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This report analyzes the viability of identity-based signature (IBS) for pro-

viding authentication to the Internet of Things (IoT). A large part of the IoT

are constrained devices with limited power, performance and memory. We

provide a theoretical comparison and a practical evaluation based on bench-

marks for there IBS. Our test subjects are the RSA based SH–IBS scheme, the

elliptic curve cryptography (ECC) based vBNN–IBS and TSO-IBS which uses

pairing-based cryptography (PBC). The schemes are compared at different se-

curity levels including standard and modern elliptic curves. The schemes are

implemented using Charm and the RELIC toolkit. Our Charm implementa-

tion serves as initial proof of concept to validate and understand the signatures

following with an implementation in C/C++ using the RELIC toolkit, a crypto-

graphic C library for constrained devices. Finally, the C/C++ implementations

are benchmarked. Our benchmarks are performed on a 64 bit Core i7 desktop

platform and on a 32 bit Raspberry Pi. We show that ECC based IBS are a good

option for constrained devices due to their better overall scalability and their

platform specific advantages compared to RSA based SH-IBS.
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1 Introduction

Wireless sensor networks (WSNs) and the Internet of Things (IoT) are major examples

for networks of constrained devices. Especially the IoT is a permanently rising market

and research area. Some form of authentication needs to be implemented to secure these

networks against abusive users and other attackers [1].

Traditionally, computationally restricted computer networks like WSNs employed sym-

metric cryptography to provide authentication in communication. This was mainly due to

very low computational complexity of symmetric cryptography. However it leads to more

complex key distribution schemes. In addition, authenticated multicast protocols based

on symmetric cryptography come with more protocol complexity in the event of group

membership changes. One example for this is the µTESLA [2] protocol.

Asymmetric cryptography simplifies key management and allows to design less complex

group communication protocols. A decade ago, asymmetric cryptography was deemed

too expensive for constrained devices. Advances in low-power embedded hardware and

in research of more efficient cryptographic primitives make asymmetric cryptography an

interesting option for security solutions for constrained devices.

Classic asymmetric cryptosystems like public-key infrastructure (PKI) use certificates

to bind identity information (email addresses or domain names) to keys. This means the

certificate is required alongside the actual signature to verify it properly. These certificates

need to be transferred and processed in addition to the signature and thereby increase the

overall transmission cost.

In contrast, identity-based signatures (IBSs) as proposed by Shamir [3], have the identity

binding implicitly integrated in the signatures generated by the users of the system. This

allows signatures to be verified solely based on identity information, like IP addresses or

MAC addresses. Addresses are easily available in packets of communication protocols and

the public key for verification of the signature can be deduced from them.

Identity-based cryptography (IBC) works well to enable end-to-end security in private

networks with a central base station or gateway. An example for this are WSNs. WSNs

typically have a central base station which collects all the data and manages the general

access to the network. Since this base station is trusted by all the nodes within the WSN it

is an ideal candidate for the trusted authority (TA) in an IBC system. The TA generates all

private keys for the users and the system is thereby subject to key escrow. The property of

key escrow is less of a problem in a singly owned system than it would be in a multi-party

distributed communication network, like the IoT.

In this work, three different IBSs schemes are implemented and evaluated. The orig-

inal ID-based signature SH–IBS, an elliptic curve based IBS vBNN-IBS and an ID-based

signature using bilinear pairings, TSO-IBS. All schemes are implemented in Python using

Charm [4] for initial conceptual evaluation and in C++ using the RELIC toolkit [5], a cryp-

tographic library for resource-constrained computers. The C/C++ implementations of the
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schemes are compared in benchmarks. The benchmark is carried out on both, a recent

desktop platform (64 bit Intel Core i7) and a smaller, less powered, embedded platform

(32 bit ARM, Raspberry Pi).

This report is structured as follows. Section 2 provides a brief introduction to related

projects including a theoretical comparison of IBS, a security analysis of established and

new elliptic curves and a low power comparison of RSA and elliptic curve cryptography

(ECC) on 8-bit CPUs. In Section 3, IBC is introduced and its key management character-

istics are compared to those of traditional PKI. This section also describes the basics of

elliptic curve cryptography, its mathematical background and concludes with a brief de-

scription of pairing-based cryptography (PBC). In Section 4, the three signature schemes,

SH–IBS, vBNN–IBS and TSO–IBS, based on RSA, elliptic curves and bilinear parings re-

spectively, are described, compared and the implementation setup is specified. The next

section presents the results of the executed benchmark. Finally, in Section 6, the results

are interpreted in the light of the current state of the IoT. An analysis and outlook into

future possible work is given.

1.1 Nomenclature

The mathematical notation used in this document is listed in Table 1.

Notation Description

𝐺, 𝐺1, 𝐺u� , … group

𝑝 prime number

𝔽u�, 𝐆𝐅(𝑝), ℤ/𝑝ℤ finite field of prime order with 𝑝 elements

𝔽u�u� , 𝐆𝐅(𝑝u�), ℤ/𝑝u�ℤ finite field of prime power order with 𝑝u� elements

Table 1: Clarification of mathematical notation used in this report.

The nomenclature used for variables in cryptographic protocols is shown in Table 2.

Variable Description

𝐼𝐷u� identity of user 𝐴
𝐼𝐷u�u�u�u�

ID-based private key of user 𝐴

𝑚𝑠𝑘 master secret key of a TA

𝑚𝑝𝑘 master public key of a TA

𝜎 signature

Table 2: Variable nomenclature used in this report.

The common notation for operations on buffers is shown in Table 3 at a glance.
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Notation Description

𝑎 ⊕ 𝑏 XOR two buffers

u�|𝑎| first 𝑛 bits of buffer 𝑎
|𝑎|u� last 𝑛 bits of buffer 𝑎
𝑎||𝑏 concatenate two buffers 𝑎 and 𝑏
|𝑞| bit length of the binary representation of integer 𝑞

Table 3: Clarification of notation of buffer operations in this work.

2 Related Work

Kiltz and Neven [6] theoretically analyzed and compared various ID-based signature

schemes with regard to signature size, computational complexity and security strength.

This comparison provides a good high-level overview on the computational and storage

complexity of the various schemes. This is specified in terms of group operations for com-

putation complexity and number of group elements for space complexity. However, there

is no practical evaluation via implementation and benchmark. In addition, it is an analysis

solely in the area of identity-based signature (IBS) without showing complexity relative to

classic asymmetric signatures.

SafeCurves [7] is an ongoing project by Bernstein and Lange on providing an overview

of popular choices of elliptic curves. The project compares the curves with regards to

their resilience against commonly known attacks and weaknesses in the area of elliptic

curve cryptography (ECC). The authors do not provide a performance comparison be-

tween elliptic curves. Some curves for the benchmark carried out in our project have been

specifically chosen from this list to extend test candidates beyond the standardized curves.

Gura, Patel, Wander, et al. [8] compare standard ECC against RSA signatures on very low

power embedded 8-bit CPUs. They analyze and implement the cryptographic algorithms

in assembly code. 160 bit ECC point multiplication is shown to outperform 1024 bit RSA

private-key operation. 160 bit ECC point multiplication is twice as fast as compared to

1024 bit RSA public key operation. While this comparison is limited to classic asymmetric

signatures and executed on extremely low power embedded CPUs, it provides an interest-

ing analysis helping to set our own benchmarks results in perspective, that are obtained

on more powerful hardware.

3 Background

This section serves as introduction to the background knowledge required for the fol-

lowing description of cryptographic signature schemes. Starting out with cryptographic

background of identity-based cryptography (IBC), mathematical fundamentals required
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for modern asymmetric cryptographic protocols are explained. This section completes

with basics of elliptic curve cryptography (ECC) and pairing-based cryptography (PBC).

3.1 Identity-based Cryptography

Identity-based cryptography is a form of asymmetric cryptography—also known as public-

key cryptography (PKC)—that was first suggested by Shamir in 1985 [3]. It simplifies the

key distribution problem in cryptographic systems compared to symmetric cryptography.

For identity-based signatures (IBSs) an arbitrary string which uniquely identifies an entity

can be used as public key (𝐼𝐷). The 𝐼𝐷 of an entity and publicly known general parame-

ters are enough to verify signatures generated by that entity.

Since this work concentrates on authenticating communication in networks of devices

with low computing power, we will focus on ID-based signature schemes.

