
Rechnernetze Aufgabe 02 – Tutorial

HAW Hamburg SS 2021

Prof. Dr. Thomas Schmidt, Raphael Hiesgen, M.Sc.

This tutorial contains some useful instructions for you to configure the network. §1 tells you how
you can access the different devices. §2 shows you how you can maintain your configuration
files. §3, §4, and §5 present how you can configure a host, Open vSwitch, and FRRouting
IP router, respectively. §6 describes how you can perform throughput measurements in our
mini-Internet.

1 Accessing your devices

In this section, we show you how you can access (i) your docker container, and from there, (ii)
your FRRouting routers, Open vSwitches, and hosts, such that you can configure them.

1.1 Accessing your docker container

To make your life easier, you do not need to run the virtual network inside your laptop. Instead,
we have setup a remote container for each group where your virtual network already runs and
desperately awaits you to configure it. We have also setup our server so that each AS is
connected to its neighboring ASes only.

In the following, we describe how you can connect to your container using SSH and how you
can copy directories from the container to your own machine.

Connecting to your container with SSH To access your container, you will use SSH.
SSH is a UNIX based command interface and protocol for securely getting access to a remote
computer. It is widely used by system administrators to control network devices and servers
remotely. An SSH client is available by default on any Linux and MAC installation through the
Terminal application. For Windows users, a good and free SSH client is PuTTY1; alternatively,
you can use Windows Subsystem for Linux2. Once you have installed an SSH client, use the
following command to connect yourself to your container:

> ssh -p X root@internet.link-lab.net

where X = 2000 + as number. For instance if you are AS 7, use the following command:

> ssh -p 2007 root@internet.link-lab.net

We have sent you your password and AS number by email. If you cannot connect to your
container, please report it on the “Rechnernetze” Team or via email. If you want to simplify
the access to your container (optional), please use SSH key authentication,3 but do not change

1https://www.chiark.greenend.org.uk/~sgtatham/putty/
2https://docs.microsoft.com/en-us/windows/wsl/install-win10
3Ask us or Google it if you want to know more about this.

1

https://www.chiark.greenend.org.uk/~sgtatham/putty/


your password or the key already available on the container.

Download a directory from your container If you want to download an entire directory
from your container to the current directory of your own machine, you can use scp:

> scp -r -P X root@internet.link-lab.net:~/path to the directory .

where X = 2000 + as number. On Windows, you can use WinSCP4 to do that. Note the dot
at the end of the command and the capitalized P.

1.2 Accessing your routers, switches and hosts

The following paragraphs describe how you can access your routers, switches and hosts from
your container.

Access to routers When you are in your container, you can use the script goto.sh to connect
to a router, a switch or a host. For example, with the following command, you will access the
router NEWY:

> ./goto.sh NEWY router

Now you are directly in the CLI of the router NEWY. We describe the FRRouting CLI in more
detail in §5.1.

Access to switches Similarly, you can access a switch with the goto.sh script. Simply use
UNIV as the first argument for the script, and the switch name as the second argument. An
example for the CERN switch:

> ./goto.sh UNIV CERN

Unlike FRRouting, there is no CLI for Open vSwitch. Hence, after you have run the above
command, you are not directly on (an interface of) the switch, but in an instance that contains
and simulates the switch. In other words, what has changed is that you are now in a different
terminal from which you can externally configure the simulated switch by running OpenvSwitch
commands (see §4).

Access to hosts From your container, you can also go to a host. For example, if you want to
go to the host which is connected to BOST, just use the following command:

> ./goto.sh BOST host

This works for all router names except ZURI and GENE, which are not connected to hosts but
the layer-2 network.

If you want to access the student host connected to EPFL in the Swiss local network, you can
use the following command (see also the layer-2 topology in the assignment):

> ./goto.sh UNIV student 3

If you want to access a staff host, just replace student by staff.

4https://winscp.net/eng/docs/start

2

https://winscp.net/eng/docs/start


2 Maintaining your configuration

To save the configuration of all your routers and switches, we provide you with a script called
save configs.sh. Once executed (./save configs.sh) it will generate two equal folders
following the naming convention: configs [date] [time]. One folder is already zipped for a
simpler download. We advise you to run this script regularly and to save the generated folders
on your local machine to have a backup of your work.

