
2nd Year Internship Report
RIOT Operating System & the Internet of things

By

MAXIME BLANLOEIL

FROM 23/06/2014 TO 15/08/2014 - - - 8 WEEKS

Host Establishment Address :
HAW Hamburg University of Applied Sciences, Berliner Tor 5, 20099 Hamburg, Germany

DEDICATION AND ACKNOWLEDGEMENTS

I take this opportunity to express my profound gratitude and deep regards to my guide Prof.
Dr. Thomas Schmidt for his understanding, his time and for having given me the chance
to carry out my internship at HAW Hamburg.

I also take this opportunity to express a deep sense of gratitude to HAW Hamburg for having
welcomed me within its establishment during these two months.

I am obliged to working group members Martin L. and Peter K. , for the valuable information
provided by them in their respective fields and their help along this internship. I am grateful for
their cooperation during the period of my assignment.

1

TABLE OF CONTENTS

Page

1 Introduction 1

2 Presentation of the host establishment 3
2.1 Hamburg University of Applied Sciences - HAW Hamburg 3

2.2 The iNET Group . 4

3 Presentation of the internship 5
3.1 Research and obtaining of the internship . 5

3.1.1 Research of the internship . 5

3.1.2 Choice of the internship . 5

3.2 Context of the project . 6

3.2.1 What is Internet of things (IoT) ? . 6

3.2.2 Presentation of the project . 6

3.3 Objectives . 7

3.3.1 Different approaches . 7

3.3.2 Current status of the project . 7

3.3.3 The chosen solution . 7

3.4 Description of my work . 8

3.4.1 Organization . 8

3.4.2 Implementation . 9

3.5 Results & Analysis . 12

3.5.1 Evaluation of my results . 12

3.5.2 Validation for the projects . 13

3.5.3 Outlook . 13

4 Reflection on the internship 15
4.1 Main issues . 15

4.1.1 Description of the main issues . 15

4.1.2 Solution . 16

4.2 Balance sheet on my personal goals . 16

3

TABLE OF CONTENTS

5 Conclusion 19

A A brief introduction to the Serial Peripheral Interface 21

References 25

4

C
H

A
P

T
E

R

1
INTRODUCTION

This report is a description of my two months internship carried out as compulsory com-

ponent of my engineering studies. The internship was carried out within the University of

Applied Sciences of Hamburg, Germany, between June and August 2014. This internship

aims us to discover the business/research world, its values and its functioning. It is also the

opportunity to develop my own skills and to perform in a real context the knowledge I learnt in

my university. At the beginning of the internship I formulated several learning goals, which I

wanted to achieve:

• to see what is like to work in a research project environment;

• to see if this kind of work is a possibility for my future career;

• to use my gained skills and knowledge, and see wich ones I still need to work for a

professional environment;

• to get experience in working in another country/with persons from another culture;

• to enhance my communication skills.

This internship report contains the activities that have contributed to achieve a number of

my stated goals. In the following chapter a description of the University of Applied Sciences of

Hamburg and the working group in which I worked are given. Then I will describe what exactly

I worked on during this internship. After this a reflection on my functioning and the learning

goals achieved during the internship are described. Finally I give a conclusion on the internship

experience according to my learning goals.

1

C
H

A
P

T
E

R

2
PRESENTATION OF THE HOST ESTABLISHMENT

2.1 Hamburg University of Applied Sciences - HAW Hamburg

Hamburg University of Applied Sciences was founded in 1970 and is the second largest

university in Hamburg with over 16,000 students. Since 2007, the university has a new

structure with four faculties at four different campus locations in Hamburg:

• Engineering and Computer Science

• Life Sciences

• Design, Media and Information

• Business and Social Sciences

These four faculties offer a wide range of undergraduate and postgraduate degree programmes

leading to the academic qualifications "Bachelor" and "Master". The particularity of the University

of Applied Sciences of Hamburg is its orientation on projects. While common universities are

mainly based on theoretical lectures, HAW Hamburg favours smalls groups and interdisciplinary

projects. It is in this context that I took part in one of the university projects.