Definition 3.1. An IBS is defined using four functions:

𝑆𝑒𝑡𝑢𝑝(𝑠𝑒𝑐_𝑙𝑒𝑣𝑒𝑙) ⟶ (𝑚𝑠𝑘, 𝑚𝑝𝑘, 𝑝𝑢𝑏_𝑝𝑎𝑟𝑎𝑚𝑠) (1)

𝐾𝑒𝑦𝐸𝑥𝑡𝑟𝑎𝑐𝑡(𝑚𝑠𝑘, 𝑚𝑝𝑘, 𝑝𝑢𝑏_𝑝𝑎𝑟𝑎𝑚𝑠, 𝐼𝐷) ⟶ (𝐼𝐷u�u�u�) (2)

𝑆𝑖𝑔𝑛(𝑚𝑝𝑘, 𝑝𝑢𝑏_𝑝𝑎𝑟𝑎𝑚𝑠, 𝐼𝐷u�u�u�, 𝑚) ⟶ (𝜎) (3)

𝑉 𝑒𝑟𝑖𝑓𝑦(𝑚𝑝𝑘, 𝑝𝑢𝑏_𝑝𝑎𝑟𝑎𝑚𝑠, 𝐼𝐷, 𝑚, 𝜎) ⟶ 𝑡𝑟𝑢𝑒/𝑓𝑎𝑙𝑠𝑒 (4)

IBSs according to Definition 3.1 can be used in the following way. Initially the system

is set up according to the desired security level. For each user, a private key needs to be

extracted using the 𝐾𝑒𝑦𝐸𝑥𝑡𝑟𝑎𝑐𝑡-function. Using the private key, users can sign messages

producing signatures (𝜎) of messages, which are verifiable using solely public parameters

and the public key derived from the 𝐼𝐷.

In traditional PKC systems, the private/public key pair is generated by each user. How-

ever, to use asymmetric cryptography for securing communication, the receiver needs to

know the public key of the sender. The binding between sender and her public key needs

to be secure in a way that an attacker cannot spoof a different public key and pretend to

be someone else. This can be achieved in various ways.

One way is to statically pre-distribute the public key/identity mapping to all communica-

tion partners, which comes with a huge overall storage cost. A more practical approach

is to send the public key/identity binding over the wire in combination with a signature

from a third party covering the identity binding. This way, all participants only need to

have the public key of the third party to verify the public key/identity binding. While

this increases packet sizes, it hugely reduces storage overheads for public keys on user

devices. This is essentially the way the public key/identity binding is done in the public-

key infrastructure (PKI) for the world wide web (WWW). In the practical deployment

there is more than one third party, known as certificate authority (CA), that can sign a

public key/identity binding and there is a hierarchy of CAs to ease certificate management.
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A different approach to the key management problem is to use IBC. IBC can reduce

package overhead and further simplify the key management. Here the public key can be

deduced from identity information, commonly an email address or Internet protocol (IP)

address depending on the scenario. In contrast to classical PKC, the private keys need

to be generated by the commonly trusted third party, called trusted authority (TA), key

generation center (KGC) or key-generating server (KGS) in IBC. This outsourcing of private

key generation to a trusted party is called key escrow and is a critical property of simple

IBC systems.

A third party knowing the private keys of other users is able to decrypt all messages in

an identity-based encryption (IBE) scheme and is able to forge signatures for any message

and any user in an IBS scheme. Thus IBS cannot offer real non-repudiation. In addition,

this third party is an attractive target for attacks because access to it discloses all private

information of the crypto system.

There are proposals to mitigate the key escrow problem in IBC systems. Boneh and

Franklin [9] suggest distributing the KGC over multiple servers where each server only

holds part of the master secret key. To gain access to the full master secret key multiple

servers need to collude. Distributed KGCs are widely discussed and proven secure in [10].

Another proposal by Al-Riyami and Paterson is certificateless public-key cryptography

(CL-PKC) [11]. In CL-PKC the final private key is generated by the user based on secret

information from the KGC and secret information of the user. This way the KGC cannot

forge signatures and the system is free of key escrow. However, the system is not ID-based

anymore, because public keys are no longer derivable from IDs.

3.2 Asymmetric Key Management

Employing asymmetric cryptography in real applications comes with essential auxiliary

tasks as part of the key management. To provide a good level of security to all members

of a communication system, developers have to bow to the inevitable and prepare their

systems for incidents like key exposure and key renewal. Key exposure usually requires

key renewal, since the now publicly known private key could be used to impersonate a

legitimate user.

There are various ways a user’s private key could be exposed. This can happen through

human error in manual processes and more critically, due to bugs in security relevant

protocol implementations exposed to public networks, as it has been shown recently with

the Heartbleed bug in OpenSSL [12]. After possible exposure of a private key to the public

there is only one correct process; the certificate associated with the exposed key needs to

be revoked to limit possible damage and a new certificate with new private/public key pair

needs to be obtained.

3.2.1 Traditional Public-key Infrastructure

In a PKI as used by the WWW, users can revoke their certificate at the issuing party, the

CA. However, the task of actively checking certificates for their current revocation state is

left to the clients. Basically there are two different kind of approaches to this problem:
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1. offline / asynchronous: during the verification step each user checks the certificate

against a list of keys that have been revoked, the so called certificate revocation list

(CRL). This list is issued by a CA and signed using their private key. CRLs can be

downloaded on demand or pushed to the users on a regular basis. The handling of

CRLs in the PKI is described in more detail in [13].

2. online / synchronous: for verification, the user asks a predefined server about the

current revocation state of a specific certificate to which the server responds with

a signed reply containing the current revocation state. This protocol for the PKI is

called Online Certificate Status Protocol (OCSP) [14] and allows a secure on-demand

attestation on the state of revocation of a certificate. The OCSP server is provided

by the CA that issued the certificate.

The offline approach comes with a scalability issue. The list of revoked certificates only

ever increases and has to include all revoked certificates that would otherwise still be valid.

In addition, the CRLs need to be updated at all clients at a regular bases to correctly detect

revoked certificates.

In contrast, OCSP does not require updating huge lists of certificates. However, it re-

quires that all CAs have an OCSP server running which will reply to the requests of clients

checking the revocation state of certificates. In a setup which prioritizes security over

usability, a certificate would be considered revoked if an OCSP server is not reachable.

Thus, the OCSP server introduces a single point of failure which may be under heavy load

considering each validation of a certificate requires a request to an OCSP server.

To reduce load on the OCSP server, an optimization has been proposed. OCSP stapling

[15] allows the verifier of a certificate to immediately check the revocation state without

further contacting an OCSP server. This is possible because the communication partner

already requested an OCSP response from the CA and attached it to the message to be

verified.

3.2.2 ID-based Cryptography

While IBC eases key distribution compared to traditional PKI, the problems of key manage-

ment are of at least similar complexity. Especially the inherent implicit binding of public

key and identity in IBCmakes it hard to revoke keys for users. Simply adding the identity to

a revocation list would prevent the user of that identity from ever sending signedmessages

again. Early systems using IBC avoided the classic approach of revocation altogether and

instead went with automatic key renewal [9]. Here Boneh and Franklin proposed to add

time related information to the identity before deriving the associated public key from it,

e.g. identity + year. In this way users are required to get a new private key from the

TA each year and the TA just stops handing out private keys to revoked users. However,

adding time related information requires all users to fetch a new private key from the TA

in the common time frame.

Revoking public keys in an IBC system equals revoking the associated identity. If how-

ever the identity is hard to change (like static IP addresses), the identity string needs to
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be extended to still allow revocation and rekeying. Extending the identity string with

additional information is nontrivial. Identities in IBC systems need to be easy to predict

to allow easy verification. Adding a rough timestamp as proposed by Boneh and Franklin

still allows easy verification considering loosely synchronized clocks between the users.

However, adding hard to predict data, e.g. issue numbers, to identities complicates the

verification process as information about the current valid issue number needs to obtained

out-of-band [16, p. 64].

Boldyreva, Goyal, and Kumar [17] proposed an IBE system with improved revocation

handling, providing logarithmic scaling for maintenance work for all users of the system

as compared to linear within a revocation time frame. However, it heavily uses PBC and

thus comes with great computational complexity.

Considering the two major environments where constraint devices are in wide use—the

Internet of Things (IoT) and wireless sensor networks (WSNs)—the key management

properties are of different relevance in each environment. While required continuous key

updates within the revocation timeframe in an IBC setup might well work in small WSNs

with up to 1000 nodes, in a system at the scale of the IoT this could become a greater

problem. The flexible key management in traditional PKI setups on the other hand allow

for various different ways of providing revocation information to the users of the system

and is easily distributable.

3.3 Mathematical Background of Groups, Rings and Fields

In this section, the basic mathematical building blocks are described for quick reference in

this work. This covers groups, rings, and finite fields, the requirements for crypto systems

based on numbers modulo prime and ECC.

Shoup [18, p. 126] defines a group as the following:

Definition 3.2. An abelian group is a set 𝐺 together with a binary operation ⋅ on 𝐺 such

that:

1. for all 𝑎, 𝑏, 𝑐 ∈ 𝐺, 𝑎 ⋅ (𝑏 ⋅ 𝑐) = (𝑎 ⋅ 𝑏) ⋅ 𝑐, (i.e. ⋅ is associative),

2. there exists 𝑒 ∈ 𝐺 (called the identity element) such thar for all 𝑎 ∈ 𝐺, 𝑎⋅𝑒 = 𝑎 = 𝑒⋅𝑎,

3. for all 𝑎 ∈ 𝐺 there exists 𝑎′ ∈ 𝐺 (called the inverse of a) such that 𝑎 ⋅ 𝑎′ = 𝑒 = 𝑎′ ⋅ 𝑎;

4. for all 𝑎, 𝑏 ∈ 𝐺, 𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎 (i.e., ⋅ is commutative).