3 Configuring a host

This section first describes the naming conventions inside hosts for this project, and secondly,
how to configure the IP addresses and interfaces on a host.

Naming conventions The interface to the router is called <router-name>router, e.g. BOSTrouter
for BOST. The loopback interface has the name lo.

Reading the configuration You can see the interfaces with ip address show.

Changing the configuration The host configuration is rather simple. First, you have to
assign an IP address and subnet to one of the interfaces available on the host. For that, you
can use the following command:

> ip address add IP/SUBNET SIZE dev INTERFACENAME

For example, with

> ip address add 111.0.222.3/24 dev LONDrouter

you assign the IP address 111.0.222.3 inside the corresponding /24 subnet to the interface
called LONDrouter. Note that we configure the IP address and the corresponding subnet all at
once.

At this point, the host knows how it can reach all the IP addresses inside the subnet 111.0.222.0/24.
Unfortunately, we cannot reach any other IP. (The subnet declaration tells the host in what
subnet it is; the IP address in turn is the address by which other devices can reach this host.)
Hence, you normally add a route towards a default gateway that the host uses to reach all
unknown IP addresses. To do that, use the command:

> ip route add default via IP ADDRESS

Coming back to our previous example, to add a route towards the router (connected to the
Internet) with IP address 111.0.222.1, we could use the following command:

> ip route add default via 111.0.222.1

To see the current default gateway, use

> netstat -rn

To delete past entries, use

> ip route del default via IP ADDRESS

3



4 Configuring Open vSwitch

Open vSwitch5 is one of the most popular software switches. It can typically be used in virtual
environments, for instance to connect two virtual machines.

The next sections present naming conventions for switch ports in this project, some useful
commands to get an overview of the switch state and configuration, and how to change the
VLAN configuration.

4.1 Naming conventions

On each switch, one port has the name br0 and the corresponding interface has type internal.
This is a local port used by the host to communicate with the switch. You do not need to
use this port. The ports to student and staff members follow the name pattern X-student i,
X-staff i respectively, with X the AS number and i the student/staff number (e.g. 84-student 2

for student 2 in AS 84). The ports to other switches have the name X-SWITCHNAME, e.g. 84-ETHZ
for the port to ETHZ in AS 84. If there is a port to a router, it is called ROUTERNAMErouter,
e.g. GENErouter.

4.2 Reading the current switch state and configuration

Brief switch overview To print a brief overview of the switch state and its parameters, you
can use the following command:

> ovs-vsctl show

This command also tells you the VLANs each port belongs to.

Port status To get more precise information about the status of the ports, you can use the
following command:

> ovs-ofctl show br0

(Please note that the bandwidths in the output of this command do not correspond to the
actual bandwidths used in the assignment.)

Current configuration and statistics To get the current configuration and all the statistics
of the switch, you can get a dump of the switch database with the following command:

> ovsdb-client dump

For example one entry of the database could look like this:

> 645981b6c 0 false [] 0 false [119f5-2be8bf5] [] [] 84-ETHZ {stp-path-cost="100"}
[] {stp error count=0, stp rx count=312, stp tx count=3} {stp port id="8004",

stp role=alternate, stp sec in state="223", stp state=blocking} [] [10, 20] []

The information is a little bit cryptic, but we have highlighted in red the important information
that you may use for the assignment. For instance, this entry is for the port named 84-ETHZ

5https://www.openvswitch.org/

4

https://www.openvswitch.org/


and this port is a trunk port in VLANs 10 and 20. Please note that grep is also available to
further filter the output.

4.3 Changing the VLAN configuration

Below are some commands to adapt the VLAN configuration of a switch.

