
Proc. of the MInf Seminar at the Dept. of Computer Science of the Hamburg University of Applied Sciences, Summer 2014

EFFICIENT AUTHENTICATION FOR CONSTRAINED DEVICES - SECURING THE LOW
POWER INTERNET OF THINGS

Tobias Markmann

Hamburg University of Applied Sciences, Dept. Computer Science,
Berliner Tor 7

20099 Hamburg, Germany
tobias.markmann@haw-hamburg.de

ABSTRACT

In this work we analyze the suitability of identity-based signatures
(IBSs) as a means to provide efficient authentication for the In-
ternet of Things (IoT). We analyze how regular key management
tasks like key renewal and key revocation in classic public-key
infrastructure (PKI) using certificate revocation lists (CRLs) and
Online Certificate Status Protocol (OCSP) are treated in identity-
based cryptography (IBC) and highlight the consequences of each
solution in light of the large scale IoT. Furthermore, we practically
study the computational and storage complexity of three IBS by
implementing them in C/C++ using the RELIC toolkit followed by
a benchmark on an Intel Core i7 and a Raspberry Pi as example for
a constrained device.

We implemented and benchmarked the signatures SH–IBS,
vBNN–IBS and TSO–IBS and show that signatures based on ellip-
tic curve cryptography (ECC) like vBNN-IBS are most suitable for
constrained devices compared to the other two.

1. INTRODUCTION

The Internet of Things (IoT) is a continuously active research field
with many practical applications emerging. The applications of the
IoT range from simple home control applications, like thermostats
or lighting control devices, to more backbone applications, like
smart grid or smart city developments [1]. However, in all those
applications one core aspect is the interconnectivity of participating
devices in one global computer network, the Internet.

While the use of the public Internet provides easy and global
interconnection of devices, the installer of IoT devices has little to
no control over the actual communication media used in the end,
including the security of the media. Internet access can be gained
through cable, broadband and wireless connectivity which rarely
come with strong security layers.

For low power devices some IoT applications can resemble
those of the wireless sensor network (WSN), especially monitoring
and controlling applications. However, WSNs are usually locally
limited, have their own network and are specialized for their ap-
plications. For example, a WSN for detecting fires in wild forests
can be considered to have lower security requirements than appli-
cations for the global IoT. The nodes in a WSN are also mainly
connecting to their collecting sink station and are, on their own,
not publicly accessible from the outside network. In contrast to
that, it’s a key aspect of the IoT that all devices are accessible in a
direct way via the Internet.

Identity-based cryptography (IBC) offers a great approach for
enabling secure communication in the IoT, because it simplifies

key management. To verify signatures, no certificates need to be
transmitted or public keys looked up, since already existing iden-
tification information in packets can be used to deduce a public key.

On the one side this work provides a detailed overview and
comparison of key management tasks like key renewal and key
revocation. We compare how key renewal and revocation is han-
dled by the classic public-key infrastructure (PKI) and IBC. These
management tasks are important for the IoT because most devices
are unmanned and a lot are publicly accessible. Thus tampering of
IoT devices is hardly avoidable and the network must deal with the
consequences of private key compromises.

On the other side this work aims to present the practical re-
sults of an evaluation of different identity-based signatures (IBSs)
schemes and show how they compare to each other in the aspects of
storage and computational complexity. We cover IBS using three
different cryptographic mechanisms: the classic RSA problem, el-
liptic curve cryptography (ECC) and pairing-based cryptography
(PBC).

Organization: The remainder of the paper is organized as fol-
lows. Section 2 briefly introduces the basic background on IBC,
ECC and PBC, followed by Section 3 showing other projects and
how they relate to this work. Section 4 covers the key management
situation in classic PKI and in IBC, how they compare to each other
and in relation to the IoT. In Section 5 we introduce our practical
evaluation of three IBS, SH–IBS, vBNN–IBS, and TSO–IBS. It is
performed on an Intel 64-bit desktop platform and a Raspberry Pi
(32-bit ARM). We conclude in Section 6 and provide an outlook
on our future work in Section 7.

2. BACKGROUND

2.1. Identity-based Cryptography

Identity-based cryptography (IBC) [2] was proposed by Shamir in
1985 as a kind of asymmetric cryptography with easier key man-
agement compared to traditional public-key infrastructure (PKI).