He also defines[18, p. 166] a ring as:

Definition 3.3. A commutative ring with unity is a set 𝑅 together with addition and mul-

tiplication operations on 𝑅, such that:

1. the set 𝑅 under addition forms an abelian group, and we denote the additve identity

by 0u�,
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2. multiplication is associative; that is, for all 𝑎, 𝑏, 𝑐 ∈ 𝑅, we have 𝑎(𝑏𝑐) = (𝑎𝑏)𝑐,

3. multiplication distributes over addition; that is, for all 𝑎, 𝑏, 𝑐 ∈ 𝑅, we have 𝑎(𝑏+𝑐) =
𝑎𝑏 + 𝑎𝑐 and (𝑏 + 𝑐)𝑎 = 𝑏𝑎 + 𝑐𝑎,

4. there exists a multiplicative identity; that is, there exists an element 1u� ∈ 𝑅, such

that 1u� ⋅ 𝑎 = 𝑎 = 𝑎 ⋅ 1u� for all 𝑎 ∈ 𝑅,

5. multiplication is commutative; that is, for all 𝑎, 𝑏 ∈ 𝑅, we have 𝑎𝑏 = 𝑏𝑎.

Definition 3.4. The characteristic of a ring 𝑅, is defined as the smallest number of times

one has to add the multiplicative identity, 1, with itself to get the additive identity, 0. In
the case the additive identity is never reached, the characteristic is defined as 0. It is often
written as 𝑐ℎ𝑎𝑟(𝑅).

Menezes, Oorschot, and Vanstone define fields [19, p. 77] and finite files [19, p. 80-81] in

the following way:

Definition 3.5. A field is a commutative ring in which all non-zero elements have multi-

plicative inverses.

Definition 3.6. A finite field is a field 𝐹 which contains a finite number of elements. The

order of 𝐹 is the number of elements in 𝐹 .

Finite fields are also known as Galois fields (𝐆𝐅) [20, p. 31] and main examples for finite

fields are:

1. Prime fields: 𝔽u� or 𝐆𝐅(𝑝) where 𝑝 is prime

2. Extensions of fields: 𝔽u�u� or 𝐆𝐅(𝑝u�) where 𝑝 is prime and 𝑛 is a non-zero positive

integer

The characteristic of the field is equal to the prime 𝑝: 𝑐ℎ𝑎𝑟(𝔽u�) = 𝑐ℎ𝑎𝑟(𝔽u�u�) = 𝑝.

3.4 Elliptic-curve Cryptography

ECC was first suggested independently by Miller [21] and Koblitz [22] in the mid 1980s.

The most popular uses today are Elliptic Curve DSA (ECDSA) and Elliptic Curve Diffie-

Hellman (ECDH). The primary advantage of ECC compared to classic arithmetic on prime

groups like they are used by RSA [23] or Digital Signature Algorithm (DSA) [24] is the

hardness of the mathematical problem behind it.

There exist algorithms for solving the RSA-problem or the discrete logarithm prob-

lem (DLP) in finite fields that have subexponential-time complexity [19, Chapter 2]. The

index-calculus algorithm for solving DLP in 𝔽u� has a time complexity given in L-notation

[19, p. 60] of 𝐿u�[1
2 , 𝑐] with constant 𝑐 > 0 [19, p. 112]. The L-notation is defined as

𝐿u�[𝛼, 𝑐] = 𝑂 (𝑒(u�+u�(1))(ln u�)u�(ln ln u�)1−u�
) with the positive constant 𝑐 and 0 < 𝛼 < 1 [19,

p. 60, Eqn. 2.3].
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However, until now the best known algorithm to solve the elliptic curve discrete log-

arithm problem (ECDLP) has exponential-time complexity. For general elliptic curves

the best known algorithm to solve ECDLP is Pollard’s rho algorithm for logarithms [25].

This algorithm has polynominal-time complexity of 𝑂(√𝑝) in the size of the elliptic curve

group. However, the input of complexity descriptions of algorithms is commonly defined

in the number of bits. With 𝑝 being a number of 𝑛 bits, testing all values of 𝑝 would take a

time of 𝑂(2u�). Thus the runtime complexity of Pollard’s rho algorithm for general elliptic

curves with 𝑝 = 𝑂(2u�) becomes 𝑂(
√

2u�) = 𝑂(2u�
1
2 ) = 𝑂(2 u�

2 ). This clearly describes an
exponential-time complexity algorithm.

Definition 3.7. The discrete logarithm problem is defined as finding element 𝑥 for a given

𝑎, 𝑔 and 𝑝, 𝑝 being a large prime, in the formula:

𝑎 ≡ 𝑔u� mod 𝑝 (5)

The corresponding problem in elliptic curve groups is called ECDLP.

Definition 3.8. The elliptic curve discrete logarithm problem is defined as finding 𝑛 ∈ ℤ
given 𝑃 , 𝑄 ∈ 𝐸(𝔽u�) in the following function. 𝐸 is describing the elliptic curve function

and 𝔽u� the finite field used for the coordinates.

𝑄 = 𝑛𝑃 (6)

Symmetric Asymmetric (RSA / DLOG) Asymmetric (Elliptic Curve)

64 816 128
80 1248 160
112 2432 224
128 3248 256
160 5312 320

Table 4: ECRYPT II comparison of key sizes (in bits) at the same security level between

symmetric, asymmetric (RSA) and elliptic curve [26].

Due to the hardness of the ECDLP, one can use smaller groups in ECC-based schemes

with the same equivalent symmetric security level as compared to schemes based on RSA

or DLP. This leads to smaller key sizes and smaller signatures, which is especially beneficial

in low-power computing environments. A comparison of key sizes of equal security in

symmetric, traditional asymmetric and the elliptic curve setting can be found in Table 4

and takes latest hardware advances and the best algorithms for the cryptographic prob-

lems into account.
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3.4.1 Traditional Weierstrass Curves

Elliptic curves as mathematical groups, are commonly defined in short Weierstrass form

as

𝐸(𝔽u�) = {(𝑥, 𝑦) ∈ 𝔽u�
2 ∶ 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏} ⋃ 𝒪 , (7)

with point𝒪 representing the additive identity and𝔽u� being the field used for the𝑥, 𝑦-coordinates.
Additionally, to avoid certain attacks the elliptic curves are required to be non-singular.

This requires a discriminat of Δ = 4𝑎3 + 27𝑏2 ≠ 0.
For elliptic curves defined over the real numbers (ℝ), 𝒪 can also be seen as a point

infinitely far off the x-axis. A visualization of an elliptic curve defined over ℝ can be seen

in Figure 1. However, in ECC a finite field (𝔽u�) is commonly used. 𝔽u� is of prime (𝑞 = 𝑝)
or prime power (𝑞 = 𝑝u�) order, where 𝑝 is prime and 𝑘 is a positive integer.

A group operation needs to be defined to form a group of a set of elliptic curve points.

For elliptic curves this is the addition of two elliptic curve points using the well known

chrod-and-tangent method. Addition works by mirroring the third intersection of the

chord over two points (𝑄, 𝑅) with the curve over the x-axis and can be seen in Figure 1(a).

Point doubling, the addition of a point with itself, is defined in a similar fashion, just that

the ray already intersects the curve in the point 𝑃 twice, with the ray being the tangent at

that point, as seen in Figure 1(b).

-2 -1 1 2

-3

-2

-1

1

2

3

P

Q

R=P+Q

−R

(a) Addition: u� + u�

-2 -1 1 2

-3

-2

-1

1

2

3

P

2P

−2P

(b) Doubling: 2u�

Figure 1: Geometric description of elliptic curve group operations in 𝐸(ℝ) for the curve
𝑦2 = 𝑥3−3𝑥+3 rendered by Sage[27]. Chord(a) between𝑃 and𝑄, and tangent(b)

at point 𝑃 in red.

While elliptic curves over ℝ work well for geometric description of the addition and

doubling law on elliptic curves, they are unsuitable for cryptographic implementation.

Elements of ℝ are hard to represent and precise computations are expensive for computers.

Cryptographic applications use elliptic curves over finite fields. For example, the same

elliptic curve as in Figure 1 however over 𝔽43, can be seen in Figure 2.

There are various easily computable methods for calculating point addition and point

10
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Figure 2: Elliptic curve 𝐸(𝔽43) ∶ 𝑦2 = 𝑥3 − 3𝑥 + 3 rendered by Sage[27].

doubling for 𝐸(𝐾). The points over an elliptic curve together with the elliptic curve oper-

ation, the addition of two points, form an Abelian group, (𝐸(𝐾), +). The point at infinity,
𝒪, serves as identity element of the group.

