
Implementation of a montoring
framework for the HAMcast project

Sebastian Zagaria

Ausarbeitung Projekt 1

Fakultät Technik und Informatik Faculty of Engineering and Computer Science
Department Informatik Department of Computer Science

Contents i

Contents

1 Introduction 1

2 Related work 2
2.1 HAMcast . 2
2.2 Multicast Monitoring . 3

3 Concept of the monitoring framework 4
3.1 Architecture . 4
3.2 Monitoring Framework modules . 6

4 Implementation 10
4.1 Shared utilities . 10
4.2 Monitoring Daemon . 12
4.3 Monitoring Collector . 13
4.4 Monitoring Viewer . 14

5 Conclusion and Outlook 17

References 18

1 Introduction 1

1 Introduction

In today’s Internet, group communication software is an important part for people to interact
and share data with one another. Applications like video-, audio-streaming and conferencing
software are popular examples for group communication applications. In such applications a
large number of users participate in a network. The usual way to transmit data is to use a
unicast. Since unicast transmits data from a source to a single receiver, it is inefficient for
the use of group communication applications. Another downside of unicast in terms of group
communication is that all receivers have to be known to the data source. Even tough most
group communication applications use a unicast transmission protocol to exchange data.

Unlike unicast, multicast protocols are optimized for group communication. Multicast exists in
many flavours. There is IP-layer multicast [5] and application layer multicast [18]. If we compare
both IP-layer and application-layer multicast, IP-layer multicast is more efficient in terms of data
delivery but also less deployed, because of the dependency on router support. Due to the lack
of native multicast support in today’s Internet [6], the most widely used multicast algorithm are
Server-based. In recent years, there has been approaches to combine native and application-
layer-multicast to use the benefits of both. These approaches are called hybrid-multicast-
networks [19] [7] [16]. In hybrid-multicast-networks, IP-layer technologies will be used where
they are available, and application-layer-multicast is used to get a widely deployed multicast
network via the Internet.

Due to the the complexity of networks, it is necessary to have tools that help network adminis-
trators to monitor these networks. Monitoring tools are useful to identify network failures and to
improve the performance. There are well known tools for unicast like ping and traceroute that
help monitoring these networks. In the case of IP-layer multicast, there exists a number of tools
that mimic the functionality of ping and traceroute, e.g, mcping [11] and tracetree [15]. Also a
number of monitoring and visualization tools exist, e.g, mHealth [8] and MUVI [14]. However,
to the knowledge of the author, there exist no tools supporting monitoring of hybrid multicast
networks. This project work focuses on the development and implementation of a monitoring
and visualization framework for a hybrid-multicast-network. The framework will be based on
HAMcast [10], a hybrid multicast network developed by the Internet Technologies Group at
HAW-Hamburg. The target of the monitoring framework is to collect an visualize data from the
HAMcast multicast network using the HAMcast-API [17]. The framework will provide functional-
ities to display the captured data in a graphical and intuitive way. This graphical representation
shall show multicast forwarding trees as well as detailed node and group information.

The reminder of this paper is structured as follows, in section two we start with related work to
this project explaining how HAMcast works. After that we give an overview of existing multicast
monitoring tools, focusing on tools that both monitor and visualize. In section three we describe

2 Related work 2

the concept of the monitoring framework. Section four explains the implementation. Finally in
section five, we give an outlook and conclude this project work.

2 Related work

2.1 HAMcast

The HAMcast project [1] focuses on the development and analysis of a hybrid group communi-
cation Internet architecture. This hybrid architecture is realized by a transparent application API
and a middleware. It provides a universal service for group communication. The architecture
(fig. 1a) is an evolutionary model using a middleware at each system and gateways to forward
multicast data between technologies [10]. This middleware does not require any development
by the users, application developer or service provider. The middleware manages a number of
multicast protocols divided into technologies modulus. This approach makes HAMcast highly
flexible and adaptable to the needs of the application programmer as well as easy to deploy via
Internet.

For the development of group communication software, the HAMcast project offers a universal
layer-transparent API [17] implemented as a C/C++ and Java library. This API encapsulates
the underlying middleware and multicast technologies. The developer has full freedom in de-
veloping group communication software without the need to code the software for a specific
multicast technology. Simple socket configuration and creation makes HAMcast an easy to
use and rich framework for the development of group communication Software. In addition to
that the API provides further functions called service calls. These service calls are designed to
offer detailed informations about the current network status of the system.