3

CHAPTER 2. PRESENTATION OF THE HOST ESTABLISHMENT

2.2 The iNET Group

The Internet Technologies Group (iNET) is a working group headed by Pr. Dr. Thomas C.

Schmidt in the Department of Computer Science at the Faculty of Engineering and Com-

puter Science of HAW Hamburg. This working group performs research and development

on technologies and applications for a next generation Internet and mainly on mobility, multi-

media and knowledge-based systems. The iNET group currently concentrates on the following

activities:

• Mobility & Multicast in IPv6, Internet Measurement & Analysis

• Contributions to Designing a Future Multiservice Internet

• Mobile Videoconferencing and Networked Multimedia

• Peer-to-Peer Networking, Overlay & Hybrid Content Distribution

• Peer-centric Hypermedia, Educational Content Management, Semantic Web

4

C
H

A
P

T
E

R

3
PRESENTATION OF THE INTERNSHIP

3.1 Research and obtaining of the internship

3.1.1 Research of the internship

I had some constraints for the research of my internship. The first one was the time because as I

go to Canada for my next semester I could not extend my internship until mid-september like

some of my classmates; and the second constraint was imposed by my-self because I wanted to

carry out my internship abroad. After sending some unsolicited applications without success, I

joined the Alumni network of Grenoble INP to get some support from its members who are now

abroad. Finally I was about to look for an internship in France but after all I looked for some

Universities in Germany and in Spain that were interesting for me for their research groups. For

this purpose I contacted Pr.Dr Thomas C. Schmidt who is the head of the iNET working group of

the University of Applied Sciences of Hamburg.

3.1.2 Choice of the internship

After having exchanged several mails with Pr.Dr Thomas C. Schmidt to get some information

about the projects of the iNET working group I finally chose to do my internship at the University

of Applied Sciences of Hamburg for three reasons:

• The place : It was the opportunity to work in Germany with another culture;

• A working group : Even if I wanted at first to work in a company, it was the opportunity

to discover the environment of a working group;

5

CHAPTER 3. PRESENTATION OF THE INTERNSHIP

• The Explo’RA scholarship : As I was not paid, it was a necessity to have this scholarship.

I probably could have not chosen this internship without the possibility to have this

scholarship.

3.2 Context of the project

The project in which my internship takes part is focused around the development of an OS for

embedded systems called RIOT [9]; this project is also around the notion of Internet of things.

3.2.1 What is Internet of things (IoT) ?

The Internet of Things (IoT) is a scenario in which objects, sensors or actuators are provided

with unique identifiers and the ability to transfer data over a network without requiring human-

to-human or human-to-computer interaction. IoT has evolved from the convergence of wireless

technologies, micro-electromechanical systems (MEMS) and the Internet. IPv6 ’s huge increase

in address space is an important factor in the development of the Internet of Things.

A thing in the Internet of Things can be a person with a heart monitor implant, a farm animal

with a biochip transponder, an automobile that has built-in sensors to alert the driver when tire

pressure is low – or any other natural or man-made object that can be assigned an IP address

and provided with the ability to transfer data over a network. So far, the Internet of Things

has been most closely associated with machine-to-machine (M2M) communication and internet

connectivity.

3.2.2 Presentation of the project

I worked with members of iNET working group on the development of an open-source OS designed

for embedded systems, called RIOT [9], which is a platform for the particular requirements of

the Internet of Things (IoT) scenarios. These requirements comprise a low memory footprint,

high energy efficiency, real-time capabilities, and support for a wide range of low-power devices.

Besides RIOT has three good reasons to be adopted as the new OS for the IoT:

• Developer Friendly: You do not work in a complex or new environment. Thus you can

program in C or C++, tools such as gcc, gdb or valgrind are available, you can work both

on 16-bit platforms (e.g. MSP430) and on 32-bit platforms (e.g. ARM) and you can develop

under Linux or MacOS.

6

3.3. OBJECTIVES

• Resource Friendly: RIOT is built on a microkernel and provides a real-time capability

due to ultra-low interrupt latency(5̃0 clock cycles) and priority-based scheduling and multi-

threading with ultra-low threading overhead(<25 bytes per thread)

• IoT Friendly: You can make your applications ready for the smaller things in the Internet

with common system support like 6LoWPAN, IPv6, RPL, TCP, and UDP, a satic and

dynamic memory allocation or tools and utilities (system shell, SHA-256, Bloom filters, ...)