The order of the elliptic curve group, #𝐸(𝐾), is defined as the number of points satis-

fying the elliptic curve equation 𝐸 over the field 𝐾 plus the point at infinity 𝒪. For prime

fields, the order of an elliptic curve #𝐸(𝔽u�) is equal to 𝑞 + 1 − 𝑡 with |𝑡| ≤ 2√𝑞 [28].

Definition 3.9. The order of point 𝑃 is defined as the smallest 𝑘, the number of self-

additions required to reach 𝒪: 𝑘𝑃 = 𝑃 + 𝑃 + ⋯ + 𝑃⏟⏟⏟⏟⏟⏟⏟
u� times

= 𝒪.

The cyclic group of elliptic curve points is defined by the generator or base point 𝑃 .

Repeated application of the group operation to 𝑃 generates all elements of the group. For

an elliptic curve group of order 𝑛, there exists a point 𝑃 , which generates the elliptic curve

group 𝐸(𝔽u�) = {𝑘𝑃 ∶ 1 ⩽ 𝑘 ⩽ 𝑛}.

Since the discovery of ECC, there have been a wide variety of choices in both the kind

of elliptic curves to use and in the underlying field.
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The choice of curve parameters and field type is not always apparent and universal.

The choice of field—prime field (𝔽u�) or binary extension field (𝔽2u�)—can have a crucial

influence on the performance depending on hardware architecture [29]. Bilinear pairings

transfer supersingular curves over 𝔽u� to 𝔽∗
u�u� , where the DLP is easier to solve compared

to the hard ECDLP. This fact is used by the MOV attack [30]. Some elliptic curves over

𝔽u�u� transfer to hyperelliptic curves, where the ECDLP is easier to solve [31]. Elliptic curves

over 𝔽u� or 𝔽2u� where 𝑝 is a prime are not vulnerable to this attack.

In 2008 Koblitz, Koblitz, andMenezes [32] provided an overview on the evolution of ECC.

This includes three sections on the selection on secure elliptic curves andmany sometimes

conflicting properties which are relevant for the security of cryptography systems based

on elliptic curves.

Conservative choices for elliptic curves have been standardized by NIST [24] and Brain-

pool [33] for different security levels. The standards commonly follow the approach of

generating random curves in the spectrum of curves not vulnerable to currently known

attacks.

Example: ECDSA Signature A popular and widespread used signature algorithm based on

ECC is ECDSA [28]. The following description of ECDSA assumes already defined domain

parameters: elliptic curve 𝐸, finite field used for point coordinates on the curve 𝔽u�, the

order of the elliptic curve group 𝑛 and its based point 𝐺. The order of the elliptic curve

group is described with 𝑛.

1. Key Generation

a) Choose a random private key 𝑥 ∈ ℤu�.

b) Compute the corresponding public key 𝑄 = 𝑥𝐺.

2. Signature Generation

a) Choose a random integer 𝑘 ∈ ℤu�.

b) Set (𝑥1, 𝑦1) = 𝑘𝐺.

c) Compute 𝑟 = 𝑥1 mod 𝑛 and repeat from a) if 𝑟 = 0.
d) Compute hash 𝑒 of message 𝑚 with 𝑒 = 𝐻(𝑚).
e) Set 𝑠 = 𝑘−1(𝑒 + 𝑥𝑟) mod 𝑛 and repeat from a) if 𝑠 = 0.
f) The final signature of message 𝑚 is (𝑟, 𝑠).

3. Signature Verification

Verifying signature (𝑟, 𝑠) of message 𝑚 by an entity with public key 𝑄 works as

follows:

a) Verify that 𝑟, 𝑠 ∈ ℤu�.

b) Compute 𝑒 = 𝐻(𝑚).
c) Set 𝑤 = 𝑠−1 mod 𝑛.

12



d) Compute 𝑢u� = 𝑒𝑤 mod 𝑛 and 𝑢2 = 𝑟𝑤 mod 𝑛.
e) Set 𝑋 = 𝑢1𝐺 + 𝑢2𝑄.

f) Reject the signature if 𝑋 = 𝒪.
g) If 𝑋 ≠ 𝒪, convert 𝑥1 of 𝑋 = (𝑥1, 𝑦1) to an integer and accept signature if

𝑥1 = 𝑟 mod 𝑛.

3.4.2 Modern Edwards Curves

There are various different ways to define elliptic curves over a field 𝔽u� beside the classic

shortWeierstrass equation shown earlier. Even when using the short Weierstrass equation

there are various forms to calculate the curve arithmetic. Curve arithmetic covers the point

representation used in the system. Points can be represented in affine, standard projective,

Jacobian projective and more different forms. For each form there are optimized addition

formulas. They describe what low level arithmetic operations in the underlying field need

to be carried out to compute one group operation, point addition or point doubling. The

different addition formulas often differ in their computational complexity. There has been

steady development to find representations and formulas which minimse the number of

operations in the underlying field, or avoid expensive field operations like inversions. The

different choices of doing arithmetic on elliptic curves are explained in great detail in [20,

Chapter 13].

The most recent development in this area is the use of Edwards curves [34] for crypto-

graphic applications. Bernstein and Lange [35] definemodern Edwards curves as 𝑥2 +𝑦2 =
𝑐2 (1 + 𝑑𝑥2𝑦2), with 𝑐𝑑 (1 − 𝑑𝑐4) ≠ 0. The example curve—Curve1174—is shown in Fig-

ure 3. In contrast to Weierstrass curves, the identity element of a group of points on the

curve is not a special point which needs to be handled as edge case, but instead is a point

on the curve, i.e. 𝒪 = (0, 𝑐).
The advantage of Edwards curves and its associated arithmetic is not only in processing

speed but also in its security. Edwards curves provide the fastest group operation among

the currently known curve forms. Their security advantage lies in the completeness of

the addition formulas. This means they work with any pair of input points, including the

identity point or two identical points. In contrast to short Weierstrass curves and their

associated addition formulas, where there are different formulas for the different cases of

doubling and addition involving the identity element 𝒪. This opens a timing side-channel

in the computations on the elliptic curve which increases the attack surface.

A detailed comparison of the costs of group operations in the different representations

is given in [35, Section 4]. In addition, Weierstrass curves and Edwards curves can be natu-

rally transformed into each other. Transformation may require a change of the underlying

field [35].

3.5 Pairing-based Cryptography

Initially pairing-based cryptography (PBC) was used for cryptanalytic purposes only. The

most prominent example for this is the MOV attack [30] which utilizes bilinear pairings to
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Figure 3: The Edwards curve Curve1174 over ℝ. The identity element of the elliptic curve

group is the red highlighted point 𝒪 = (0, 1).

reduce the discrete logarithm problem in the elliptic curve group 𝐸(𝐹u�) of a supersingular
curve to a classic discrete logarithm problem in an extension field 𝔽u�u� .

The DLP in 𝔽u�u� is easier to solve than the ECDLP. This means the security of the ECC

system is no longer defined by the size of the elliptic curve group of 𝐸(𝐹u�) but of the size
of the extension field 𝔽u�u� . Care needs to be taken to choose 𝑝 big enough that the system

remains secure with respect to the size of the extension field and the classic DLP.

Joux first suggested to use bilinear pairings for cryptographic purposes in 2000 [36]1. He

showed that bilinear pairings not only allow the breaking of existing ECC system which

use certain curves but that they also help to build new cryptographic protocols that have

not been possible before. Joux proposed a protocol for computing a shared secret among

three parties, also known as tripartite Diffie-Helman, in one round.

Shortly after Boneh and Franklin introduced the first realization of IBE using PBC [9].

The concept of IBE was already proposed by Shamir in 1985 but only the advances in PBC

1He later provided a revised version with [37].
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allowed for a practical efficient implementation of it.

Definition 3.10. A bilinear pairing is a map ̂𝑒 from elements of two groups, 𝐺1 and 𝐺2,

in a target group 𝐺u� : ̂𝑒 ∶ 𝐺1 × 𝐺2 ⟶ 𝐺u� . With 𝑎, 𝑏 ∈ ℤ, 𝑃 ∈ 𝐺1 and 𝑄 ∈ 𝐺2, it has the

following properties:

• Bilinearity:

̂𝑒(𝑎𝑃 , 𝑏𝑄) = ̂𝑒(𝑃 , 𝑏𝑄)u� = ̂𝑒(𝑎𝑃 , 𝑄)u� = ̂𝑒(𝑃 , 𝑄)u�u� (8)

• Non-degeneracy:

∀𝑃 ∈ 𝐺1 ∶ 𝑃 ≠ 0 ⟹ ∃𝑄 ∈ 𝐺2 ∧ ̂𝑒(𝑃 , 𝑄) ≠ 1 (9)

∀𝑄 ∈ 𝐺2 ∶ 𝑄 ≠ 0 ⟹ ∃𝑃 ∈ 𝐺1 ∧ ̂𝑒(𝑃 , 𝑄) ≠ 1 (10)

• Efficiently computable: for bilinear pairings to be useful in cryptographic protocols,

efficient implementations computing the pairing must exist. This is the case for the

Weil- and Tate-pairing usingMiller’s algorithm [38]. Further discussion on efficiency

can be found in [39].