To add a port to a VLAN, you can use the following command:

> ovs-vsctl set port PORT NAME tag=10

This will add the port PORT NAME to the VLAN 10. Since PORT NAME is in one VLAN
only, the port is in tag mode. Should you add a port to several VLANs, you can use the
following command:

> ovs-vsctl set port PORT NAME trunks=10,20

The port PORT NAME will be in trunk mode for VLANs 10 and 20. To clear the VLAN
configuration on a port (here for a trunk link), you can use the following command:

> ovs-vsctl clear port PORT NAME trunks

5 Configuring IP routers

FRRouting (FRR) routers6 are software routers running on top of Linux. In other words,
running FRR on Linux allows you to tranform your laptop or server into an IP router, where
the Linux interfaces act as interfaces for the FRR router. You can configure a FRR router
through a Command Line Interface (CLI). Each IP router vendor (e.g., Cisco or Juniper) or
software routing suite (e.g., FRR) has its own CLI. Fortunately, those CLIs are similar, and if
you know how to configure a router using the FRR CLI, you can easily configure a Cisco or a
Juniper router as well.

5.1 The FRRouting command line interface

We now briefly describe how to configure a FRR router7. The following paragraphs describe the
autocompletion features of the CLI, how to test connectivity, how to switch to configuration
mode, and how to remove a command/reverse your configuration actions.

Autocompletion features When you enter the FRR CLI, you see the following line:

router#

At any time in the CLI, you can type ? to see all the possible commands you can currently
type (some of the shown commands are):

router# ?

6https://frrouting.org/
7This is a very short FRR introduction, we strongly recommend you to take a look at the official documen-

tation [?] to get more information.

5

https://frrouting.org/


clear Reset functions

configure Configuration from vty interface

exit Exit current mode and down to previous mode

no Negate a command or set its defaults

ping Send echo messages

quit Exit current mode and down to previous mode

show Show running system information

traceroute Trace route to destination

write Write running configuration to memory, network, or terminal

For example, the command show will print various snapshots of the router state. To see what
kind of information can be shown, just type show ?. For example, show running-config will
print the running configuration.8 You can shorten the commands when there is no possible
ambiguity. For instance show run is equivalent to show running-config. Similarly to the
Linux terminal, you can also use auto-completion by pressing the tabulator key.

Testing connectivity If you want to test your connectivity, you can use ping or traceroute
(also with the measurement container as mentioned in the assignment). Please note that you
cannot run traceroutes starting from a tier-1 AS.

Switching to configuration mode To configure your router, you must enter the configuration
mode with configure terminal (conf t for the short version). You can verify that you are
in the configuration mode by looking for the “config” prefix in your CLI prompt. Use exit

to leave the configuration mode and to go back to the previous mode. Commands that work
in configuration mode do not (necessarily) work outside configuration mode and vice versa.
Notably, commands starting with show do not work in configuration mode.

Reverse a command If you want to delete parts of the configuration, you can prefix the
command you want to remove with no.

5.2 Configure the router interfaces

In order to explain how to configure interfaces, we will first describe their purpose, and then
tell you about the naming conventions for this project. Next, we will show you how to read
and change the interface configuration.

The purpose of an interface A router interconnects IP networks through several IP inter-
faces. When receiving a packet from one interface, it forwards it to another based on pre-
computed forwarding decisions. Each IP interface must have an IP address configured and
must be in a different subnet9.

Interface naming conventions Each router has interfaces to its neighbouring routers whose
names follow the pattern port <neighbor>. For instance, the interface on NEWY connected

8The interfaces are not visible in the output at the beginning, but will start appearing as soon as you have
configured them.

9Try to think what would happen if that wasn’t the case

6



to ATLA is named port ATLA. Moreover, each router has an interface to the host named host

and a loopback interface called lo (exceptions: GENE and ZURI do not have a host). An
interface connecting to another AS is called ext <AS-number> <router-name>. For example,
the interface on NEWY connecting to ZURI in AS 82 has the name ext 82 ZURI.

Reading interface configurations To get an overview of the interfaces, use the command

router# show interface

or for a a briefer overview

router# show interface brief

You can get information for one specific interface with

router# show interface INTERFACENAME

Changing interface configurations To configure an interface, you must first enter the con-
figuration mode, and then specify the name of the interface you want to configure:

router# conf t

router(config)# interface INTERFACENAME

router(config-if)# ip address 1.0.0.1/24

You can verify that the running configuration has been updated correctly with the command
show run. Important: Do not configure two different IP addresses on one interface at the
same time. If you have configured a wrong IP address, first remove the address with the no

command and then configure a new IP address:

router# conf t

router(config)# interface INTERFACENAME

router(config-if)# no ip address 1.0.0.1/24

router(config-if)# ip address 2.0.0.1/24

Once you have configured an IP address and a subnet on an interface, the router knows that
packets with a destination IP in this subnet must be forwarded to this interface. To show the
subnets that are directly connected to your router, you can use the following command.