To finish this brief presentation, RIOT is not only developped in Hamburg but is a collaborative

project with the Free University of Berlin, Germany and the INRIA Lab of Saclay, France.

3.3 Objectives

3.3.1 Different approaches

I have been proposed two kinds of activities to contribute to the development of the RIOT project:

• to work on cryptographic library with RIOT

• to work on hardware such as implementing drivers to use RIOT

3.3.2 Current status of the project

For the first activity, it has to be known that it exists some cryptographic libraries in RIOT but it

was required to have a library that can use ellyptic curves and big numbers in a first step and

then to import some others cryptographic utilities.

For the second activity, a lot of tasks have to be done such as implementing SPI libraries for

all the boards that have SPI pins on which RIOT runs. SPI and its functionning is described in

appendices.

It is also not possible to debug a RIOT project with Eclipse, for now you can just use gdb in a

terminal so to make it easy for developers it would be interesting to run and debug projects via

Eclipse.

3.3.3 The chosen solution

In order to make my choice I worked one week on each of these activities during the first two

weeks. Finally I decided to work on the hardware part. Then I have been given several tasks:

• to permit the use of Eclipse to run/debug RIOT projects

• to implement SPI library for RIOT on the Arduino Due board

7

CHAPTER 3. PRESENTATION OF THE INTERNSHIP

The main reasons for which I made this choice are that people with whom I work are more

specialized in the hardware field so they can help me easily; then I feel less capable to work on

cryptographic libraries as I am not an expert in cryptography, it is not really interesting to work

on something without understanding the theory that is behind in my opinion; Finally I naturally

felt more interested to work on hardware because I have knowledge in electronics and I like this

melting between the physics approach of electronics and the programming approach of computer

sciences that are gathered in hardware field.

3.4 Description of my work

3.4.1 Organization

As already described in the previous part, during the first two weeks I worked firstly on importing

a cryptographic library into RIOT and secondly I worked on the hardware field to see in which

part I wanted to work further.

For the first part, I had to configure RIOT with Relic [6], which is a library that implements

ellyptic curves and big numbers. This library and its functions had to be usable from a RIOT

project. The main constraint was to reduce the size of this library, because some devices only

have 5kB memory !

For the second part, I had to permit the debugging of RIOT projects with Eclipse. The main goal

was to permit this on remote boards like the stm32f4discovery [4] which is a ST-Microelectronics

board that is very used for RIOT.

Then I worked on the hardware side and the main task I had to do was to write SPI drivers in

RIOT for the Arduino Due board [2]. Firstly I set a SPI communication between two Arduino

boards (Arduino Duemilanove [3]) thanks to the IDE provided by Arduino. Secondly I configured

one Arduino board to communicate via SPI with a stm32f4discovery board that uses SPI on

RIOT. The SPI drivers of this board were written by one of the people with whom I worked. This

communication was aimed to test if his implementation was right and permited him to fix some

bugs he did not know how to fix.

After these first steps to get familiar with SPI, I started to implement the SPI drivers for the

Arduino Due board in RIOT like my collegue did for the stm32f4discovery one. My organization

for this task can be split into three steps: reading the documentation provided by the CPU

constructor of this board, implementation of my code in the RIOT repository and of a test for this

code and finally checking signals and values during the SPI communication with an oscilloscope

and prints in a console.

8

3.4. DESCRIPTION OF MY WORK

3.4.2 Implementation

3.4.2.1 Get initiated during the first two weeks

a. Importation of Relic into RIOT
To configure RIOT with Relic, build instructions are provided on Relic website for platforms

supported by CMake or other platforms such as MSP430 or Arduino; but a lot of boards on

which RIOT runs do not have any build instructions to install Relic. Then inspiring by the build

instructions provided for these boards and the build options that are also available from Relic

website, I configured this library to work with RIOT on the native board (basically RIOT is

emulated in a process of Linux) and the stm32f4discovery board.