Like each user in the PKI has a private/public key pair each
user in an ID-based cryptosystem has the same key pair. In the PKI
setting the private key can be generated by the user and the trusted
third party (certificate authority (CA)) only signs this public key.
In the IBC setting the private key must be generated by the third
party, in this case the trusted authority (TA).

The generated private key is implicitly bound to the ID string
of an authenticated user. In the classic example an ID string is sim-
ply an email address (alice@wonderland.lit) but one can

MInfSem-1

http://www.haw-hamburg.de/ti-i
mailto:tobias.markmann@haw-hamburg.de

Proc. of the MInf Seminar at the Dept. of Computer Science of the Hamburg University of Applied Sciences, Summer 2014

use an arbitrary string here, including IP- and Ethernet addresses.
A prerequisite is, however, that the ID string is easily predictable
by all users of the system because it is used to generate each users’
public key.

Having the TA generating the private keys for all users requires
an encrypted connection between the user and the TA for the trans-
fer of the private key as with all key escrow systems. However, in
a classic PKI without key escrow only an authenticated connection
is needed between the user and the CA. Key escrow describes the
ou sourcing of private key information to a trusted third party and
stands in conflict with plausible deniability.

The ability to generate the public key from an ID string greatly
reduces key distribution work. Compared to PKI you do not need
to distribute certificates or public keys of the users in advance or on
demand over the wire. In case of on demand distribution this also
reduces the packet size for authenticated communication. Only the
signature needs to be transferred in addition to the already existing
identity and the actual message.

2.2. Elliptic Curve Cryptography

The first asymmetric cryptosystems providing signatures were RSA
[3] by Rivest, Shamir, and Adleman and the ElGamal [4] cryptosys-
tem by El Gamal. The security of RSA builds on the problem of
factoring large composites of prime numbers where the security of
the ElGamal cryptosystem is based on the problem of calculating
discrete logarithms in groups of large prime order.

However, both problems are not as hard as originally assumed.
There are subexponential-time complexity algorithms to factor inte-
gers as there are for solving the discrete logarithm problem (DLP)
in finite fields [5, Chapter 2]. In response to the advances in solv-
ing these problems key sizes have been increased. This results in
larger signatures and the more computation is needed for signature
generation and verification.

For the elliptic curve discrete logarithm problem (ECDLP),
however, there has not yet been discovered a subexpoential-time
complexity algorithm to solve it. The best known algorithm today
to solve the ECDLP on general elliptic curves is Pollard’s rho algo-
rithm for discrete logarithms [6]. The difference in the complexity
between the classic problems and the newer ECDLP can also be
seen in the recommendation for key sizes from standards and re-
search bodies. Figure 1 shows the recommendation for key sizes
for classic cryptosystems and elliptic curve cryptosystems. While
elliptic curve cryptography (ECC) key sizes scale linearly with the
respective symmetric key size, classic RSA and DLP based cryp-
tosystems scale super linear.

The use of elliptic curves in cryptography was independently
suggested by Miller [8] and Koblitz [9] in the mid 1980s. Tradi-
tionally, elliptic curves are defined in short Weierstrass form as
E(Fq) =

{
(x, y) ∈ Fq

2 : y2 = x3 + ax+ b
}⋃

O describing a
group of elliptic curve points. Point O represents the additive iden-
tity and Fq is the field used for the x, y-coordinates. Additionally,
to avoid certain attacks the elliptic curves are required to be non-
singular. This requires a discriminat of ∆ = 4a3 +27b2 6= 0. The
basic group operation of elliptic curve groups is the addition of two
points.

The cyclic group of elliptic curve points is defined by the gener-
ator or base point P . Repeated application of the group operation
to P generates all elements of the group. For an elliptic curve

64 72 80 96 112 128 256

128

512

2,048

8,192

Symmetric key size (bits)

K
ey

si
ze

(b
its

)

ECC
RSA/DLOG

Figure 1: ECRYPT II comparison of key sizes (in bits) at the same
security level between symmetric, asymmetric (RSA) and elliptic
curve [7].

group of of order n, there exists a point P , which generates the
elliptic curve group E(Fp) = {kP : 1 6 k 6 n}.