In order to establish a hybrid multicast service, HAMcast uses Interdomain-Multicast-Gateways
(IMG). Mainly an IMG serves as a gateway between two multicast domains using different
or the same multicast technologies. IMGs forward multicast traffic from one technology to
another (fig. 1b). To do so, it is necessary to relate different technologies with one another.
Therefore HAMcast uses a universal multicast group addresses (HAMcast URI). Listing 2.1
shows how the URI is constructed. Each URI starts with a scheme, that refers to a specified
multicast name space. The second argument identifies the group e.g host and port. The third
part of the URI is instantiation, it serves to identify a resource that generates data, e.g, the
source in source specific multicast. The sec-credentials argument is optional, it can be used
for security purposes. For example, ip://232.0.0.1:1234@141.22.26.54 a HAMcast URI with ip
as the namespace and a multicast group address with a specification of source address.

1 scheme " : / / " group "@" instantiation " : " port " / " sec−credentials

2 Related work 3

HAMcast

API-Library

Underlay

Socket

Stub

join/leave

send/receive

Group Application

Middleware

Pluggable Technology Modules

IP
C

...

Service Selection

HAMcast

Socket

Sockets

IPv4
IPv4

IPv4

IPv4
IPv4

IPv6

IPv4
IPv4

Scribe

ALM
Service-

Discovery

Group-

Mapping

(a) HAMcast Architecture

Scribe

Overlay-Multicast

<

IP-Multicast

IP-Multicast

SenderIMG

Receiver

IP-Multicast

(b) HAMcast example network

Listing 1: HAMcast URI

2.2 Multicast Monitoring

There are several tool for multicast monitoring that discover the tree topology or analyse mul-
ticast traffic. For example, RTPmon [4] is a tool to collect and display packet loss and jitter.
This tool can be used to find multicast distribution problems. RTPmon uses RTCP (Real-
Time-Control-Protocol) to gather these information, and is therefore boud to applications using
RTP protocol. Another tool is Mrinfo, it displays the configuration informations from multicast
routers. Mrinfo [3] uses IGMP messages to acquire informations like routing neighbors, metrics
and threshold. Also tools like tracetree [15] can be used to discover multicast forwarding trees.
Tracetree is an extends multicast routers, this extension allows them to resolve trees. In this
section we want to focus on tools that do both, tree discovery and visualizations.

Mtrace [9] is a multicast traceroute program. It basically mimics the functionality of unicast
traceroute. It resolves the tree from the receiver to the source. In order to resolve the entire
multicast forwarding tree, the subtrees of all existing receivers have to be merged into one.
That implies that the monitoring tool has to know all receivers involved in the tree. Another
disadvantage of this process is that it can only work if routers are running the Mtrace program.
The behaviour of this traceroute algorithm starts by sending a query message to the first hop
router of a receiver. The query message contains the address of the source, a multicast ad-
dress and a response address. After that, the receiver converts this message into a request
message by adding a request data block. The request block contains the information when the
packet arrived, all outgoing interfaces, the number of packets previously sent by the router and
the TTL. After creating this request message, the router sends this message to his previous

3 Concept of the monitoring framework 4

hop router. All messages are send via unicast. After receiving a request message, the router
will add an request block and forwards the message as described before. If the router is re-
sponsible for forwarding the message to the source, the request message will be converted into
a response message. Afterwords this message will be send to the response address contained
in the message.

Mhealth [9] combines application and routing information to provide a detailed view of a multi-
cast network that, runs RTP applications. The routing information will be obtained by Mtrace.
This tool is not part of Mhealth and has to be installed separately. Also data like jitter, packet
loss, delay and group relations can be monitored with Mhealth. These data is determined using
the RTCP protocol. All information acquired with Mtrace and RTCP will be collected and visu-
alized. Mhealth visualizes the multicast forwarding tree, routers are represented by rectangles
and the connection between them by lines. More information like packet loss is displayed using
color filled rectangles.