Then I had to write a "howto" tutorial[5] on the wikipage of RIOT GitHub, which is the place

where developers share there issues, solutions and tutorials.

b. Configuring Eclipse to debug RIOT projects
Firstly I followed a tutorial available on the wikipage of RIOT GitHub to run and debug a project

on a stm32f4discovery board using a terminal. Then with one of my collegue, we configured

Eclipse to run RIOT on several boards, I did it for the native and for the stm32f4discovery. Then

I had to create some tools on Eclipse for the debugging to use easily some commands that were

executed manually in a console before. I faced some problems such as commands that required

sudo permissions to be executed in the shell console and I did not want to create scripts to execute

these commands. My goal was to make this configuration the easiest as possible so it can be set

by someone who is not familiar with scripts and console. A lot of developers work with Eclipse on

Windows so they are not familiar with those tools for example. Finally it is now very simple to use

Eclipse for RIOT, one of my collegue works with it everyday now. This tutorial is also available on

the wikipage of RIOT GitHub [8].

3.4.2.2 Set SPI communication between Arduino board & one board with RIOT

As the SPI drivers on RIOT are still experimental, to introduce myself with SPI and Arduino

boards, I started to set a SPI communication between two Arduino boards. Some tutorials are

availables on the Internet to understand how you can use the Arduino board as a master and as

a slave.

After this first try, I got the project on which the stm32f4discovery board uses SPI from one of

my collegue who implemented the SPI drivers on it. Firstly I configured my communication to

have the stm32f4discovery board as a master and the Arduino Duemilanove board as a slave.

I needed to configure them on the same way: the same clock polarity, the same clock phase.

Then I also needed to run the master board at the slowest speed as possible, this is possible

by changing the clock divider value. After this I tested my transmisson with an example that I

already did with the two Arduino boards. This example consists in sending 8 bytes consecutively

with differents values from master to slave. I faced several problems to receive the right value on

9

CHAPTER 3. PRESENTATION OF THE INTERNSHIP

the slave because I did not know if my problem was due to a wrong pin, a wrong type of variable

in my program or another reason. Then I wanted to reply to the master board and I faced again

several problems that are still not really solved. I found a solution that delays the next interrupt

and this permits to answer to the master but it is not very efficient. It should be more generic.

Finally I was able to have a transmission between my two boards, with the stm32f4discovery as

a master and the Arduino Duemilanove as a slave. The reply could be however enhanced to be

more generic.

Secondly I configured my SPI transmission in the opposite way: the Arduino Duemilanove as a

master and the stm32f4discovery as a slave. It was a good test to check if the stm32discovery with

RIOT could receive data from another board than a RIOT board which is specifically designed

to work with it. As in the previous part, I started to send data from master to slave, without

replying. For doing this, I computed a program that is very similar to some commands used as

a master board in RIOT because I wanted to avoid problems caused by a program mistake, so

my program just sent 8 bytes to the stm32f4discovery board. I had some electrical problems at

this point because of some pins that are unsteady. Then I managed to reply by editing the RIOT

drivers that were basically unable to answer anything more than a constant. I had again some

electrical issues, it seems like I lost some bits. The most probable reason is that the Arduino clock

was too fast for the STM one, and the STM board was not enable to catch each bit.

To conclude this SPI communication, I managed to communicate between an Arduino Duemi-

lanove board and a stm32f4discovery board that runs on RIOT. This communication can be

established as a master or as a slave for both boards. Yet I faced some issues, I was obliged to add

some delays to reply when the Arduino board was slave and I also had some data loss probably

caused by electrical instability.

3.4.2.3 Implementation of SPI drivers for RIOT on the Arduino Due board

To work with the Arduino Due board, I needed to get some documentation about this board.

This documentation is provided by Atmel which is the CPU constructor for this board [1]. As

the documentation is about 1500 pages, I focused on the SPI part to begin. This part provides

a description of the SPI circuit, the embedded characteristics, the block diagrams, the product

dependencies, the functionnal description and the description of each register involved in the SPI

circuit.

For each board and each cpu compatible with RIOT, a directory exists in the RIOT repository.

