarth. Forensic Analysis of Smart-
phones: The Android Data Extractor Lite (ADEL). In The 2011 ADFSL Conference on
Digital Forensics, Security and Law, ADFSL 2011, Richmond, Virginia, USA, May 2011.

Google Inc. Content Provider Basics - Android Developers. http:
//developer.android.com/guide/topics/providers/
content-provider—-basics.html, 2. December 2013.

Google Inc. Google Play. https://play.google.com/, 5. August 2013.

heise mobil. Marktforscher: Jedes zweite Handy in der EU ein Smartphone. http:
//heise.de/—-1833455, 2. April 2013.

International Data Corporation (IDC). IDC Worldwide Mobile Phone Tracker.
http://www.idc.com/getdoc. jsp?containerId=prUS23818212+#
. UWpwXKoVvBQK, 4. December 2012.

Microsoft Corporation. Hardware Certification Requirements
for Windows 8.0. http://download.microsoft.com/
download/A/D/F/ADF5BEDE-COFB-4CCO-A3E1-B38093F50BA1/
windows8-hardware-cert-requirements-system.pdf, 18. Septem-
ber 2012.

http://inet.cpt.haw-hamburg.de/teaching/ss-2012/master-projects/benjamin_jochheim_pr1.pdf
http://inet.cpt.haw-hamburg.de/teaching/ss-2012/master-projects/benjamin_jochheim_pr1.pdf
http://inet.cpt.haw-hamburg.de/teaching/ss-2012/master-projects/benjamin_jochheim_pr1.pdf
http://www.f-secure.com/static/doc/labs_global/Research/Mobile%20Threat%20Report%20Q4%202012.pdf
http://www.f-secure.com/static/doc/labs_global/Research/Mobile%20Threat%20Report%20Q4%202012.pdf
http://www.f-secure.com/static/doc/labs_global/Research/Mobile%20Threat%20Report%20Q4%202012.pdf
http://developer.android.com/guide/topics/providers/content-provider-basics.html
http://developer.android.com/guide/topics/providers/content-provider-basics.html
http://developer.android.com/guide/topics/providers/content-provider-basics.html
https://play.google.com/
http://heise.de/-1833455
http://heise.de/-1833455
http://www.idc.com/getdoc.jsp?containerId=prUS23818212#.UWpwXKovBQK
http://www.idc.com/getdoc.jsp?containerId=prUS23818212#.UWpwXKovBQK
http://download.microsoft.com/download/A/D/F/ADF5BEDE-C0FB-4CC0-A3E1-B38093F50BA1/windows8-hardware-cert-requirements-system.pdf
http://download.microsoft.com/download/A/D/F/ADF5BEDE-C0FB-4CC0-A3E1-B38093F50BA1/windows8-hardware-cert-requirements-system.pdf
http://download.microsoft.com/download/A/D/F/ADF5BEDE-C0FB-4CC0-A3E1-B38093F50BA1/windows8-hardware-cert-requirements-system.pdf

References 30

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Jon Oberheide and Farnam Jahanian. When mobile is harder than fixed (and vice versa):
demystifying security challenges in mobile environments. In Proceedings of the Eleventh
Workshop on Mobile Computing Systems & Applications, HotMobile '10, pages 43—48,
New York, NY, USA, 2010. ACM.

pandaboard.org. Open OMAP 4 processor-based mobile software development platform.
http://pandaboard.org/, 5. August 2013.

Aubrey-Derrick Schmidt, Rainer Bye, Hans-Gunther Schmidt, Jan Clausen, Osman Kiraz,
Kamer YUksel, Seyit Camtepe, and Albayrak Sahin. Static analysis of executables for
collaborative malware detection on android. In ICC 2009 Communication and Information
Systems Security Symposium, Dresden, Germany, Germany, 6 2009.

Thomas C. Schmidt, Matthias Wahlisch, and Michael Gréning. Context-adaptive Entropy
Analysis as a Lightweight Detector of Zero-day Shellcode Intrusion for Mobiles. In Poster
at the ACM WiSec, New York, June 2011. ACM. Poster.

Thomas C. Schmidt, Matthias Wé&hlisch, Benjamin Jochheim, and Michael Gréning.
WiSec 2011 Poster: Context-adaptive Entropy Analysis as a Lightweight Detector of Zero-
day Shellcode Intrusion for Mobiles. ACM SIGMOBILE Mobile Computing and Communi-
cations Review (MC2R), 15(3):47—48, July 2011.

Michael Spreitzenbarth, Sven Schmitt, and Felix Freiling. Forensic Acquisition of Lo-
cation Data on Android Smartphones. In Advances in Digital Forensics VI, Springer
Science+Business Media, New York, USA, 2012. Bert Peterson and Sujeet Shenoi.

Thomas C. Schmidt. Project-Homepage: SKIMS - A Cooperative Autonomous Immune
System for Mobile Devices. http://www.realmvé6.org/skims.html, 18. Au-
gust 2013.

Sebastian Trapp, Matthias Wéhlisch, and Jochen Schiller. Short Paper: Can Your Phone
Trust Your Friend Selection? In Proc. of the 1st ACM CCS Workshop on Security and
Privacy in Mobile Devices (SPSM), pages 69—74, New York, 2011. ACM.