router# show ip route connected

C>* 2.0.0.0/24 is directly connected, INTERFACENAME

We see that 2.0.0.0/24 is directly connected and reachable with the interface INTERFACENAME.
At this stage, a packet with a destination IP that is not in a directly connected subnet will be
dropped. If you want your router to know where to forward packets with an IP destination in
a remote subnet, you must use routing protocols, such as OSPF or BGP.

5.3 Configure static routes

OSPF and BGP are dynamic routing protocols which will automatically route around network
failures. In some cases though, it is useful to define routes statically. Static routes are set once

7



and for all, independently of the network conditions. Static routes are simply configured by
specifying the IP prefix along with the IP next-hop. As an illustration:

router# conf t

router(config)# ip route 3.0.0.0/24 2.0.0.2

would force the router to direct all traffic destined to 3.0.0.0/24 to 2.0.0.2. You can verify that
a static route has been installed correctly using show ip route static:

router# show ip route static

S 3.0.0.0/24 [1/0] via 2.0.0.2 inactive

5.4 Configure OSPF

OSPF routers flood IP routes over OSPF adjacencies. FRR routers continuously (and automat-
ically) probe any OSPF-enabled interface to discover new neighbors to establish adjacencies
with. By default, FRR router will activate OSPF on any interface whose prefix is covered
by a network command under the router ospf part of the configuration. For instance, the
following configuration would activate OSPF on any interface whose IP address falls under
1.0.0.0/24 or 2.0.0.0/24:

router# conf t

router(config)# router ospf

router(config-router)# network 1.0.0.0/24 area 0

router(config-router)# network 2.0.0.0/24 area 0

OSPF has scalability issues when there is a large number of routers. To make it more scalable,
the router topology can be hierarchically divided in what is called “areas”. In this assignment,
your network is small and you do not need more than one area: you will only use area 0.

To check the OSPF neighbors of a router, you can use the following command:10

router# show ip ospf neighbor

Neighbor ID Pri State Dead Time Address Interface RXmtL RqstL DBsmL

1.0.0.2 1 Full/Backup 1.0.0.2 port ATLA:1.0.0.1 0 0 0

2.0.0.2 1 Full/Backup 2.0.0.2 port BOST:2.0.0.1 0 0 0

Here, we see that the router has established two OSPF session with two neighbors. The first
one is connected via the interface 1.0.0.1 and its IP is 1.0.0.2. The second one is connected
via the interface 2.0.0.1 and its IP is 2.0.0.2. Now that you are connected to two routers with
OSPF, they can send you information about the topology of the network. Let’s take at look at
the routes received by OSPF with the following command.

router# show ip route ospf

O 1.0.0.0/24 [110/10] is directly connected, port ATLA, 07:09:33

10The Neighbor may be a different IP than you expect since it is an ID that may come from any interface,
e.g. also the ssh interface. Do not worry about this.

8



O 2.0.0.0/24 [110/10] is directly connected, port BOST, 06:14:24

O>* 10.104.0.0/24 [110/20] via 2.0.0.2, port BOST, 00:00:10

You can see that our router has learned how to reach the subnet 10.104.0.0/24. The O at the
beginning of each line indicates that the router has learned this subnet from OSPF. To reach
it, it must send the packets to its neighbor router 2.0.0.2. If you want to have more information
about the routers of this OSPF area, you can use show ip ospf database. If you want to
advertise additional directly connected networks, you should take a look at the redistribute
command.

With OSPF, each link between two routers has a specific weight, and only the shortest paths
are used to forward packets. Below is an example of how you set the weight of a link connected
to interface INTERFACENAME to 900:

router# conf t

router(config)# interface INTERFACENAME

router(config-if)# ip ospf cost 900

Use these commands to configure all the OSPF weights in your own network.