Thus there is a directory for the Arduino-due board and there is a directory for the Arduino-due

CPU which is SAM3X8E. All the information provided by Atmel for the CPU are available in the

SAM3X8E directory. My first step was to gather the constants and the values of the CPU that

were about SPI in a header file in the Arduino-due board directory named "periph_conf.h". This

values are given to this header file through a serie of define. Three different types of value were

necessary to implement, according to the "Product dependencies" part of the SPI documentation

10

3.4. DESCRIPTION OF MY WORK

that describes three different interfaces to configure:

• Parallel Input/Output Controller (PIO)

• Power Management

• Interrupt

Some pins on the board need to be configured to work as SPI pins. The controllers that manage

pins on a board are the PIO controllers, so I needed to configure the right PIO controller to assign

the SPI pins to their peripheral function. The SPI needs to be clocked through the PMC, thus I

had to configure the PMC to enable the SPI clock. And the SPI interface has also an interrupt

line connected to the Interrupt Controller, so I needed to program the interrupt controller before

configuring the SPI.

Firstly I looked into the files related to these controllers to find the value that were concerning

the SPI. Then I could complete the define and the macros in the header file "periph_conf.h".

Secondly I had to implement functions that enable the SPI communication in a file named "spi.c"

in the SAM3X8E directory. The prototypes are already provided in a file named "spi.h", they

are the same for each CPU. These functions are for example "spi_poweron", "init_spi_master",

"init_spi_slave" or "transfer_byte".

• spi_poweron: this function gathers the macros that are written in the "periph_conf.h" file,

it enables the SPI clock and the PIO clock.

• init_spi_master: this function writes in several registers that can be split in two parts:

the PIO registers and the SPI registers. This consists in setting or clearing bits in these

registers to enable or disable some functionalities. For example, for the PIO registers, to

enable pins to work as SPI pins and not classical I/O pins, I needed to set some bits. Each bit

in the 32-bit register matches with a pin on the board, then thanks to the values I defined

in the "periph_conf.h", I could set the bits corresponding to the SPI pins with bit operations

like OR, AND, NOR or NAND. For the SPI registers, with the same bit operations, I

initialized the polarity, the phase, the speed, the number of bits for a transmission or the

delay between two consecutive transmissions.

• init_spi_slave: It is not necessary to repeat everything, because a lot are the same than for

the init_spi_master function. The difference are that you do not initialize speed, polarity

and so on for the slave as the master imposes its settings during a communication; and for

the slave you have to enable interrupts and its priority level, because the slave is waiting

for interrupts for the reading and writting operations.

• transfer_byte: For this function, three registers are involved: the SPI status register, the

SPI transmit data register and the SPI receive data register. The master executes this

11

CHAPTER 3. PRESENTATION OF THE INTERNSHIP

function to exchange data with the slave, so before transmitting data it must check in

the status register if the bit "TDRE: Transmit Data Register Empty" is set, this avoids

to overwrite a current transmission. Then the master can write in the Transmit Data

Register, the data to be transmitted is stored in this register. This is then automatically and

immediately transferred on the SPI Bus. Then before reading the received data, in the same

way, the master must check in the satus register if the bit "RDRF: Receive Data Register

Full" is set. When this bit is set, the content of the Receive Data Register is returned by the

function.

Thirdly I had to write a test to show the other people how to use the functions of my "spi.c" file.

This test is actually a RIOT project where you have a "main.c" file and a Makefile. When you

execute your project on the Arduino-Due, a shell is provided where you have several commands

available. Thus I implemented some commands that use the SPI functions. Basically I have three

functions: init_master, init_slave and send_data. To execute this test project you need two boards:

you run RIOT on the two boards via two consoles in Linux, then you initialize one as a master

and the other one as a slave. After this, you can use the send_data command from the master.

In this function I sent several bytes, and I printed the transmitted data and the received data

so I could check what the master exactly sent and what it exactly received. For each interrupts

detected by the slave, I also printed the received data to compare with what was sent by the

master.

3.5 Results & Analysis

3.5.1 Evaluation of my results

3.5.1.1 Technical evaluation

Excepted for configuring a software like Eclipse, my main tasks are focused on programming in a

RIOT project. For this reason, I work in a very robust environment, indeed the RIOT Makefile

organization does not pass over any errors. Whether this is a new file I code or the integration of

a library like Relic, where the work is about configuring with different compiler options, when

you compile your project, you already see your errors and warnings. This is very helpful because

then, when your project is build, you can be barely sure that it works.