2.3. Pairing-based Cryptography

A bilinear pairing is a map, e, from elements of two groups, G1 and
G2, in a target group GT : e : G1 × G2 −→ GT . With a, b ∈ Z,
P ∈ G1 and Q ∈ G2, it has the following properties:

• Bilinearity: e(aP, bQ) = e(P, bQ)a = e(aP,Q)b = e(P,Q)ab

• Non-degeneracy: ∀P ∈ G1, Q ∈ G2 : e(P,Q) 6= 0

• Efficiently computable: for bilinear pairings to be useful in
cryptographic protocols, efficient implementations computing
the pairing must exist.

Furthermore bilinear pairings are categorized as either symmet-
ric or asymmetric. The previous definition specifically describes
asymmetric pairings. The symmetric case can be seen as a special
case of the asymmetric one, with G1 = G2 [10]. It is worth noting
that symmetric pairings are usually realized using a group of points
on a supersingular curve as G1. Compared to asymmetric pairings
symmetric pairings are less efficient.

Pairing-based cryptography (PBC) was first used as crypto-
analytic tool in the MOV attack [11]. It reduces the ECDLP on
supersingular elliptic curve to the easier DLP in an extension field
Fpk .

Joux first suggested to use bilinear pairings for cryptographic
purposes in 2000 [12]. He proposed a protocol for computing a
shared secret among three parties, also known as tripartite Diffie-
Helman, in one round.

3. RELATED WORK

Kiltz and Neven [13] theoretically analyzed and compared various
ID-based signature schemes with regard to signature size, computa-
tional complexity and security strength. Their comparison provides
a good high-level overview on the computational and storage com-
plexity of ten different identity-based signatures (IBSs) including
SH–IBS and vBNN–IBS. The complexity is specified in terms of
group operations for computation complexity and number of group
elements for space complexity.

MInfSem-2

Proc. of the MInf Seminar at the Dept. of Computer Science of the Hamburg University of Applied Sciences, Summer 2014

However, there is no practical evaluation via implementation
and benchmark. We implement three IBSs and provide benchmark
results for a desktop and an embedded platform.

A direct high-level comparison between identity-based cryp-
tography (IBC) and public-key infrastructure (PKI) is provided by
Paterson and Price [14]. They compare not only the architectural
issues of either system but also the differences in key management.
In addition to their overview on key revocation issues in both sys-
tems we provide a detailed analysis of the problem of key renewal
and key revocation in IBC and PKI for application in the Internet
of Things (IoT).

4. KEY MANAGEMENT FOR ASYMMETRIC
CRYPTOSYSTEMS

Employing asymmetric cryptography in real applications comes
with essential auxiliary tasks as part of the key management. To
provide a good level of security to all members of a communication
system, developers have to bow to the inevitable and prepare their
systems for incidents like key exposure and key renewal. Key ex-
posure usually requires key renewal, since the now publicly known
private key could be used to impersonate a legitimate user.

There are various ways a user’s private key could be exposed.
This can happen through human error in manual processes and
more critically, due to bugs in security relevant protocol implemen-
tations exposed to public networks. This has recently occurred
with the Heartbleed bug in OpenSSL [15]. After possible exposure
of a private key to the public there is only one correct process; the
certificate associated with the exposed key needs to be revoked to
limit possible damage and a new certificate with new private/public
key pair needs to be obtained.

4.1. Traditional Public-key Infrastructure

In a public-key infrastructure (PKI) as used by the world wide web
(WWW), users can revoke their certificate at the issuing party, the
certificate authority (CA). However, the task of actively checking
certificates for their current revocation state is left to the clients.
Basically there are two different kind of approaches to this prob-
lem:

1. offline / asynchronous: during the verification step each user
checks the certificate against a list of keys that have been re-
voked, the so called certificate revocation list (CRL). This list
is issued by a CA and signed using their private key. CRLs can
be downloaded on demand or pushed to the users on a regular
basis. The handling of CRLs in the PKI is described in more
detail in [16].

2. online / synchronous: for verification, the user asks a prede-
fined server about the current revocation state of a specific
certificate to which the server responds with a signed reply
containing the current revocation state. This protocol for the
PKI is called Online Certificate Status Protocol (OCSP) [17]
and allows a secure on-demand attestation on the state of revo-
cation of a certificate. The OCSP server is provided by the CA
that issued the certificate.

The offline approach comes with a scalability issue. The list
of revoked certificates only ever increases and has to include all
revoked certificates that would otherwise still be valid. In addition,

the CRLs need to be updated at all clients at a regular bases to
correctly detect revoked certificates.