In addition to Definition 3.10, one distinguishes two forms of pairings commonly found

in the literature:

• Symmetric pairings where two elements of the same group are mapped into a target

group: ̂𝑒 ∶ 𝐺1 × 𝐺1 ⟶ 𝐺u�

• Asymmetric pairingswhere two elements of different groups aremapped into a target

group: ̂𝑒 ∶ 𝐺1 × 𝐺2 ⟶ 𝐺u�

The symmetric case can be seen as a special case of the asymmetric one, with 𝐺1 = 𝐺2
[40].

The only way to implement symmetric pairings is using supersingular curves over 𝔽u�.

𝑞 describes the number of elements in the field and has to be big enough, considering

most supersingular curves have a low embedding degree 𝑘, typically 𝑘 ≤ 6. 𝐺1 and 𝐺2 are

groups of points on an elliptic curve and 𝐺u� a multiplicative group in a finite field. In case

of 𝐺1 = 𝐸(𝔽u�), 𝐺u� is the multiplicative group 𝔽∗
u�u� [40]. Since there are subexponential

time algorithms to solve the DLP in a multiplicative finite field group, 𝑞 needs to be big

enough so the system will be resilient against the MOV attack at the desired security level.

A popular implementation of asymmetric pairings is the use of BN-curves [41], which

are special non-supersingular curves with a relative high embedding degree (𝑘 = 10). In
this case the new group 𝐺2 is the subgroup of the group of points of 𝐸(𝔽u�u�).

As for the actual pairing function, usually called 𝑒 or ̂𝑒, there are two choices: the Weil

and Tate pairings. Both are computed via Miller’s algorithm, however the Tate pairing can

provide performance benefits over the Weil pairing [42].
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Example: BLS Signature One of the simplest examples of bilinear pairings used in cryptog-

raphy is the BLS [43] signature. It consist of the following three functions, when used with

symmetric pairings:

1. Key Generation: Choose random 𝑥 ∈ ℤu�, the user’s private key and publish 𝑣 = 𝑔u�,

the corresponding public key. 𝑔 is the generator of 𝐺1.

2. Signature Generation: A signature is generated by first hashing a message 𝑚, ℎ =
𝐻(𝑚), and computing the signature 𝜎 = ℎu�.

3. Signature Verification: Given a public key 𝑣 and a signature 𝜎, message 𝑚 is verified

by asserting ̂𝑒(𝜎, 𝑔) = ̂𝑒(𝐻(𝑚), 𝑣).

The verification holds because with 𝜎 = 𝐻(𝑚)u� and 𝑣 = 𝑔u�, ̂𝑒(𝜎, 𝑔) = ̂𝑒(𝐻(𝑚)u�, 𝑔) =
̂𝑒(𝐻(𝑚), 𝑔u�) = ̂𝑒(𝐻(𝑚), 𝑣).
This signature does not only generate smaller signatures compared to standard ECDSA, it

is also much simpler in its description and does not require random numbers for signature

generation.

4 Experiment

To test the viability of identity-based signatures (IBSs) for constrained devices, three differ-

ent types of IBSs are implemented and tested for performance. In case of elliptic curve

based signature schemes, different curves are tested to explore how the choice of the curve

influences the performance. For comparison, well established classic public key signatures

like RSA and Elliptic Curve DSA (ECDSA) are included in the overall comparison. For

the elliptic curve based schemes, in addition, different elliptic curves, beyond publicly

standardized curves, are evaluated.

4.1 Schemes

In this section, the evaluated signature schemes are shortly introduced and the ID-based

signature schemes are defined, the way they have been implemented later. The computa-

tional complexity of signature generation and verification, and the signature size are given

in terms of group operations and group elements respectively.

4.1.1 Classic Asymmetric Signature Schemes

For simple comparison against commonly know asymmetric signature schemes, RSA [23]

and ECDSA [28] are part of the benchmark. For these schemes the standard implementa-

tion in RELIC [5] is used.
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4.1.2 SH-IBS (RSA based scheme)

This is the first proposal for an IBS scheme by Shamir from 1985 [3]. It is based on the RSA

crypto system and its security depends on the hardness of integer factorization in the RSA

problem.

Setup: The setup is similar to standard RSA crypto system setup. For the setup given

security parameter 𝑘 proceed with the following steps:

1. Generate two distinct primes 𝑝 and 𝑞 at random with 2 u�−1
2 < 𝑝, 𝑞 < 2 u�

2

2. Calculate 𝑛 and generate the master public key, 𝑒, via:

𝑛 = 𝑝 ⋅ 𝑞 (11)

𝑒 ∈ [1 ∶ 𝜑(𝑛)] ∧ 𝑒 ⟂ 𝜑(𝑛) (12)

𝑒 is relative prime to 𝜑(𝑛) = 𝜑(𝑝)𝜑(𝑞) = (𝑝 − 1)(𝑞 − 1)

3. Calculate the master private key, 𝑑:

𝑑 = 𝑒−1 mod 𝜑(𝑛) (13)

4. Choose two commonly known secure hash functions: 𝐻1 maps opaque user identi-

fication strings to values in ℤu� and 𝐻2 is used as part of signature generation and

verification:

𝐻1 ∶ {0, 1}∗ → ℤu� (14)

𝐻2 ∶ ℤu� × {0, 1}∗ → ℤu� (15)

5. Publish public system parameters:

⟨𝑛, 𝑒, 𝐻1, 𝐻2⟩ (16)

Key Extraction: To generate the private key, 𝑠u�u� for a user with the identity 𝐼𝐷 proceed

with the following step:

1. Calculate user private key with:

𝑠u�u� = 𝐻1 (𝐼𝐷)u� mod 𝑛 (17)

Signature Generation: For generating the signature for message 𝑚 ∈ {0, 1}∗
do:

1. Generate random 𝑟 ∈ ℤu�.
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2. Calculate the signature 𝜎 = (𝑠, 𝑡):

𝑡 = 𝑟u� mod 𝑛 (18)

𝑠 = 𝑠u�u� ⋅ 𝑟u�2(u�,u�) mod 𝑛 (19)

Signature Verification: To verify signature 𝜎 = (𝑠, 𝑡) for message 𝑚 and user identity 𝐼𝐷
belonging to that message, do the following:

1. Check whether the equation holds:

𝑠u� ?= 𝐻1(𝐼𝐷) ⋅ 𝑡u�2(u�,u�) mod 𝑛 (20)

Complexity Overview: As can be seen in the last two paragraphs, signature generation re-

quires two modular exponentiations in ℤu� and signature verification one modular multi-

exponentiation in ℤu� . The cost of hashing and multiplication is negligible compared to

the exponentiations. The signature defined as 𝜎 = (𝑠, 𝑡) requires two elements of ℤu� .

4.1.3 vBNN-IBS (Elliptic-curve based scheme)

vBNN-IBS is a ID-based signature scheme described by Cao, Kou, Dang, et al. as part of

IMBAS [44].

Setup: To initialize the system for security parameter 𝑘, take the following steps:

1. Chose an elliptic curve with the parameters 𝐸/𝔽u�, 𝑃 and 𝑝 satisfying the security

parameter 𝑘.

2. Generate random master secret key 𝑥 ∈ ℤu� and set the master public key, 𝑃0 = 𝑥𝑃 .

3. Define two cryptographic hash functions, 𝐻1 and 𝐻2:

𝐻1 ∶ {0, 1}∗ × 𝔾 → ℤu� (21)

𝐻2 ∶ {0, 1}∗ × {0, 1}∗ × 𝔾 × 𝔾 → ℤu� (22)

4. Publish public system parameters:

⟨𝐸/𝔽u�, 𝑃 , 𝑝, 𝑃0, 𝐻1, 𝐻2⟩ (23)

Key Extraction: To generate the private key, 𝑠u�u�, for a user with the identity 𝐼𝐷, carry on

with the following steps:

1. Calculate a random 𝑟 ∈ ℤu� and compute 𝑅 = 𝑟𝑃 .
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2. Using the master secret key 𝑥, calculate:

𝑐 = 𝐻1(𝐼𝐷, 𝑅) (24)

𝑠 = 𝑟 + 𝑐𝑥 (25)

3. The private key for the user with the identity 𝐼𝐷 is 𝑠u�u� = (𝑅, 𝑠).

Signature Generation: For generating the signature 𝜎 for message 𝑚 ∈ {0, 1}∗
do:

1. Generate random 𝑦 ∈ ℤu� and compute 𝑌 = 𝑦𝑃 .

2. Compute the following:

ℎ = 𝐻2(𝐼𝐷, 𝑚, 𝑅, 𝑌 ) (26)

𝑧 = 𝑦 + ℎ𝑠 (27)

The final signature for message 𝑚 is 𝜎 = (𝑅, ℎ, 𝑧).