Some other tasks can also be tested quite efficiently like SPI communication between two boards

for example. Indeed it is quite easy to check if the communication works or not by printing the

sent and the received value on each board. Then you just need to verify if these values are the

same. Nevertheless you must be careful because as these SPI communication are very fast, you

need to store each bit sent before printing all of them. The print functions are sometimes too

expansive in time to be executed between two SPI interrupts. And as printing the sent and the

received values are not enough to be sure everything works, it can also be interesting to check

12

3.5. RESULTS & ANALYSIS

the registers value.

Therefore a task like configuring Eclipse to debug and run projects cannot be evaluated only by a

compiler because Eclipse is sometimes unsteady depending on your version (e.g. Eclipse has a

lot of different versions), your operating system, your compiler or your version of RIOT (a lot of

branches are available). That is why, it is hard to be sure if it works for everyone and that is why

I had to evaluate my work by other people.

3.5.1.2 Human evaluation

As I work with people who have been in this project for a long time, I can always ask them their

opinion on my results because they often had the same problems or wrong results I get. That

is very helpful to move forward when I do not understand my results. Then when my task is

finished, I need to write a tutorial to explain how I did it because some other people could be

interested to do the same. This step requires me to think over what I exactly did and to make it

clear. When my tutorial is written, I follow it from the begining as if I did not know anything to

check if nothing has been forgotten and finally I ask one of my collegue to do it again on his side

to be sure everything works for another people.

3.5.2 Validation for the projects

My results are considered as validated when they matches with what we expected and when they

are the same for my collegues. This is the first step. After that, I push my work on my branch in

my own repository on GitHub. Then If I want my work to be integrated into the master branch of

the RIOT repository, I need to create a Pull Request. This Pull Request is visible for everyone

who is working on RIOT, so people who are concerned by my work comment on this Pull Request

if I made some mistakes. These mistakes can be really important for the stability of RIOT or they

can just be about coding style. When everything is validated we push my work on the master

branch . Thus it is really important my work is previously validated.

3.5.3 Outlook

As I subscribed the developers mailing list, I can see if any reactions appear concerning what I

did. Indeed some people sometimes reacted and had issues when they did what I wrote in my

tutorials. Even if it was checked by my collegues and myself, it was not working for others so

after discussing with them I enhanced, cleared or changed my tutorials to make them the most

accurate as possible. This mailing list is effectively very interesting to share our reactions on

other people work. You can ask help for everything and it keeps the community around RIOT

very active.

13

C
H

A
P

T
E

R

4
REFLECTION ON THE INTERNSHIP

4.1 Main issues

4.1.1 Description of the main issues

During the different tasks I achieved, I faced several issues:

• Importation of Relic into RIOT: This task was mainly about configuring Makefiles and

CMake files to make Relic and RIOT compatibles. That is why serious knowledge for

configuring such files was necessary. It is obvious that I had a lack of knowledge for this

but it has been a real good way to learn how to handle flags and linkers.

• Configuring Eclipse to debug RIOT projects: As I wanted to make this the easiest as possible

for people who are not used to work with a console and scripts I faced some difficulties.

Indeed Eclipse tools do not permit to execute consecutive commands and I required sudo

permissions for several commands.

• SPI communication between a board with RIOT & an Arduino board with the Arduino IDE:

Some transmissions were unsteady and may be due to CPU speed between the two boards,

some interrupts occured before the last one had enough time to finish its routine.

• Implementation of SPI drivers for RIOT: The main difficulty was that writting such drivers

was unknown for me. I was not sure how to check my work step by step. Because the

SPI transmissions are really fast, the use of a debugger like GDB is not possible because

I should have launched two debuggers for the two boards and it is a nonsense to stop

interrupts during the SPI transmissions. Thus my main preoccupation when my test did

not work was knowing where the error comes from.