In contrast, OCSP does not require updating huge lists of cer-
tificates. However, it requires that all CAs have an OCSP server
running which will reply to the requests of clients checking the
revocation state of certificates. In a setup which prioritizes secu-
rity over usability, a certificate would be considered revoked if an
OCSP server is not reachable. Thus, the OCSP server introduces
a single point of failure which may be under heavy load consider-
ing each validation of a certificate requires a request to an OCSP
server.

To reduce load on the OCSP server, an optimization has been
proposed. OCSP stapling [18] allows the verifier of a certificate to
immediately check the revocation state without further contacting
an OCSP server. This is possible because the communication part-
ner already requested an OCSP response from the CA and attached
it to the message to be verified.

4.2. ID-based Cryptography

While identity-based cryptography (IBC) eases key distribution
compared to traditional PKI, the problems of key management are
of at least similar complexity. Especially the inherent implicit bind-
ing of public key and identity in IBC makes it hard to revoke keys
for users. Simply adding the identity to a revocation list would
prevent the user of that identity from ever sending signed messages
again. Early systems using IBC avoided the classic approach of
revocation altogether and instead went with automatic key renewal
[19]. Here Boneh and Franklin proposed to add time related in-
formation to the identity before deriving the associated public key
from it, e.g. identity + year. In this way users are required
to get a new private key from the trusted authority (TA) each year
and the TA just stops handing out private keys to revoked users.
However, adding time related information requires all users to fetch
a new private key from the TA in the common time frame.

Revoking public keys in an IBC system equals revoking the
associated identity. If however the identity is hard to change (like
static Internet protocol (IP) addresses) the identity string needs to
be extended to still allow revocation and rekeying. Extending the
identity string with additional information is nontrivial. Identities
in IBC systems need to be easy to predict to allow easy verification.
Adding a rough timestamp as proposed by Boneh and Franklin still
allows easy verification considering loosely synchronized clocks
between the users. However, adding hard to predict data, e.g. is-
sue numbers, to identities complicates the verification process as
information about the current valid issue number needs to obtained
out-of-band [14, p. 64].

Boldyreva, Goyal, and Kumar [20] proposed an identity-based
encryption (IBE) system with improved revocation handling, pro-
viding logarithmic scaling for maintenance work for all users of
the system as compared to linear within a revocation time frame.
However, it heavily uses pairing-based cryptography (PBC) and
thus comes with great computational complexity.

Considering the two major environments where constraint de-
vices are in wide use—the Internet of Things (IoT) and wireless
sensor networks (WSNs)—the key management properties are of
different relevance in each environment. While required continu-
ous key updates within the revocation timeframe in an IBC setup
might well work in small WSNs with up to 1000 nodes, in a sys-

MInfSem-3

Proc. of the MInf Seminar at the Dept. of Computer Science of the Hamburg University of Applied Sciences, Summer 2014

tem at the scale of the IoT this could become a greater problem.
The flexible key management in traditional PKI setups on the other
hand allow for various different ways of providing revocation in-
formation to the users of the system and is easily distributable.

5. PRACTICAL PERFORMANCE EVALUATION

We evaluate three identity-based signatures (IBSs) on two hardware
and software platforms to verify the use of IBSs for the Internet of
Things (IoT).

5.1. Tested ID-based Signatures

The following three IBSs have been implemented in C/C++ using
the RELIC toolkit [21]:

1. SH–IBS [2]: This is Shamir’s original signature based on the
RSA cryptosystem. It requires arbitrary precision numbers
which are supplied by the BN module of RELIC.
We compare SH–IBS against the other IBS of our evaluation at
different asymmetric security levels from 768 bit to 2048 bit.

2. vBNN–IBS [22]: This IBS by Cao, Kou, Dang, et al. uses el-
liptic curve cryptography (ECC) and its security is based on the
elliptic curve discrete logarithm problem (ECDLP). vBNN–IBS
is compared to the other signature schemes in our evaluation.
We test the implemented signature schemes at different secu-
rity levels using standard curves like NIST-P256 [23] but also
more recent proposals like Curve383187 [24]. The asymmetric
security strength of the curves ranges from 251 bit to 384 bit.