MUVI [14] is a Java-based multicast monitoring tool that can monitor statistics and visualizes
the multicast forwarding tree of a network. In order to trace the forwarding tree, MUVI uses the
SNMP protocol to retrieve the routing neighbours of a router. Thus MUVI needs access to the
management of routers that will be monitored. The tree discovery can be limited by setting an
hop count, so the software will only trace all routers within this hop count. MUVI represents
routers as icons and the interface connections are represented by lines connecting the icons.
The filter option enables the user to see all interfaces that are used for forwarding multicast
traffic for a specific group. The connection lines between the router will be painted in green
while all connections that are not involved will be painted black. It is also possible to browse
and save the MIB table of a router.

3 Concept of the monitoring framework

3.1 Architecture

The monitoring framework consists of three independent modules, each having its own pur-
pose. The main functionalities of the framework are accessing data of distributed nodes, collect
and visualize it. To access the data, every HAMcast node has to run a daemon process that
serves as a remote interface to the HAMcast-API, the monitoring daemon. A collector will use
these daemons to collect and process the acquired information. A view then displays the data
provided by the collector. All components are completely separated. This modular architec-
ture allows us to change functionalities without interfering with other modules. Most important
the design and development of User-Interfaces can be separated from the monitoring task,
allowing us to implement different kind of views. Since the API-interface used by HAMCast is

3 Concept of the monitoring framework 5

on track to standard, the framework can be used to monitor all kinds of applications that will
implement this API.

Figure 1 gives an overview of the monitoring framework. On every HAMcast node, a daemon
process is running. A single collector fetches the information from the nodes and provide it to
the different views. As shown in the architecture overview 1, the viewers are not part of the
HAMcast network and do not need to run any kind of library. The information provided by the
collector can be accessed using a simple http based messaging protocol to ensure all kind of
different views.

Daemon 1Daemon 1 Daemon 2Daemon 2 Daemon ...Daemon ... Daemon NDaemon N

Monitoring Collector

HAMcast
Network

Qt-UIQt-UI Web-Based UIWeb-Based UI Java ...Java ... OthersOthers

Figure 1: Architecture overview

The communication between monitoring modules is realized using a RESTful-Web-Service.
REST [13] is a lightweight remote procedure call (rpc), using a client-server architecture. The
server provides a number of methods that can be called by the client. For this purpose the client
and server are connected via TCP using HTTP as message protocol. Methods are identified
by an URI in the HTTP header. The payload of a message and return values of a method are
encoded in XML.

3 Concept of the monitoring framework 6

3.2 Monitoring Framework modules

Daemon

The daemon process serves as remote access to the HAMcast-API. A Node running this pro-
gram can be connected to one or more collectors. There exist a number of HAMcast-API calls
called service-calls, these calls provide information about the current network status of a node.
Basically the daemon wraps the service-calls in methods that convert the returned values into a
XML document. A collector connected with the daemon can use the REST-Interface to execute
the calls. The sequence diagram in figure 2 shows the communication between the collector
and daemon, include the node discovery process 3.2.

Collector DaemonMulticast group

Join group

/CONNECT

/CONNECT

/CONNECT

POST daemon ID

POST /interfaces

200 OK payload

Figure 2: Communication between collector and daemon

Callable methods of the daemon are as follows [17] :

get_interface returns a list of communication interfaces and their properties, equal to the
get_interfaces call of the HAMcast-API.

group_set returns a list of groups for the specified interface, equal to the group_set call of
the HAMcast-API.

neighbour_set returns a list of routing neighbours for the specified interface, equal to the
neighbour_set call of the HAMcast-API.

parent_set returns a list of routing parents for a specified interface and group, equal to the
parent_set call of the HAMcast-API.

children_set returns a list of routing children for a specified interface and group, equal to the
children_set call of the HAMcast-API.

3 Concept of the monitoring framework 7

Collector

This program collects all data from connected daemons, feeding the view with information
about the network. In a frequent time interval, the collector will update and store the node
information. The node information is accessed using the REST-Interface of a daemon. The
information gained from a daemon is stored within a data model.

To provide the collected data to a view, the collector implements a REST-Interface. The meth-
ods made available are directly adapted for monitoring reasons and visualization. The se-
quence diagram (fig 3) shows how the viewer and collector communicate with one another.
Important is that the collector is reachable via a public IP-address allowing daemons and views
to open a connection. This reduces the NAT connection problem to a single entity.