15

CHAPTER 4. REFLECTION ON THE INTERNSHIP

4.1.2 Solution

This part provides the solution I chose to solve the issues that have been mentionned in the

previous part:

• Importation of Relic into RIOT: With one of my collegue help who works on the Relic library

and who is very comfortable with the use of Cmake files, especially in RIOT, I managed

to use the right flags and the right linkers to configure Relic with the architecture of the

stm32f4discovery board. I am very grateful for his help because, beyond it permitted me to

achieve my work, I learned a lot.

• Configuring Eclipse to debug RIOT projects: As it is not possible to execute several com-

mands with Eclipse tools, especially "sudo", I only executed the "sudo" command but instead

of adding the other command then like in a console, I put the command that requires sudo

permissions into the "argument" field. Then a new problem came: the user needs to enter his

sudo password to enable the execution of such commands so I had to edit the configuration

file "/etc/sudo.conf". This permitted to display a window dynamically that asks you your

sudo password. This tool made it really easy to work with Eclipse now, without using a

console or scripts.

• SPI communication between a board with RIOT & an Arduino board with the Arduino IDE:

For this issue, the solution is still not found. We have some ideas why it does not work, like

the difference of CPU speed, but we did not find how to fix this issues.

• Implementation of SPI drivers for RIOT: My problem was not a difference between what

I sent from a board with what I received from the other one, I could not just enable

the communication. As I did not know where come from my errors, I started to simply

print the registers content and checking the behaviour of each signal with an oscilloscope.

Then I only read again and again the documentation for the board to check if I have not

forgotten anything, and sometimes I found some mistakes. For example the SPI clock was

not correctly enabled with the system clock. Finally when the first communication has been

possible, the data transmitted between the two boards were available so it was much easier

to debug when I had some other problems.

4.2 Balance sheet on my personal goals

As I formulated several learning goals, I made a balance sheet for them at the end of my internship

in HAW. Firstly I wanted to see what is like to work in a working group and if it could be a

possibility for my career. Then it was an exciting experience, I learned a lot, and I realized that

people who work on such projects are really passionate by what they do. Most people work much

more than what they are supposed to be because they just feel involved by their project. The

16

4.2. BALANCE SHEET ON MY PERSONAL GOALS

atmosphere was consequently really pleasant, thanks to the mailing list everyone is ready to

help you if you encounter some difficulties. To compare with the work in a company where it is

more individualist, probably due to the competition that sometimes exists between employees, I

felt here a real support from the community that works on the RIOT project. Thus even if it is

economically more reasonable to work in a company for a long-term job, the idea of working on

such a project reminds in the back of my mind.

Secondly I wanted to use my skills in a concrete project. At the beginning I was affraid of being

useless because the project was already well under way but I realized that even if I was not used

to work with embedded systems I was able to adapt my skills to this project. That is also why

doing an internship is very interesting, it permits to highlight my knowledge and my skills on

a lot of things that are possile to do even if they are not a direct application of what I studied.

Nevertheless I learned a lot to be able to do everything I did during this internship and that was

also one of my objectives.

Finally I wanted to work in another country with another culture and to improve my English

language as I do not speak German. And while the two previous parts were directly related to my

work, this one was also affected by my free time. Thus it was very exciting to discover Germany

and the German culture. The way of work is quite similar with the French one excepted for the

lunch time which is shorter than in France where we take a (too?) long lunch break. Thanks

to the internship I have been practicing English for two months, and I think I improved my

English which bodes well for my next Canadian semester. It was also the opportunity to discover

the German daily life and to step back from the French one, thus a lot of events happened in

Hamburg like of course the great passion of German people for their national team during the

World Cup where a lot a giant screens were spread in Hamburg. I also had the opportunity to

visit Berlin for a week-end, which is a historical city. This allowed me to better understand the

German culture, that was something I expected from these two months in Germany, and even if

it was not directly related to my internship I think it was important to also have this immersion.