3. TSO–IBS [25]: The bilinear pairing based TSO–IBS was pro-
posed by Tso, Gu, Okamoto, et al. and in contrast to the other
two test candidates it provides message recovery. This means
that the receiver of the signature can recover the original mes-
sage from it thereby eliminating the need to transfer the actual
message.
TSO–IBS as described by the authors uses symmetric pairings
and comes with the associated performance penalty of its im-
plementation described in Subsection 2.3. The RELIC toolkit
currently only provides a single supersingular curve, namely
SS-P1536. Therefore we are not able to evaluate TSO–IBS at
different security levels.

RELIC toolkit is a C library efficiently implementing cryptographic
primitives like finite fields, elliptic curves and pairings for use on
constrained devices.

5.2. Evaluation Hardware/Software Setup

The hardware/software setup used for the benchmarks is shown in
Table 1. All benchmark code including the RELIC toolkit itself is
compiled with the clang compiler (version 3.5.0).

We run each benchmark program five times per test combina-
tions and measure the wall-clock time in each run. In addition, the
CPU cycle count is measured for signature generation and verifi-
cation of each test candidate. Within the benchmark program, the
RELIC toolkit is initialized and keys are generated. Afterwards
we measure the time for generating 100 signatures and the time
for verifying 100 signatures. It is worth mentioning that the mea-
surements not only cover the mathematical algorithms, but also the
random number generation used during signature generation. The
best results of all five runs for each signature scheme are taken in

Desktop Embedded

Device Laptop Raspberry Pi

OS Mac OS X 10.9.3 Debian 3.10.11-1+rpi7

Vendor Intel (CISC) ARM (RISC)

CPU Core i7 ARM1176
Word size 64 bit 32 bit
Clock speed 2 GHz 800 MHz

L1 Cache 64 kB 32 kB
L2 Cache 256 kB (256 kB)

L3 Cache 6 MB —
Note: The L2 Cache is used by the GPU on the Raspberry Pi and
therefore is not available to the CPU.

Table 1: Hardware/Software properties of the test environments
used for the benchmark.

comparison. The best result has the smallest time and cycle mea-
surements. They suggest as little as possible noise activity on the
system.

5.3. Benchmark Results

This subsection presents the results of our conducted benchmark
and points out interesting observations in the results.

60 80 100 120 140 160 180 200

100

200

300

400

500

Equivalent symmetric key size (bits)

Si
gn

at
ur

e
si

ze
(b

its
)

SH-IBS
vBNN-IBS
TSO-IBS

Figure 2: Signature size comparison of the ID-based signatures
from the benchmark results.

Signature Size: We begin with the signature sizes of the three
IBS as shown in Figure 2. The plot clearly shows the linear scal-
ability of ECC based vBNN–IBS. RSA based SH–IBS has more
than twice the signature size even at the lowest security strength
level tested. The signatures of TSO–IBS show about twice the size
as vBNN–IBS. Since we only have one elliptic curve available for
the symmetric pairing setting no statement about scalability of the
signature with increasing security level can be made.

MInfSem-4

Proc. of the MInf Seminar at the Dept. of Computer Science of the Hamburg University of Applied Sciences, Summer 2014

Signature Performance: Figure 3 and Figure 4 show the bench-
mark timing results for signature verification and generation on
the embedded 32 bit ARM platform and the desktop 64 bit Intel
platform respectively.

Comparing the embedded and desktop platform directly ECC
based vBNN–IBS has a clear advantage on the embedded ARM
platform. At about 90 bit symmetric key size the ECC based IBS
tops the signing and verification performance of SH–IBS. On
the desktop platform the same occurs only at about 130 bit key
size. This is likely due to extra penalty of big number calcula-
tions needed for RSA based SH–IBS which becomes problematic
at smaller word sizes. ECC, however, works with smaller numbers
in comparison which are easier to handle by 32 bit CPUs. Similar
findings have been produced by Gura, Patel, Wander, et al. [26]
comparing 1024 bit RSA with 160 bit ECC on a low power con-
strained 8 bit-CPU.

The performance of paring based TSO–IBS is behind SH–IBS
and vBNN–IBS at the measured security level regardless of plat-
form. It would be interesting to see how TSO–IBS performs using
asymmetric pairings which are known to be more efficient. How-
ever, adjustments to the scheme in that direction have yet to be
made to conduct an evaluation.