Signature Verification: To verify if message 𝑚 from a user with the identity 𝐼𝐷 is correctly

authenticated by signature 𝜎 = (𝑅, ℎ, 𝑧), proceed with:

1. Compute the following:

𝑐 = 𝐻1(𝐼𝐷, 𝑅) (28)

𝑇 = 𝑧𝑃 − ℎ(𝑅 + 𝑐𝑃0) (29)

2. To verify the signature, check whether the following equation holds:

ℎ ?= 𝐻2(𝐼𝐷, 𝑚, 𝑅, 𝑇 ) (30)

Complexity Overview: Signature generation comes with the cost of one scalar multiplica-

tion in 𝐸(𝔽u�) from step 1 and signature verification costs 3 scalar multiplications in 𝐸(𝔽u�)
from equation 26. The signature size, with 𝜎 = (𝑅, ℎ, 𝑧), is one element of 𝐸(𝔽u�) and two

elements of ℤu�.

4.1.4 TSO-IBS (Pairing based scheme)

Under TSO-IBS [45], we consider the ID-based signature scheme proposed by Tso, Gu,

Okamoto, et al. Contrary to the other schemes evaluated in this work, TSO-IBS provides

message recovery. This means that the signature generation algorithm produces a signa-

ture which already includes the message or where the original message can be extracted

from by any receiver. This aims to reduce the overall overhead of the signature on the

communication traffic.
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In addition, TSO-IBS is based on symmetric bilinear pairings. They propose two schemes,

one for fixed sized messages and another one for arbitrary sized messages. In this section

the first one will be described.

Setup: To initialize the system proceed as follows:

1. 𝐺1 and 𝐺2 are two cyclic groups of order q, |𝑞| = 𝑙1 + 𝑙2

2. There is a symmetric bilinear pairing: ̂𝑒 ∶ 𝐺1 × 𝐺1 ⟶ 𝐺2

3. Generate random 𝑠 ∈ ℤ∗
u� as master secret key.

4. Set 𝑃u�u�u� = 𝑠𝑃 as the master public key.

5. Calculate 𝜇 = ̂𝑒(𝑃 , 𝑃 ).

6. Define four cryptographic hash functions 𝐻 , 𝐻1, 𝐹1 and 𝐹2:

𝐻 ∶ {0, 1}∗ ⟶ ℤ∗
u� (31)

𝐻1 ∶ {0, 1}∗ ⟶ {0, 1}u�1+u�2 (32)

𝐹1 ∶ {0, 1}u�1 ⟶ {0, 1}u�2 (33)

𝐹2 ∶ {0, 1}u�2 ⟶ {0, 1}u�1 (34)

7. Publish the public system parameters:

⟨𝐺1, 𝐺2, ̂𝑒, 𝑞, 𝑃 , 𝑃u�u�u�, 𝜇, 𝐻, 𝐻1, 𝐹1, 𝐹2, 𝑙1, 𝑙2⟩ (35)

Key Extraction: To generate the private key, 𝑠u�u� for a user with the identity 𝐼𝐷 proceed

with the following step:

1. 𝑠u�u� = (𝐻(𝐼𝐷) + 𝑠)−1𝑃

Signature Generation: For signing message 𝑚 ∈ {0, 1}u�1 do:

1. Generate random 𝑟1 ∈ ℤ∗
u�.

2. Compute 𝛼 = 𝐻1(𝐼𝐷, 𝜇u�1) ∈ {0, 1}u�1+u�2 .

3. Compute 𝛽 = 𝐹1(𝑚)|| (𝐹2 (𝐹1 (𝑚)) ⨁ 𝑚) and 𝑟2 = [𝛼 ⨁ 𝛽].

4. Compute 𝑈 = (𝑟1 + 𝑟2)𝑠u�u�.

The final signature for message 𝑚 is 𝜎 = (𝑟2, 𝑈).
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Signature Verification: To verify a signature 𝜎 = (𝑟2, 𝑈) and recover the message �̃� from

a user with identity 𝐼𝐷, a verifier does the following steps. ̃𝛼, ̃𝛽 and �̃� are the recovered

variables 𝛼, 𝛽 and 𝑚 from signature generation respectively.

1. Calculate public key of user via 𝑃u�u� = 𝐻(𝐼𝐷)𝑃 + 𝑃u�u�u�.

2. Compute ̃𝛼 = 𝐻1(𝐼𝐷, ̂𝑒(𝑈, 𝑃u�u�) ⋅ 𝜇−u�2).

3. Compute ̃𝛽 = 𝑟2 ⨁ ̃𝛼.

4. Recover message �̃� = | ̃𝛽|u�1
⨁ 𝐹2(u�2

| ̃𝛽|).

5. The signature 𝜎 and the recovered message �̃� are valid, if u�2
| ̃𝛽| = 𝐹1(�̃�).

Correctness of Signature: Essential for the correctness of the signature is the recovery of ̃𝛼
from public information and its equality to𝛼. For this we show that ̂𝑒(𝑈, 𝑃u�u� ⋅𝜇−u�2) = 𝜇u�1 .

̂𝑒 (𝑈, 𝑃u�u�) ⋅ 𝜇−u�2 (36)

= ̂𝑒 ((𝑟1 + 𝑟2) ⋅ 𝑠u�u�, 𝑃u�u�) ⋅ 𝜇−u�2 (37)

= ̂𝑒 (𝑠u�u�, 𝑃u�u�)(u�1+u�2) ⋅ 𝜇−u�2 (38)

= ̂𝑒 ((𝐻(𝐼𝐷) + 𝑠)−1 ⋅ 𝑃 , 𝑃u�u�)
(u�1+u�2)

⋅ 𝜇−u�2 (39)

= ̂𝑒 ((𝐻(𝐼𝐷) + 𝑠)−1 ⋅ 𝑃 , 𝐻(𝐼𝐷) ⋅ 𝑃 + 𝑃u�u�u�)
(u�1+u�2)

⋅ 𝜇−u�2 (40)

= ̂𝑒 ((𝐻(𝐼𝐷) + 𝑠)−1 ⋅ 𝑃 , 𝐻(𝐼𝐷) ⋅ 𝑃 + 𝑠 ⋅ 𝑃)
(u�1+u�2)

⋅ 𝜇−u�2 (41)

= ̂𝑒 ((𝐻(𝐼𝐷) + 𝑠)−1 ⋅ 𝑃 , (𝐻(𝐼𝐷) + 𝑠) ⋅ 𝑃)
(u�1+u�2)

⋅ 𝜇−u�2 (42)

= ̂𝑒 (𝑃 , 𝑃 )(u�1+u�2) ⋅ 𝜇−u�2 (43)

=𝜇(u�1+u�2) ⋅ 𝜇−u�2 (44)

=𝜇u�1 (45)

Complexity Overview: The generation of signatures costs one exponentiation in 𝐺2, from

the 𝜇u�1 in step 1, and one scalar multiplication in 𝐸(𝔽u�) from step 4. Signature verification

is more expensive, with one scalar multiplication in 𝐸(𝔽u�) in step 1, one pairing compu-

tation and one exponentiation in 𝐺2 in step 2. The signature size, including the original

message, is one lement in 𝐺1 plus |𝑞|, the bit length of the binary representation of 𝑞.

4.2 Signature Size and Performance

In this section, an overview about the asymmetric signature schemes at hand is given with

regard to the abstract computational complexity for signature generation and signature

verification in Table 5. The complexity is expressed in abstract operations on the mathe-

matical objects. Furthermore, the size of produced signatures is quantified by the number
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of elements from the groups used in the signature. This table is similar to table 1 in [6]

from Kiltz and Neven, although with different signature schemes.

The operations used in the comparison are exponentiations (exp.) in ℤu� , ℤu� or 𝐸(𝔽u�),
modular multiplicative inverse (mod. inv.) in ℤu�, modular multi-exponentiation (mexp.)

in ℤu� and pairing computation ( ̂𝑒(⋅, ⋅)). Computing the modular multiplicative inverse

is the most computationally expensive operation. Modular multi-exponentiation is an

optimization for cases where multiple elements are exponentiated with the same power.

Pairing computations are more expensive than exponentiations in the elliptic curve group

𝐸(𝔽u�).
Group elements for signature size are ℤu� or ℤu� for numbers in a prime group or a group

of integers modulo some large 𝑁 where 𝑁 is the product of two large primes or elements

of 𝐸(𝔽u�), which can be compressed to nearly one element in 𝔽u�.