Trusted Computing Group. TCG Mobile Trusted Module Specification.
http://www.trustedcomputinggroup.org/files/static_page_
files/3D843B67-1A4B-B294-D0OB5B407C36F4B1D/Revision_7.02—_
29Rpril2010-tcg-mobile-trusted-module—-1.0.pdf, 29. April 2010.

Trusted Computing Group. TPM Main Part 1 Design Principles - Specification Ver-
sion 1.2. http://www.trustedcomputinggroup.org/resources/tpm_
main_specification, 1. March 2011.

Trusted Computing Group. Developers - Mobile. http://www.
trustedcomputinggroup.org/developers/mobile, 4. August 2013.

http://pandaboard.org/
http://www.realmv6.org/skims.html
http://www.trustedcomputinggroup.org/files/static_page_files/3D843B67-1A4B-B294-D0B5B407C36F4B1D/Revision_7.02-_29April2010-tcg-mobile-trusted-module-1.0.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/3D843B67-1A4B-B294-D0B5B407C36F4B1D/Revision_7.02-_29April2010-tcg-mobile-trusted-module-1.0.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/3D843B67-1A4B-B294-D0B5B407C36F4B1D/Revision_7.02-_29April2010-tcg-mobile-trusted-module-1.0.pdf
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/developers/mobile
http://www.trustedcomputinggroup.org/developers/mobile

References 31

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Trusted Computing Group. TCG Trusted Platform Module Library Part 1: Architec-
ture. http://www.trustedcomputinggroup.org/files/static_page_
files/T7F7F6AFE-1A4B-B294-DOEE43535A6176B2/TPM%20Rev%$202.0%
20Part%201%20-%20Architecture%$2000.96%20130315.pdf, 15. March
2013.

Trusted Computing Group. Trusted Computing Group - Home. http://www.
trustedcomputinggroup.orqg/, 4. August 2013.

Osman Ugus, Martin Landsmann, Dennis Gessner, and Dirk Westhoff. A Smartphone
Security Architecture for App Verification and Process Authentication. In 21st Interna-
tional Conference on Computer Communications and Networks (ICCCN’12), pages 1-9,
Munich, Germany, August 2012. IEEE.

Osman Ugus, Dirk Westhoff, and Hariharan Rajasekaran. A leaky bucket called smart-
phone. In 4th Workshop on Security and Social Networks (SESOC’12), pages 374-380,
Lugano, Switzerland, March 2012. IEEE.

Matthias Wahlisch, Sebastian Trapp, Christian Keil, Jochen Schénfelder, Thomas C.
Schmidt, and Jochen Schiller. First Insights from a Mobile Honeypot. In Proc. of ACM
SIGCOMM, Poster Session, pages 305-306, New York, August 2012. ACM.

Matthias Wahlisch, Sebastian Trapp, Jochen Schiller, Benjamin Jochheim, Theodor Nolte,
Thomas C. Schmidt, Osman Ugus, Dirk Westhoff, Martin Kutscher, Matthias Kuster, Chris-
tian Keil, and Jochen Schénfelder. Vitamin C for your Smartphone: The SKIMS Approach
for Cooperative and Lightweight Security at Mobiles. In Proc. of ACM SIGCOMM, Demo
Session, pages 271-272, New York, August 2012. ACM.

Matthias Wabhlisch, André Vorbach, Christian Keil, Jochen Schénfelder, Thomas C.
Schmidt, and Jochen H. Schiller. Design, implementation, and operation of a mobile
honeypot. Technical Report arXiv:1205.4778, Open Archive: arXiv.org, 2013.

Yajin Zhou and Xuxian Jiang. Dissecting Android Malware: Characterization and Evolu-
tion. In Proceedings of the 2012 IEEE Symposium on Security and Privacy, SP 12, pages
95-109, Washington, DC, USA, 2012. IEEE Computer Society.

http://www.trustedcomputinggroup.org/files/static_page_files/7F7F6AFE-1A4B-B294-D0EE43535A6176B2/TPM%20Rev%202.0%20Part%201%20-%20Architecture%2000.96%20130315.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/7F7F6AFE-1A4B-B294-D0EE43535A6176B2/TPM%20Rev%202.0%20Part%201%20-%20Architecture%2000.96%20130315.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/7F7F6AFE-1A4B-B294-D0EE43535A6176B2/TPM%20Rev%202.0%20Part%201%20-%20Architecture%2000.96%20130315.pdf
http://www.trustedcomputinggroup.org/
http://www.trustedcomputinggroup.org/

	Introduction
	Problem Description and Related Work
	Integrating Malware Detectors and Defense Mechanisms on Mobile Devices
	Related Work
	Malware Detection and Analysis on Mobile Devices
	Malware Defense on Mobile Devices

	Background Work
	Entropy-Spectral Analysis
	Appsicht: An App Verification and Process Authentication Architecture on Android

	A Flexible Framework of a Mobile Sandbox
	Objectives
	Concept of Core Components
	Implementation
	Components of the Framework
	Controller: Control Flow and Data Exchange of the SKIMS-App

	Usecase: EntropyAnalyzer
	Evaluation of Results

	Summary and Outlook