Apart from the architectural advantage of ECC over RSA cryp-
tosystems on embedded platforms, Figure 3 and Figure 4 also indi-
cate the higher performance decrease of RSA with increasing sym-
metric security strength. While the performance vBNN–IBS de-
creases rather slowly we stopped benchmarking SH–IBS at 2048 bit
asymmetric security strength (105 bit symmetric security) due to
long benchmark runtime.

60 80 100 120 140 160 180 200

104

105

106

107

Equivalent symmetric key size (bits)

D
ur

at
io

n
(µ
s)

SH-IBS (sign) vBNN-IBS (verify)
SH-IBS (verify) TSO-IBS (sign)

vBNN-IBS (sign) TSO-IBS (verify)

Figure 3: Comparison of signature generation and signature verifi-
cation timings on the embedded platform.

6. CONCLUSION

Identity-based cryptography (IBC) was initially proposed by Shamir
[2] to provide asymmetric cryptography with easier key manage-

60 80 100 120 140 160 180 200

103

104

105

Equivalent symmetric key size (bits)

D
ur

at
io

n
(µ
s)

SH-IBS (sign) vBNN-IBS (verify)
SH-IBS (verify) TSO-IBS (sign)

vBNN-IBS (sign) TSO-IBS (verify)

Figure 4: Comparison of signature generation and signature verifi-
cation timings on the desktop platform.

ment as compared to the classic public-key infrastructure (PKI).
This statement only holds at a first glance.

Looking at classic key management tasks like key renewal and
key revocation IBC shows its own set of problems due to the strong
identity/public-key binding as explained in Section 4. Constantly
reissuing keys in IBC poses similar difficulties to the system as pro-
viding high available Online Certificate Status Protocol (OCSP)
servers in the PKI. However, IBC allows automatic revocation
where in the PKI you need explicit protocols that check for va-
lidity. It turns out that classic asymmetric cryptography with its
explicit identity/public-key binding also provides more flexibly re-
vocation schemes. This makes them more suitable to a large scale
Internet of Things (IoT) while IBC might suit the smaller and self-
contained wireless sensor network (WSN) better.

Over the years the recommendations for key sizes for a spec-
ified security level steadily increased. This is due advances in
hardware which increase the speed at which cryptosystems can be
broken via brute force [27].

With this in mind elliptic curve based vBNN–IBS is a more
suitable choice compared to SH–IBS. As the recommended sym-
metric key size increases over the years cryptosystems based on the
RSA problem will have higher storage and computational require-
ments for signatures as can be handled by constrained embedded
devices. elliptic curve cryptography (ECC) allows much smaller
signatures and more efficient computation of signatures, especially
on embedded devices.

TSO–IBS performance and signature size do not show an ad-
vantage over vBNN–IBS. While both are based on ECC TSO–IBS
utilizes symmetric bilinear pairings for signature generation and
verification which are known for their moderate performance.

MInfSem-5

Proc. of the MInf Seminar at the Dept. of Computer Science of the Hamburg University of Applied Sciences, Summer 2014

7. OUTLOOK

Having gained confidence in the choice of elliptic curves as crypto-
graphic primitives for security mechanisms for constrained devices
allows further analysis in this direction.

There are elliptic curves which are more performant than stan-
dard Weierstrass curves. A prominent example are Edwards curves
which have a complete and more efficient addition formula com-
puting the elliptic curve group operation [28]. Their formula is
resilient against side-channel attacks and requires less operations
in the underlying field. We plan to implement the addition formula
and required curve representation for Edwards curves in the RELIC
toolkit to enable further research for optimized Edwards curves for
constrained devices.

Modern signature schemes specifically targeted at constrained
devices is another important research area. One example is Ed25519
[29], a modern asymmetric signature with comes with significant
speed improvements in all areas compared to Elliptic Curve DSA
(ECDSA) and a minimal consumption of outside randomness. How-
ever, Ed25519 is optimized for 64 bit systems and in the Internet
of Things (IoT) 16 bit to 32 bit systems are more widespread.

Finally, we would have to integrate a modern asymmetric signa-
ture and elliptic curves with the RELIC toolkit into a development
environment for IoT applications. One possible candidate here is
the RIOT OS [30]. The RIOT OS is a relatively young open source
operating system for the IoT and is developed, amongst others, by
FU Berlin and the Hamburg University of Applied Sciences.

8. REFERENCES

[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “In-
ternet of Things (IoT): A vision, architectural elements, and
future directions ”, Future Generation Computer Systems,
vol. 29, no. 7, pp. 1645–1660, 2013.