Scheme Complexity Signature size

Signing Verification

RSA [23] 1 exp. in ℤu� 1 exp. in ℤu� ℤu�

ECDSA [28]
1 exp. in 𝐸(𝔽u�)
1 mod. inv. in ℤu�

2 exp. in 𝐸(𝔽u�)
1 mod. inv. in ℤu�

ℤu� × ℤu�

SH–IBS [3] 2 exp. in ℤu� 1 mexp. in ℤu� ℤu� × ℤu�

vBNN-IBS [44] 1 exp. in 𝐸(𝔽u�) 3 exp. in 𝐸(𝔽u�) 𝐸(𝔽u�) × ℤu� × ℤu�

TSO-IBS [45]
1 exp. in 𝐺u� = 𝔽∗

u�u�

1 exp. in 𝐺1 = 𝐸(𝔽u�)

1 exp. in 𝐺u� = 𝔽∗
u�u�

1 exp. in 𝐺1 = 𝐸(𝔽u�)
1 pairing ̂𝑒(⋅, ⋅)

𝐺1 × |𝑞|

Note: Multiplications in the additive group 𝐸(𝔽u�) are referred to as exponentiations.

Table 5: Comparison of computational complexity and signature size of classic asymmetric

signatures and ID-based signatures.

Table 5 only gives an abstract comparison of the time and space complexity for the

different signature schemes. The actual complexity depends on the size of 𝑁 , the size and

the kind of field in use for the elliptic curves, 𝔽u�, and the actual pairing that is used. In

addition, the required sizes for RSA based schemes and elliptic curve based schemes scale

differently with the respective symmetric security level (see Table 4).

4.3 Evaluation Architecture

4.3.1 Benchmark Foundation

As a first step the schemes are implemented in Charm [4], a Python framework for crypto-

graphic prototyping.
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Charm enables nearly direct transformation from the mathematical notation used in

the papers to Python source code. However, it is to note that Charm uses multiplicative

notation for elliptic curve group operations. This means that elliptic curve point addition

is carried out, rather counter-intuitive, with the *-operator and multiplication with the

**-operator.

from charm.toolbox.ecgroup import ECGroup, ZR, G
from charm.toolbox.PKSig import PKSig

class vBNN_IBS(PKSig):
def __init__(self, groupObj):
global group,H1,H2
group = groupObj
H1 = lambda ID, R: group.hash((ID, R))
H2 = lambda ID, m, R, Y: group.hash((ID, m, R, Y))

def setup(self):
x, P = group.random(), group.random(G)
P_0 = (P ** x)
ssk = x
spk = {’P’: P, ’P_0’: P_0}
return (spk, ssk)

def keygen(self, spk, ssk, ID):
x = ssk
r = group.random()
R = spk[’P’] ** r
c = H1(ID, R)
s = r + (c * x)
return {’R’: R, ’s’: s}

def sign(self, spk, ID_A, m, Pri_A):
y = group.random()
Y = spk[’P’] ** y
h = H2(ID_A, m, Pri_A[’R’], (Y))
z = y + (h * Pri_A[’s’])
return (Pri_A[’R’], h, z)

def verify(self, spk, ID_A, m, sig):
(R, h, z) = sig
c = H1(ID_A, R)
Y = (spk[’P’] ** z) / ((R * (spk[’P_0’] ** c)) ** h)
if h == H2(ID_A, m, R, Y):
return True

return False

Listing 1: Implementation of vBNN-IBS using Charm.

Implementing the schemes in Charm provides deeper understanding of the algorithms

and test data to validate the target implementation in a more efficient environment, with

better suitability for constrained devices. An example showing the straightforward imple-

mentation of cryptographic schemes can be seen in Listing 1. This shows the implementa-

tion of vBNN-IBS [44] in Python using the Charm library.

The code used for the following benchmark however is written in C/C++ using the RELIC

toolkit [5]. The RELIC toolkit is a C library, which targets low-resource devices like wireless
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sensor nodes and runs on a wide range of architectures, namely AVR, MSP, ARM, x86 and

x86_64.

4.3.2 Test Candidates

The signature schemes presented in Subsection 4.1 are used as candidates for the following

benchmark. The benchmark measures the runtime performance of signature verification

and signature generation, and the size of the signature of the ID-based signature schemes.

The RSA-based scheme, SH–IBS, is compared to classic RSA for different security parame-

ters.

For the elliptic-curve based schemes the situation is more diverse. Here the ID-based

signature schemes are not only compared to classic ECDSA, but also with different elliptic

curves. This includes standard curves from NSA Suite B [46] like NIST P-256, and also

more modern curves like Curve1174 [47], Curve25519 [48] and Curve383187 [49]. These

also cover different security levels. The full list of curves used in the benchmark and their

security properties are listed in Table 6.

Name |𝔽u�| (bits) Symmetric Security Level (bits)

Curve1174 251 126
Curve25519 256 128
NIST-P256 256 128
Curve383187 384 192
NIST-P384 384 192
SS-P1536 1536 128

Table 6: Elliptic curves used in the benchmark and their respective symmetric security

level.

4.3.3 Implementation

The RELIC toolkit only provides a C level API to the programmer. The initial imple-

mentation in Charm has shown, that a high-level API allows a nearly direct transfer of

cryptographic schemes from papers into code. To ease development of cryptographic

schemes with the RELIC toolkit, we created C++ wrapper classes for the basic RELIC

types like bn_t(arbitrary precision numbers), ec_t(elliptic curve points) and g1_t, g2_t,
gt_t(group elements for pairing-based protocols). These wrapper classes deal with the

otherwise manual and error-prone memory management and overload mathematical op-

erators which allow cryptographic schemes from papers to be implemented in code in a

straightforward fashion.

Example code for vBNN-IBS implemented using the C++ wrapper for RELIC is shown

in Listing 2.
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using namespace relic;
assert(ep_param_set_any() == STS_OK);

// === Setup ===
bn n, x;
ec P, P_0;
ec_curve_get_ord(n);
x = bn::random();
P = ec::random();
P_0 = P * x;

// === Key Extraction ===
std::string user = ”alice@wonderland.lit”;
bn r = bn::random(), s;
ec R = P * r;
s = (r + hash_mod_bn(n, user, R) * x) % n;

// === Signature Generation ===
std::string message = ”Art␣thou␣not␣Romeo,␣and␣a␣Montague?”;
bn y = bn::random(), h, z;
ec Y;
Y = P * y;
h = hash_mod_bn(n, user, message, R, Y);
z = (y + h * s) % n;

// === Signature Verification ===
bn c = hash_mod_bn(n, user, R);
ec Z = (P * z) - (R + P_0 * c) * h;
assert((h == hash_mod_bn(n, user, message, R, Z)) && ”vBNN-IBS␣verification␣failed.”);

Listing 2: Implementation of vBNN-IBS using the RELIC toolkit C++ wrapper.

5 Results

Weuse the clang compiler (version 3.5.0) to build the benchmark and run it in two different

software and hardware environments, shown in Table 7. We used version r1861 of the

RELIC toolkit in this benchmark. We run each benchmark program five times per test

combinations and measure the wall-clock time in each run. In addition, the CPU cycle

count is measured for signature generation and verification of each test candidate. Within

the benchmark program, the RELIC toolkit is initialised and keys are generated. Afterwards

we measure the time for generating 100 signatures and measure the time for verifying 100

signatures. It is worthmentioning that themeasurements not only cover themathematical

algorithms, but also the random number generation used during signature generation.

Cycle counts are measured using the Time Stamp Counter (TSC) on the Intel and ARM

platforms. The TSC is a hardware counter available through a CPU register which incre-

ments at CPU clock frequency. It is important to note that the TSC is not synchronized

across all CPU cores on multi-core CPUs and its clock speed may change due to power

saving features of modern CPUs. The TSC is read-only and cannot be saved across events

like context switching which results in measurement variances.

Both, the time and the cycle count measured, are subject to some variations due to the

fact that the benchmark is carried out on multitasking operating systems. However, we
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Desktop Embedded

Device Laptop Raspberry Pi

OS Mac OS X 10.9.3 Debian 3.10.11-1+rpi7

Architecture Intel ARM

CPU Corei7 ARM1176

Word size 64 bit 32 bit

Clock speed 2 GHz 800 MHz

L1 Cache 64 kB 32 kB

L2 Cache 256 kB ( 256 kB )

L3 Cache 6 MB —

Note: The L2 Cache is used by the GPU on the Raspberry Pi and therefore is not available

to the CPU.

Table 7: Test environments used for the benchmark.

Asymmetric Security (Bits) RSA (bits) SH-IBS (bits)

768 768 1536
1024 1024 2048
1536 1536 3072
2048 2048 4096

Table 8: Signature size measurements for RSA and SH–IBS.

ran the benchmarks on the test systems with minimal additional system load to reduce

these variations.

The best results of all five runs for each signature scheme are taken in comparison. We

run each test five times to have stable best results since tests have shown executing them

ten or more times did not improve the best results. The best result has the smallest time

and cycle measurements. They suggest as little as possible noise activity on the system.

Next, we present the results of the benchmark for both the RSA-based schemes and the

elliptic curve based schemes. We finish with a summarizing comparison of all ID-based

signature schemes with regard to their signature size and execution performance.