17

C
H

A
P

T
E

R

5
CONCLUSION

This internship allowed me to see what is like to work as an engineer and what is a

working group, during two months. I appreciated to use my skills and my knowledge in

a concrete project. I was pleasantly surprised to see that even if this project was not a

direct application of what I am studying, the tools I used and the structure of the RIOT project

were familiar to me because I already knew them. This was as a consequence quite easy and

quick to enhance my skills in order to be able to work on the tasks they gave me. As I learned

a lot of things, I tried to bring the more I could to the project, to do my best and to finish every

task they gave me. Finally this was a grateful experience because I feel that I contributed to the

project and I managed to achieve the main tasks and in the same time, this internship brought

me a lot too. It is also frustrating to work on a project during only two months, and I think I will

keep an eye on the RIOT project because it is a very young project and I hope I will hear about

RIOT in the next years with the increasing development of the Internet of Things in our lives.

19

A
P

P
E

N
D

I
X

A
A BRIEF INTRODUCTION TO THE SERIAL PERIPHERAL INTERFACE

Serial Peripheral Interface (SPI) is a synchronous serial data protocol used by microcontrollers

for communicating with one or more peripheral devices quickly over short distances. It can also

be used for communication between two microcontrollers (this was typically the way I used the

SPI during my internship).

With a SPI connection there is always one master device (usually a microcontroller) which controls

the peripheral devices. Typically there are three lines common to all the devices:

• MISO (Master In Slave Out) - The Slave line for sending data to the master,

• MOSI (Master Out Slave In) - The Master line for sending data to the peripherals,

• SCK (Serial Clock) - The clock pulses which synchronize data transmission generated by

the master and one line specific for every device:

• SS (Slave Select) - the pin on each device that the master can use to enable and disable

specific devices.

When a device’s Slave Select pin is low, it communicates with the master. When it’s high, it

ignores the master. This allows you to have multiple SPI devices sharing the same MISO, MOSI,

and CLK lines.

21

APPENDIX A. A BRIEF INTRODUCTION TO THE SERIAL PERIPHERAL INTERFACE

The next two figures give a visual interpretation of a communication between master and one

or several slave(s).

FIGURE A.1. SPI bus: single master and single slave [7].

FIGURE A.2. Typical SPI bus: master and three independent slaves [7].

22

Generally speaking, there are four modes of transmission. These modes control whether data

is shifted in and out on the rising or falling edge of the data clock signal (called the clock phase),

and whether the clock is idle when high or low (called the clock polarity). The four modes combine

polarity and phase according to this table:

23

REFERENCES

[1] Atmel. Arduino Due: Datasheet and Reference Manual,

http://www.atmel.com/Images/doc11057.pdf.

[2] The description page for Arduino-Due from Arduino, http://arduino.cc/en/Main/arduinoBoardDue.

[3] The description page for Arduino-Duemilanove from Arduino,

http://arduino.cc/en/Main/arduinoBoardDuemilanove.

[4] The description page for the Stm32f4discovery from ST,

http://www.st.com/web/catalog/tools/FM116/SC959/SS1532/

PF252419?sc=internet/evalboard/product/252419.jsp.

[5] Intregate Relic (a library for cryptography) into RIOT, https://github.com/RIOT-

OS/RIOT/wiki/Intregate-Relic-(a-library-for-cryptography)-into-RIOT.

[6] RELIC is an Efficient LIbrary for Cryptography, https://code.google.com/p/relic-toolkit/.

[7] Serial Peripheral Interface Bus - Wikipedia, http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus.

[8] Using the Eclipse IDE for C and CPP Developers, Howto, https://github.com/RIOT-

OS/RIOT/wiki/Using-the-Eclipse-IDE-for-C-and-CPP-Developers

[9] RIOT, The friendly Operating System for the Internet of Things, http://www.riot-os.org/, 2013-

2014.

25

	Introduction
	Presentation of the host establishment
	Hamburg University of Applied Sciences - HAW Hamburg
	The iNET Group

	Presentation of the internship
	Research and obtaining of the internship
	Research of the internship
	Choice of the internship

	Context of the project
	What is Internet of things (IoT) ?
	Presentation of the project

	Objectives
	Different approaches
	Current status of the project
	The chosen solution

	Description of my work
	Organization
	Implementation

	Results & Analysis
	Evaluation of my results
	Validation for the projects
	Outlook

	Reflection on the internship
	Main issues
	Description of the main issues
	Solution

	Balance sheet on my personal goals

	Conclusion
	A brief introduction to the Serial Peripheral Interface
	References