[2] A. Shamir, “Identity-Based Cryptosystems and Signature
Schemes”, in Advances in Cryptology — CRYPTO 1984,
ser. Lecture Notes in Computer Science, G. R. Blakley and
D. Chaum, Eds., vol. 196, Santa Barbara, California, USA:
Springer, Aug. 1985, pp. 47–53.

[3] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Ob-
taining Digital Signatures and Public-key Cryptosystems”,
Commun. ACM, vol. 21, no. 2, pp. 120–126, Feb. 1978.

[4] T. El Gamal, “A Public Key Cryptosystem and a Signature
Scheme Based on Discrete Logarithms”, in Advances in
Cryptology — CRYPTO 1984, ser. Lecture Notes in Com-
puter Science, G. R. Blakley and D. Chaum, Eds., vol. 196,
Berlin, Heidelberg, Germany: Springer, 1985, pp. 10–18.

[5] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone,
Handbook of Applied Cryptography. Boca Raton, Florida,
USA: CRC Press, 1996.

[6] J. M. Pollard, “Monte Carlo methods for index computation
(mod p)”, Mathematics of Computation, vol. 32, pp. 918–
924, Jul. 1978.

[7] ECRYPT II, “ECRYPT II Yearly Report on Algorithms and
Keysizes”, European Network of Excellence in Cryptology
II, Tech. Rep., Sep. 2012, http://www.ecrypt.eu.
org/documents/D.SPA.20.pdf.

[8] V. S. Miller, “Use of Elliptic Curves in Cryptography”, in
Advances in Cryptology — CRYPTO 1985, ser. Lecture Notes
in Computer Science, H. C. Williams, Ed., vol. 218, Berlin,
Heidelberg, Germany: Springer Berlin Heidelberg, 1986,
pp. 417–426.

[9] N. Koblitz, “Elliptic Curve Cryptosystems”, Mathematics
of Computation, vol. 48, pp. 203–209, 1987.

[10] S. D. Galbraith, K. G. Paterson, and N. P. Smart, “Pair-
ings for cryptographers”, Discrete Applied Mathematics,
vol. 156, no. 16, pp. 3113–3121, 2008.

[11] A. Menezes, T. Okamoto, and S. Vanstone, “Reducing El-
liptic Curve Logarithms to Logarithms in a Finite Field”,
Information Theory, IEEE Transactions on, vol. 39, no. 5,
Sep. 1993.

[12] A. Joux, “A One Round Protocol for Tripartite Diffie—
Hellman”, in Algorithmic Number Theory, ser. Lecture Notes
in Computer Science, W. Bosma, Ed., vol. 1838, Berlin, Hei-
delberg, Germany: Springer, 2000, pp. 385–393.

[13] E. Kiltz and G. Neven, “Identity-Based Signatures”, in Identity-
Based Cryptography, ser. Cryptology and Information Secu-
rity Series, M. Joye and G. Neven, Eds., vol. 2, Amsterdam,
The Netherlands: IOS Press, 2008, pp. 31–44.

[14] K. G. Paterson and G. Price, “A comparison between tradi-
tional public key infrastructures and identity-based cryptog-
raphy”, Information Security Technical Report, vol. 8, no. 3,
pp. 57–72, 2003.

[15] Common Vulnerabilities and Exposures, CVE-2014-0160,
http://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2014-0160, 2014.

[16] R. Housley, W. Polk, W. Ford, and D. Solo, “Internet X.509
Public Key Infrastructure Certificate and Certificate Revo-
cation List (CRL) Profile”, IETF, RFC 3280, Apr. 2002.

[17] M. Myers, R. Ankney, A. Malpani, S. Galperin, and C.
Adams, “X.509 Internet Public Key Infrastructure Online
Certificate Status Protocol - OCSP”, IETF, RFC 2560, Jun.
1999.

[18] D. Eastlake, “Transport Layer Security (TLS) Extensions:
Extension Definitions”, IETF, RFC 6066, Jan. 2011.

[19] D. Boneh and M. Franklin, “Identity-Based Encryption from
the Weil Pairing”, in Advances in Cryptology — CRYPTO
2001, ser. Lecture Notes in Computer Science, J. Kilian, Ed.,
vol. 2139, Berlin, Heidelberg, Germany: Springer, 2001,
pp. 213–229.