The practical measurements for signature sizes in RSA-based schemes as shown in Ta-

ble 8 reflect the abstract signature sizes from Table 5, with SH–IBS needing twice as much

space for the signatures compared to classic RSA. The computational performance for

signature verification of SH–IBS is worse than for RSA because the verification for SH–IBS

signatures uses an exponentiation by an uncontrollable hash value. However, RSA can se-

lect a relatively small 𝑒 therebymove a performance advantage to the signature verification
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Asym. Security RSA SH-IBS

|ℤu� | = 2u� Signing (𝜇𝑠) Verification (𝜇𝑠) Signing (𝜇𝑠) Verification (𝜇𝑠)
768 37,791 1024 9993 10,647

1024 80,252 1601 15,683 17,070
1536 242,409 3227 31,488 34,686
2048 545,647 5358 53,405 59,945

Table 9: Timings on embedded platform (32 Bit, ARM) for signature verification and sig-

nature generation of RSA and SH–IBS.

Asym. Security RSA SH-IBS

|ℤu� | = 2u� Signing (𝜇𝑠) Verification (𝜇𝑠) Signing (𝜇𝑠) Verification (𝜇𝑠)
768 2294 64 541 614

1024 3898 81 774 873
1536 7842 115 1045 1161
2048 15,663 167 1538 1716

Table 10: Timings on desktop platform (64 Bit, Core i7) for signature verification and sig-

nature generation of RSA and SH–IBS.
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process in a classic RSA cryptosystem. This does not work for SH–IBS. The benchmark

timings for RSA and SH–IBS are shown in Table 9 for the embedded platform and Table 10

for the desktop platform.

Comparing the performance between the embedded ARM and the desktop Intel plat-

form with increasing security level it shows the following observations.

The performance scales worse on the embedded ARM platform, with the ratio for verifi-

cation between the highest and lowest security level being 5.4 for embedded and 2.8 for

desktop. This is likely due to the lower word size of the ARM (32 bit) which handicaps

cryptographic schemes requiring big numbers for security. Similar behavior for RSA has

been shown by Gura, Patel, Wander, et al. [8] on low performance embedded devices.

An interesting observation is that SH-IBS signature generation and verification show a

better performance than the signature generation of RSA. The reason for this has not yet

been analyzed in all detail.

The benchmark results for the elliptic curve based signature schemes are shown in

Table 11 for the signature size and in Table 12 and Table 13 for the signature processing

performance on the embedded and desktop platforms respectively. Values for SS-P1536

are in set in parentheses when used with ECDAS and vBNN-IBS because due to the MOV

attack supersingular curves are generally avoided in ECC schemes that do not require

them.

Elliptic Curve ECDSA (Bytes) vBNN-IBS (Bytes) TSO-IBS (Bytes)

Curve1174 63 85 N/A

Curve25519 64 85 N/A

NIST-P256 64 85 N/A

Curve383187 96 117 N/A

NIST-P384 96 117 N/A

SS-P1536 (64) (245) 225

Table 11: Signature sizes for ECDSA, vBNN-IBS and TSO-IBS.

Compared to the classic signature ECDSA, vBNN-IBS shows ∼ 1.6 times worse perfor-

mance for signature generation and verification. The pairing based TSO-IBS shows the

worst performance of all, mainly due to its use of symmetric pairing and of large super

singular curves.

To conclude this section, an overall comparison of all signature schemes is given. Fig-

ure 4 shows the signature size for the ID-based signatures of the different identity-based

signature (IBS) schemes at tested security levels. The asymmetric security levels has been

roughly converted to their respective symmetric security according to Table 4 fromECRYPT

II. Here, well known RSA and elliptic curve cryptography (ECC) signature size scalabil-

ity can be seen with RSA-based SH–IBS showing exponential scalability with increasing
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Elliptic Curve ECDSA vBNN-IBS TSO-IBS

Sig. (𝜇𝑠) Ver. (𝜇𝑠) Sig. (𝜇𝑠) Ver. (𝜇𝑠) Sig. (𝜇𝑠) Ver. (𝜇𝑠)
Curve1174 13,003 33,842 29,549 57,168 N/A N/A

Curve25519 13,920 37,574 30,067 57,034 N/A N/A

NIST-P256 12,632 32,439 26,026 48,618 N/A N/A

Curve383187 29,800 80,536 71,972 120,170 N/A N/A

NIST-P384 27,157 69,805 61,243 100,696 N/A N/A

SS-P1536 162,237 464,844 423,200 859,995 480,268 1,136,839

Table 12: Timings on embedded platform for verification and signing of ECDSA, vBNN-IBS

and TSO-IBS.

Elliptic Curve ECDSA vBNN-IBS TSO-IBS

Sig. (𝜇𝑠) Ver. (𝜇𝑠) Sig. (𝜇𝑠) Ver. (𝜇𝑠) Sig. (𝜇𝑠) Ver. (𝜇𝑠)
Curve1174 1680 4127 3478 6186 N/A N/A

Curve25519 1789 4294 3575 6542 N/A N/A

NIST-P256 1601 3870 3424 5604 N/A N/A

Curve383187 2751 6728 6181 8894 N/A N/A

NIST-P384 2327 5626 5587 7676 N/A N/A

SS-P1536 5092 14,506 20,363 26,606 14,356 32,932

Table 13: Timings on desktop platform for verification and signing of ECDSA, vBNN-IBS

and TSO-IBS.

symmetric security level and ECC-based vBNN-IBS with linear scalability.

Figure 5 and Figure 7 show the performance results on the embedded platform while

Figure 6 and Figure 8 show the results for the desktop platform.

For the signature generation and verification performance of SH–IBS scales worse than

vBNN-IBS. SH–IBS only shows a performance advantage at rather low security levels to

around 80 bits symmetric security. For the pairing based TSO-IBS, little can be said about

its scalability, since it was only tested in one configuration. This is due to the RELIC

toolkit, which has only one elliptic curve available suitable for symmetric pairings, being

the supersingular curve SS-P1536. However, the single configuration showed the worst

performance.

Comparing the timings for the 32 bit ARM embedded platform Figure 5 and the timings

for the 64 bit Intel desktop platform Figure 6, ECC based vBNN-IBS shows a better perfor-

mance compared to RSA based SH-IBS schemes on the embedded platform from 9̃0 bit

security level upwards. The point of equal performance between SH-IBS and vBNN-IBS on

the desktop platform is higher as Figure 6 shows. The point of equal performance cannot

be seen because we stopped bechmarking SH-IBS at 2048 bit asymmetric security.
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Figure 4: Signature size comparison of the ID-based signatures from the benchmark re-

sults.

6 Conclusions & Outlook

All in all this project shows elliptic curve cryptography (ECC) based identity-based sig-

nature (IBS) as a valid choice for providing authentication in embedded scenarios. ECC

provides better scalability in key size and processing performance with rising symmetric

security level, even more so on embedded platforms with smaller word size, like the Rasp-

berry Pi. Good performance and scalability on low power and cost embedded platforms

is essential for security solutions for the Internet of Things (IoT) to ensure widespread

adoption.

Pairing-based cryptography (PBC) allows to construct new cryptographic schemes which

have not been possible without it. The rather high level abstract description of bilinear

pairings enables researchers to build new schemes without knowing details about the

diverse implementations of pairings. However, the performance of these schemes is more

complex to determine. Galbraith, Paterson, and Smart [40] discuss this problem in great

detail. Targeting higher performance for pairing based schemes sometimes come with

more risky choices of elliptic curves which later turn out be less secure than assumed [50].

In addition, most schemes proposed in scientific papers are described using symmetric

pairings, which commonly are less performant than schemes using asymmetric pairings.

Basic ECC on the other hand has been studied for a longer time and while still being in

active research, there is a constant search among researchers for fast and secure parameter

choices and implementation of cryptographic schemes. An area of particular interest is
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Figure 5: Comparison of signature generation and signature verification timings on the

embedded platform.
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Figure 6: Comparison of signature generation and signature verification timings on the

desktop platform.
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Figure 7: Cycle counts for signature generation and signature verification on the embedded

platform.
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Figure 8: Cycle counts for signature generation and signature verification on the desktop

platform.
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the use of Edwards curves in cryptographic schemes, which lead to some performance

improvements compared to classic Weierstrass curve representation [48].

There are two main directions of further research in efficient signature schemes for

low power devices. One area is analyzing paring-based IBS schemes which specifically

use asymmetric pairings. Currently there is no guideline describing how and when sig-

nature schemes based on symmetric parings can be securely and efficiently transformed

to use asymmetric parings. This guideline would ease the development of more efficient

signature schemes for constrained devices due the improved performance of asymmetric

pairings.

The second option is to further analyze the application and implementation of Edwards

curves. Edwards curves are currently not supported in the RELIC toolkit used in this

benchmark. The implementation of Curve25519 in RELIC does group computations in the

Weierstrass models without the performance advantage associated with Edwards curves.

Support for Edwards curves in the RELIC toolkit would provide access to faster elliptic

curve operations not only for ID-based schemes like vBNN-IBS, but also for general stan-

dard asymmetric signatures or key-exchange schemes based on elliptic curves.
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