View Collector

POST /node_list

200 OK payload

POST /group_data arg=group_name

404 NOT FOUND

Figure 3: Communication between view and collector

Callable methods of the collector are as follows :

group_list returns a list of HAMcast groups merged from the group sets of all known nodes.

node_list returns a list of daemon ids from all known nodes. Every daemon has an id to
identify the node.

group_data returns a list of all daemon ids for the specific group. This call needs a HAMcast
group URI as argument

node_data returns a list that contains detailed information about a specific node. This call
requires a valid daemon id as argument.

group_tree returns a list of edges specific to a group. The list contains pairs of daemon
ids representing edges between nodes. This call requires a HAMcast group URI as
argument.

3 Concept of the monitoring framework 8

In order to exchange data, the collector and the daemons, need a discovery mechanism to find
one another. Normally, the entity that opens a unicast connection has to know the communi-
cation. Due to the nature of a dynamic network user may join and leave the network at any
time. Thus in order to find all nodes involved in the network the discovery process has to be as
dynamic as the network itself.

To do so, we decided to use that same infrastructure that we want to monitor, as a tool to
discover nodes. Since all nodes participate in a multicast network it is possible to contact the
nodes without any prior knowledge. All daemons involved in the network join a well known
multicast group. The collector is now able to send a connect messages into the well known
group (fig. 4). This messages contains the IP-address of the collector. Every daemon who
receives this message will open a TCP-connection to the collector. This enables the collector
and daemons to exchanged messages. In addition to that daemons have no interest in receiv-
ing responses from one another, so we avoid to pollute the network with monitoring messages.
To track additionally joined nodes, the collector frequently sends connect messages into the
multicast group.

Daemon 2

Daemon 4 Daemon 5

Daemon 1

Collector

Daemon 3

x

Connect-
Message

Unicast
connection

1.
2.

Figure 4: Node discovery

3 Concept of the monitoring framework 9

Viewer

This program visualizes data provided by the collector. The viewer can obtain information data
via the REST-Interface of the collector. This part of the framework is the most exchangeable
and can be adjusted to the needs of the user. For our implementation, we require the view
to update the data displayed in near real time to give the user an accurate representation of
the network. Also we want the view to provide an intuitive, group focused visualization of the
network. All groups existing in the HAMcast network should be clearly displayed, to get an
overview of the network. This group overview will be shown in a list view.

There should also be a more detailed view on the specific groups. The detailed view should
list all nodes and their properties, for example interface and routing information. This detailed
group window can be opened by clicking on one of the groups listed. The node information
in this window are displayed in a tree view. This tree view uses a hierarchical representation,
every root in this window is the daemon id of a node. By clicking on a root the user can expand
the tree showing more detailed information about the node.

As a second visualization, we want the viewer to draw multicast group forwarding trees that
show the relation between nodes in a graphical manner. This graph will be displayed in a new
tab so that the user can switch between different graphs. The visualized nodes should display
information about the used technology and their identity, so nodes can be related to the none
graphical representation of the group. All nodes are represented by icons, the look of the icon
depends on the active technologies modules of the node. By clicking on an icon a small freely
movable window will open. This window contains all the node information available for this
node, equal to the detailed group view, but reduced to this single node. This allows the user to
view node information without the need to switch between the text and the graphics view.

4 Implementation 10

4 Implementation

In this section we present the implementation of the discussed presented in section 3. All
programs are written in C++. The daemon and collector are implemented using the boost
library and the viewer is implemented using the Qt-UI framework. All of these libraries are
multi platform and can at least be operated under Windows and Linux distributions. We tried
to minimize the use of external libraries to make sure the framework easy to operate on many
different systems.

4.1 Shared utilities

Software components like the data model and the REST-Interface are shared among the mon-
itoring modules. All modules use the a method_caller class and http_message class to ex-
change data via a REST-Interface. Also the Collector and View use the same data model to
save network information.

The data model (fig. 5) represents a HAMcast node and all of his properties. A HAMcast node
has a name wich is the daemon id of a node. This id serves to identify the node. It is used by
the collector and the view. Every node can have one to n active interfaces.