[20] A. Boldyreva, V. Goyal, and V. Kumar, “Identity-based En-
cryption with Efficient Revocation”, in Proceedings of the
15th ACM Conference on Computer and Communications
Security, ser. Computer and Communications Security 2008,
Alexandria, Virginia, USA: ACM, 2008, pp. 417–426.

[21] D. F. Aranha and C. P. L. Gouvêa, RELIC is an Efficient LI-
brary for Cryptography, http://code.google.com/
p/relic-toolkit/.

[22] X. Cao, W. Kou, L. Dang, and B. Zhao, “IMBAS: Identity-
based multi-user broadcast authentication in wireless sen-
sor networks”, Computer Communications, vol. 31, no. 4,
pp. 659–667, 2008.

MInfSem-6

http://www.ecrypt.eu.org/documents/D.SPA.20.pdf
http://www.ecrypt.eu.org/documents/D.SPA.20.pdf
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
http://code.google.com/p/relic-toolkit/
http://code.google.com/p/relic-toolkit/

Proc. of the MInf Seminar at the Dept. of Computer Science of the Hamburg University of Applied Sciences, Summer 2014

[23] Committee on National Security Systems, National infor-
mation assurance policy on the use of public standards for
the secure sharing of information among national security
systems, https://www.cnss.gov/Assets/pdf/
CNSSP_No%2015_minorUpdate1_Oct12012.pdf,
Oct. 2012.

[24] D. F. Aranha, P. S. L. M. Barreto, G. C. C. F. Pereira, and
J. E. Ricardini, “A note on high-security general-purpose
elliptic curves”, Cryptology ePrint Archive, Tech. Rep. Re-
port 2013/647, 2013, http://eprint.iacr.org/.

[25] R. Tso, C. Gu, T. Okamoto, and E. Okamoto, “Efficient
ID-Based Digital Signatures with Message Recovery”, in
Cryptology and Network Security, ser. Lecture Notes in
Computer Science, F. Bao, S. Ling, T. Okamoto, H. Wang,
and C. Xing, Eds., vol. 4856, Berlin, Heidelberg, Germany:
Springer, 2007, pp. 47–59.

[26] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz,
“Comparing Elliptic Curve Cryptography and RSA on 8-bit
CPUs”, in Cryptographic Hardware and Embedded Systems
- CHES 2004, M. Joye and J.-J. Quisquater, Eds., ser. Lecture
Notes in Computer Science, vol. 3156, Cambridge, MA,
USA: Springer, 2004, pp. 119–132.

[27] A. W. Dent, “Choosing key sizes for cryptography”, Infor-
mation Security Technical Report, vol. 15, no. 1, pp. 21–27,
2010.

[28] D. J. Bernstein and T. Lange, “Faster Addition and Dou-
bling on Elliptic Curves”, in Advances in Cryptology —
ASIACRYPT 2007, ser. Lecture Notes in Computer Science,
K. Kurosawa, Ed., vol. 4833, Berlin, Heidelberg, Germany:
Springer, 2007, pp. 29–50.

[29] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y.
Yang, “High-speed high-security signatures”, Journal of Cryp-
tographic Engineering, vol. 2, no. 2, pp. 77–89, 2012.

[30] E. Baccelli, O. Hahm, M. Günes, M. Wählisch, and T. C.
Schmidt, “RIOT OS: Towards an OS for the Internet of
Things”, in Proc. of the 32nd IEEE INFOCOM. Poster, Pis-
cataway, NJ, USA: IEEE Press, 2013.

MInfSem-7

https://www.cnss.gov/Assets/pdf/CNSSP_No%2015_minorUpdate1_Oct12012.pdf
https://www.cnss.gov/Assets/pdf/CNSSP_No%2015_minorUpdate1_Oct12012.pdf
http://eprint.iacr.org/

	1 Introduction
	2 Background
	2.1 Identity-based Cryptography
	2.2 Elliptic Curve Cryptography
	2.3 Pairing-based Cryptography

	3 Related Work
	4 Key Management for Asymmetric Cryptosystems
	4.1 Traditional Public-key Infrastructure
	4.2 ID-based Cryptography

	5 Practical Performance Evaluation
	5.1 Tested ID-based Signatures
	5.2 Evaluation Hardware/Software Setup
	5.3 Benchmark Results

	6 Conclusion
	7 Outlook
	8 References