5.5 Configure BGP

While OSPF is used to provide IP connectivity within an AS, BGP is used to advertise prefixes
between different ASes. Unlike OSPF, BGP routers will not automatically establish sessions.
Each session needs to be configured individually. The following commands show you how to:
start a BGP process and establish two BGP sessions with neighboring routers. The integer
following router bgp indicates your AS-number. Here, the local AS-number is 2:

router# conf t

router(config)# router bgp 2

router(config-router)# neighbor 150.0.0.1 remote-as 15

router(config-router)# neighbor 2.0.0.2 remote-as 2

By default, whenever the remote-as is different from the local number (here 2), the BGP
session is configured as an external one (i.e., an eBGP session is established). In contrast, when
the remote-as is equivalent to the local one, the BGP session is configured as an internal one
(iBGP). Here, the first session is an eBGP session, established with a router in another AS
(150.0.0.1), while the second one is an internal session, established with a router within your
AS (2.0.0.2). You can check the state of your BGP sessions using the following command:

router# show ip bgp summary

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd

2.0.0.2 4 2 3 6 0 0 0 00:01:16 0

150.0.0.1 4 15 2009 1979 0 0 0 01:31:42 1

You can see that our two BGP sessions are up. To advertise a prefix on a BGP session, you
can just use the following command:

9



router(config-router)# network 10.104.0.0/24

As soon as you do that, your neighbor 150.0.0.1 receives this advertisement and knows that it
can forward to you all the packets with a destination IP in the subnet 10.104.0.0/24. Note that
when you advertise a prefix, it generally means you know how to reach this prefix, otherwise
you will drop the packets, and your neighbor will not be very happy. Perhaps one of your BGP
neighbor advertises you prefixes as well, let’s check that:

router# sh ip route bgp

B>* 2.101.0.0/24 [20/0] via 2.0.0.2, interface used, 00:03:17

In this case, we can see that neighbor 2.0.0.2 has advertised one prefix: 2.101.0.0/24. The B at
the beginning of the line indicates that the router has learned this prefix from BGP.

Similarly to OSPF, you can advertise additional subnets with the redistribute command.
You can redistribute the directly connected subnets into BGP with redistribute connected.
You can also redistribute routes learned by OSPF with redistribute ospf. Always pay at-
tention which prefixes you advertise to your neighbors. They may not need to know all the
prefixes used in your local network.

Important (iBGP connections): By default, when a router establishes an iBGP session with
a peer, it uses the IP address of the interface closest to the iBGP peer as source address.
This is fine as long as this interface is up. If this interface goes down but the actual router
is still running, the iBGP connection will tear down even though the router may be reachable
over a different path/interface. In practice, operators therefore often use so called “loopback”
interfaces as source of the iBGP connections. Loopback interfaces are virtual interfaces with
an IP address which uniquely identifies the router in your network. For example, if you are
AS 7 and you want to configure an iBGP session from NEWY to LOND, you could use the
following commands (on NEWY):

router# conf t

router(config)# router bgp 7

router(config-router)# neighbor 7.151.0.1 remote-as 7

router(config-router)# neighbor 7.151.0.1 update-source lo

7.151.0.1 is the loopback interface IP of LOND. With update-source lo you make sure that
the NEWY router is using its lo interface address as source address.

BGP next-hop-self Figure 1 illustrates a possible pitfall when eBGP announcements are
distributed over iBGP sessions. If router R1 is advertising its prefix 11.22.33.0/24 towards R2
(over the eBGP session), the next-hop of the advertisement is the IP of the outgoing interface of
R1 (10.0.0.2). Router R2 is then distributing this advertisement to all its iBGP neighbors (R3).
Per default, the next-hop of the advertisement is not changed and is still 10.0.0.2. That can
lead to problems for router R3. In a normal network configuration, the subnets used between
two eBGP routers (10.0.0.0/30) are not distributed in the connected ASes, e.g. via OSPF.
Router R3 does therefore not know how it can reach the next-hop of the advertised prefix
(11.22.33.0/24) and will discard the advertisement. To solve this problem, we can use the BGP
next-hop-self command. When properly configured, router R2 is using its own interface IP
as next-hop every time it distributes announcements from eBGP sessions to its iBGP neighbors.

