
… in the Internet of Things

Bachelor Project (PO)
Git version control
Hamburg 04.04.2022

José Álamos jose.alamos@haw-hamburg.de
Peter Kietzmann peter.kietzmann@haw-hamburg.de
Leandro Lanzieri leandro.lanzieri@haw-hamburg.de

Prof. Dr. Thomas C. Schmidt INET AG, Dept. Informatik HAW Hamburg t.schmidt@haw-hamburg.de

Git Version Control

What is Git?
● Distributed version control system

● It allows

○ Storing content (source code,

documentation)

○ Snapshots: keeping track of changes

○ Sharing code between developers

● Each developer stores its own full copy of the

code (repository).

Git basics: commit
● Incremental set of changes

● Consists of:

○ A commit hash

○ Metadata (commit name, author, email)

○ List of changes

■ “Add FOO in file bar.c, after line 93”

■ “Remove BUZ from file foo,c, line 3”

○ A parent commit

Git basics: commit
commit e0b433d2a0e5e343bd9d85bed6327bd8ba341441 (HEAD -> copr/11237)

Author: Jose Alamos <jose@alamos.cc>

Date: Mon Mar 21 15:28:57 2022 +0100

 My commit

diff --git a/examples/hello-world/main.c b/examples/hello-world/main.c

index f51bf8c0a0..186a39dada 100644

--- a/examples/hello-world/main.c

+++ b/examples/hello-world/main.c

@@ -23,8 +23,7 @@

int main(void)

{

- puts("Hello World!");

-

+ printf("FOO");

 printf("You are running RIOT on a(n) %s board.\n", RIOT_BOARD);

 printf("This board features a(n) %s MCU.\n", RIOT_MCU);

Git basics: Commit process
● Each commit links to its parent

○ It creates a linked lists of commits

● Git maintains a HEAD reference pointing

to a (last) commit

● When a developer commits:

○ The commit parent points to HEAD

○ HEAD “updates” to the new commit

FOO

BAR

FOO

BUZ BUZ

Before commit After commit

: HEAD
: New commit

BAR

Git basics: Commit process
● E.g: “A developer commits a set of

changes BAR”

○ BAR parent is FOO (Last HEAD)

○ The new HEAD points to BAR

FOO

BAR

FOO

BUZ BUZ

Before commit After commit

: HEAD
: New commit

BAR

Git basics: branches
● We can change HEAD in order create branches.

○ Branches are pointers to a commit.

○ On commit, Git updates the branch to the

new commit.

● We “checkout” a branch by pointing HEAD to its

commit hash

● E.g: Checkout my_branch

■ HEAD points to ASD

● Of course, a developer can checkout any commit

○ Allows to go back in history

BAR

FOO

XYZ

ASD

: main
: my_branch

Git basics: merge
● Git provides a mechanism to merge two branches

○ Useful for developing new features without breaking the main branch

Source: Atlassian Git Tutorial

Git basics: push and pull
● So far we only talked about local repository changes…

● Developers can merge branches from other repositories (remote) with local

branches (a.k.a “pull”)

● Similarly, developers can “push” a local branch to a remote repository to

“update” a remote branch

● E.g Developer A wants to collaborate with Developer B , in the repository of

Developer B at http://foo.bar/dev_b.git

○ Developer A adds http://foo.bar/dev_b.git as remote.

○ Developer A can pull a branch from developer B directly.

○ Of course, Developer A cannot push to the repository if it does not

have enough privileges.

http://foo.bar/dev_b.git
http://foo.bar/dev_b.git

Git: a hands on example
● Fred Flintstone and Barney Rubble are two developers of the FlyBNB

project with the project repository at http://thejetsons.com/flyBNB.git.

● Both create local copies of the repository in order to start development

git clone http://thejetsons.com/flyBNB.git

● By default, Git adds an “origin” remote pointing to the repository.

● Fred wants to implement “Feat A” but does not want to break the main

branch with on-going development. He branches feat_a from main and

checks out.

git checkout -b feat_a

http://thejetsons.com/flyBNB.git
http://thejetsons.com/flyBNB.git

Git: a hands on example
● Fred checks “unstaged changes”, adds “foo.c” to staged changes and

commits with message “add feature A”

git status

git add foo.c

git commit -m “add feature A”

● He finishes feature A and merges changes to the main branch.

git checkout main

git merge feat_a

● He finally synchronizes the main branch and pushes changes back to

“origin”

git pull origin main

git push origin main

Git: a hands on example
● While adding feature B, Barney realizes there’s a critical error in the main.

He stops development of feature B, fixes the error and goes back to feat B

git checkout main

… fixes the error …

git commit -am “hotfix ⇐ (“-a” commits all unstaged changes)

git pull origin main

git push origin main

git checkout feat_b

Git cookbook
● Clone a remote repository

git clone <repo_url>

● Add a remote repository

git remote add <remote> <repo_url>

● Pull remote branch from remote repository into a local branch

git checkout <local_branch>

git pull <remote> <remote_branch>

● Synchronize local branch to remote branch and push local changes

git checkout <local_branch>

git pull <remote> <remote_branch>

git push <remote> <remote_branch>

Git cookbook
● Add a single file to to the staged changes (a.k.a changes to be committed)

○ git add <file>

● Commit staged changes in the current branch with a message

○ git commit -m <commit message>

● Shortcut to commit all unstaged changes

○ git commit -am <commit message>

● Create branch foo from branch bar

○ git checkout bar

○ git checkout -b foo

Git cookbook
● Merge branch_a into branch_b

○ git checkout branch_b

○ git merge branch_a

● For more information, visit the Atlassian Git Tutorials

○ https://www.atlassian.com/git/tutorials

https://www.atlassian.com/git/tutorials

GitHub
● It provides

○ Hosting for Git repositories

○ Workflows to ease collaboration

● We focus on two Github specific features

○ Forks

○ Pull Requests

GitHub: Forks
● Clone of a repository on the Github server.

● E.g user wilma creates a fork of the RIOT repository using the Github UI

○ RIOT repo URL (“upstream”) is github.com/RIOT-OS/RIOT.git

○ Fork URL: github.com/wilma/RIOT.git

● wilma clones the fork on her local machine

git clone github.com/wilma/RIOT.git

● By default, remote “origin” points to her fork

● NOTE: . RIOT-OS/RIOT.git, wilma/RIOT.git and the repository in the local

machine are three different repositories!

● She develops “feat C” in branch feat_c and wants to integrate changes into

“upstream”

○ She is not the owner of RIOT-OS/RIOT and therefore does not have

push access privileges.

https://github.com/RIOT-OS/RIOT.git
https://github.com/wilma/RIOT.git
https://github.com/wilma/RIOT.git
https://github.com/RIOT-OS/RIOT.git
https://github.com/wilma/RIOT.git

GitHub: Pull Request (PR)
● Feature to request the owner of a repository to “pull” a branch from another

(remote) branch

○ The Github UI handles these operations internally.

● In the previous case, wilma must push the branch to the fork (“origin”)

git push origin <branch>

● Then, use the Github UI to open a PR pointing to the upstream branch

● Owner of the repository can request changes, accept or reject the PR

● Visit the GitHub PR documentation for more information

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request-from-a-fork

Questions?