10



R3

R2 R1

11.22.33.0/24

eBGP

10.0.0.0/30 .2.1

iB
G

P

2
0

.0
.0

.0
/3

0
.1

.2

AS 100 AS 200

Figure 1: AS 100 and AS 200 have an eBGP session between each other. In AS 100 there are
two routers with an iBGP session. Router R3 is only able to reach the prefix 11.22.33.0/24 if
router R2 is using BGP next-hop-self for the iBGP session.

In this example, R2 would replace the next-hop 10.0.0.2 with its interface IP connected to R3
(20.0.0.1). Router R3 then receives an advertisement for prefix 11.22.33.0/24 with next-hop
20.0.0.1. The 20.0.0.0/30 subnet is distributed via OSPF and R3 does therefore know how to
reach the next-hop of the advertisement and can install this prefix in its forwarding table.

To add the next-hop-self command on FRR routers, you can use the following commands (on
router R2):

router# conf t

router(config)# router bgp 100

router(config-router)# neighbor 20.0.0.2 remote-as 100

router(config-router)# neighbor 20.0.0.2 next-hop-self

5.6 Configure BGP policies

Now that you have BGP running, you want to configure some BGP policies. For example,
you may want to prefer to send traffic to your cheapest provider. You may also want to avoid
sending traffic to one AS for a particular prefix for security reasons. BGP offers several ways to
configure such policies. As we have seen in the lecture, the LOCAL-PREF attribute can help you
to influence the outbound routing decisions. To influence the inbound routing decisions, you
can use AS-Path prepending, a more specific prefix advertisement or the MED attribute (in case
of multiple different connections to the same AS neighbor). In FRR, BGP policies are defined
using route-maps. In the following section we describe how a FRR route-map is configured
and applied to certain BGP sessions. Then we look at BGP community values. Community
values are a good way to mark certain BGP routes. At the end of the section we present an
example of a route-map using BGP community values.

Route-maps Route-maps enable you to express input and output filters that will be applied

11



immediately respectively, immediately after a BGP route has been received from a neighbor
or just before it is sent to a neighbor. A route-map is composed of two parts: a match and a
set part. This can somehow be compared to the If...Then... statements in many programming
languages. The match part is a boolean predicate that decides on which BGP routes the
route-map applies the actions (usually, attribution manipulation) defined in the set part.

Match part Let’s take a look on what you can match on (most important options are shown):

router# conf t

router(config)# route-map MY ROUTE MAP permit 10

router(config-route-map)# match ?

as-path Match BGP AS path list

community Match BGP community list

interface Match first hop interface of route

ip IP information

metric Match metric of route

origin BGP origin code

peer Match peer address

As you can see, you can match pretty much any attribute contained in a BGP UPDATE in-
cluding: the AS-PATH, community value, IP addresses or subnets, the peer IP address, etc.

Whenever you create a route-map, you must indicate if you want to permit or deny the input
data. Intuitively, only permitted routes will go through the set of actions, while denied routes
won’t be considered further. Route-maps can also be chained together. The order in which
route-maps are processed is given by the sequence number (here 10). The route-map with the
lowest sequence number is executed first. If you have no match part, the set part is applied to
all BGP routes.

Set part Now let’s take a look on what you can do with the matched routes using the set part
of the route-map (most important options are shown):

router# conf t

router(config)# route-map MY ROUTE MAP permit 10

router(config-route-map)# set ?

as-path Transform BGP AS-path attribute

community BGP community attribute

ip IP information

metric Metric value for destination routing protocol

12



local-pref BGP local preference path attribute

origin BGP origin code

As described in the course, the set part enables you to modify any route attribute. Among
others, you can: set a local-preference, modify the AS-path (to perform AS-path prepending),
or set a community attribute. Observe that these operations will only be done on the routes
you have matched with the match command if you used the permit clause. A set clause can
be empty, which is useful if you only want to filter certain routes (these which pass the match
part). Finally, you can also modify multiple route attributes in the same set clause.

Apply the route-map Once you have defined a route-map, you need to apply it to a BGP
session. As mentioned before, a route-map can either be applied on incoming routes (routes
received from a neighbor) or on outgoing routes (routes sent to a neighbor). To apply the route-
map you have to extend your BGP configuration (see section 5.5). In the following example,
the route-map MY ROUTE MAP is applied to all incoming routes from neighbor 2.0.0.2:

router# conf t

router(config)# router bgp 15

router(config-router)# neighbor 2.0.0.2 route-map MY ROUTE MAP in

If you use out instead of in, the route-map is applied to all outgoing routes instead.

BGP community values A BGP community can be seen as a label or a tag that can be
attached to any route in the set part of a route-map and matched against later on a different
router. In practice, a community value is often written as two integers separated by a colon.
The first integer identifies the AS and the second one describes the value/purpose of the com-
munity value. For example, if you are AS number 15 and you want to use the community value
to tag certain BGP routes with the value “100”, you could use the following BGP community
value: 15:100. You can also add more than one BGP community value to a route.

If you want to use community values in the match part of a route-map, you need to use a so
called “community list”. To defined the community value from before (15:100) you can use the
following command:

router# conf t

router(config)# ip community-list 1 permit 15:100

The community list has the name/number 1.

Example Let’s assume you have a router which has two eBGP connections to two different
neighbors with the IPs 11.11.11.11 and 22.22.22.22. You want to set the local preference of
all routes coming from 11.11.11.11 to “1000”. Furthermore, you want to use BGP community
values to make sure that only the routes coming from neighbor 11.11.11.11 are advertised to
neighbor 22.22.22.22:

router# conf t

13



router(config)# route-map MAP IN permit 10

router(config-route-map)# set community 15:100

router(config-route-map)# set local-preference 1000

router(config-route-map)# exit

router(config)# ip community-list 1 permit 15:100

router(config)# route-map MAP OUT permit 10

router(config-route-map)# match community 1

router(config-route-map)# exit

router(config)# router bgp 15

router(config-router)# neighbor 11.11.11.11 route-map MAP IN in

router(config-router)# neighbor 22.22.22.22 route-map MAP OUT out

Final remarks The show ip bgp command is very useful to display all prefixes/routes, for
example to check that your route-maps are working correctly. You can also filter the output. If
you want to display all the prefixes/routes with a certain BGP community value (e.g. 15:100),
you can use the following command:

router# sh ip bgp community 15:100

Remember that you can always use ? to show all available commands (e.g. show ip ?). Some-
times BGP and FRR take time to converge. If so, you can use clear ip bgp * to force the
convergence.

And finally, whenever you use a route-map, the following route-map is implicitly added:

router(config)# route-map implicit-default-route-map deny 65536

router(config-route-map)# match everything

This route-map denies everything and makes sure that only the routes which pass the match
clauses of your route-maps are accepted.

This section only sketched what route-maps have to offer. In this assignment, one of your
goals will be to get more familiar with them so as to implement the right routing decisions.

6 iperf3 Throughput Measurements

iperf3[?] is a program to perform network throughput measurements. It works by setting up
a connection between two endpoints (a client and a server) and then transferring a stream of
data between them.

iperf3 is installed on all hosts in our mini-Internet. To perform a measurement between two
hosts, you need to start an iperf3 server on one of the hosts and then start an iperf3 client on

14



the other host.

To start an iperf3 server, you can use the following command:

> iperf3 --server --one-off

The flag --server instructs iperf3 to start in server mode. The --one-off flag makes iperf3
exit automatically after it handled the connection and measurement of one client.

To start an iperf3 client, you can use the following command:

> iperf3 --client SERVER IP --time TIME

The flag --client instructs iperf3 to start in client mode. Then, you need to provide the
client with the IP address on which the server is running. The --time flag determines how
long the measurement will run in seconds.

For example, if you were AS 8 and wanted to measure the throughput between MIAM and
BOST, you could start a server on the host connected to BOST and a client on the host con-
nected to MIAM:

On the host connected to BOST, you would issue the following command:

> iperf3 --server --one-off

And on the host connected to MIAM, you would issue the following command:

> iperf3 --client 8.106.0.1 --time 5

15



Acknowledgments

This project assignment is based on the mini-Internet from ETH Zurich. We gratefully ac-
knowledge the work from Laurent Vanbever, Thomas Holterbach et al.

16