The interface has a name which is the name of the used technology, an id assigned by the
middleware, a network address, a technology which describes the type of technology used,
e.g, application-layer- or IP-layer-multicast, a set of routing neighbours and joined groups. The
group has a name (HAMcast group address), a parent and children set.

node
+interfaces: vector<interface>
+name: string

interface
+name: hamcast::uri
+tech: string
+address: string
+id: int
+groups: vector<group>
+neighbours: vector<hamcast::uri>

group
+name: hamcast::uri
+parent: hamcast::uri
+children: vector<hamcast::uri>

 1 0..* 1 1..*

Figure 5: The HAMcast node data model

For the implementation of the REST-Interface, a class or library that supports the http protocol
for both client and server side, is needed. Most of the libraries are only supporting the client
side. Thus we decided to implement a class which supports all messages we need for the
REST-Interface. There are basically two messages needed HTTP POST and HTTP REPLY.
The HTTP REPLY is defined by the error code in the message header. The most common
error codes are 200 OK, 404 NOT FOUND and 500 internal server error. The 200 OK code in

4 Implementation 11

the message header represents a successful call and the 404 NOT FOUND an unsuccessful
call. Which mean that either the call could not be found or a arguments were missing/wrong.

The creation of a HTTP POST and HTTP Reply is implemented by the http_message class.
This class can be used to crate new messages or parse received messages into an object.
The construction of a HTTP POST message needs two arguments a URL defining the method
name and a list of arguments, if needed. To construct a REPLY message the error code and
payload is needed.

To call a method defined in the header of a message we implemented a class called
method_caller. The programs inherit from this class to implement the REST-Interface. One
method of this class is the register_method call. This call takes a name to identifying the
method and a function pointer to the method. The function pointer and the method name will
be saved into a map. All methods have to have the same method body with only one argument
a string array. The arguments passed by an HTTP POST message will be parsed into strings
and hand over to the method. The conversion and verification of arguments into the right data
types is in the responsibility of the method, as well as the construction of a valid XML docu-
ment for the reply. To create and parse the XML documents we used the boost property tree
library.

After a method is registered it can be executed by the invoke_method call. This call takes two
arguments, the name of the function and a vector containing the arguments for that function. On
calling this method the function pointer map will be searched for a registered method matching
the specified name. If no method is found an empty string will be returned, so the caller knows
that the method call failed, otherwise the method will be invoked with the given arguments. An
example call is shown in figure 6.

4 Implementation 12

REST Client REST-Server

Query

POST /square HTTP/ 1 . 1
User Agent: HAMcast Monitoring
Content Length: 32
Content Type: Content Type: text/plain; charset=utf 8

arg0=3;

Response

HTTP/ 1 . 1 200 OK
Content Type: text/xml; charset=utf 8
Content Length : 79

<?xml version="1.0" encoding="utf-8"?>
<method>/square<\method>
<num> 9<\num>

Figure 6: REST message exchange

4.2 Monitoring Daemon

The implementation of the monitoring daemon has two main behaviours. A multicast module
waits for connect messages from a collector to invoke a TCP connection. The TCP-Connection
class that connects to the collector and waits for incoming calls that invoke methods using the
implemented REST-Interface. The figure 7 shows a class diagram with the most important
classes and attributes of the daemon program.

Command line arguments At start up, the daemon takes two command line arguments,
the daemon id and a HAMcast multicast group. All arguments are optional, the program can
also run with default options. The first argument defines the daemon id that will be used by
the collector and view. If not set, the daemon id will be set to the IP-address of the node.
The second argument is a HAMcast multicast group, this group address will be used for node
discovery. If not set, the default value ip://230.0.0.1:1234 will be used.

Program behaviour If all arguments are correctly set, the daemon will create a multicast
module class that receives all incoming messages on the specified group. On receiving a
connect message, the daemon will open a TCP-connection, the collector uses a new thread to
handle the incoming calls received via this socket. If a daemon is already connected with this
collector, the connect message will be ignored. On receiving a message, the received data will

4 Implementation 13

be used to create a http_message object. The URL and arguments contained in the message
will be used to invoke a method using the invoke_method call of the function_wrapper class.
This call returns a string, if the string is empty a HTTP 404 message will be created using the
http_message class. Otherwise a HTTP 200 OK message will be created with the returned
value as payload.

tcp_client
+server_address: std::string
+server_port: int
+daemon_id: std::string

multicast_module
+group: hamcast::uri
+tcp_connections: std::map<server_address,tcp_connection>

function_wrapper

+get_interface(args:std::vector<std:.string>)
+neighbor_set(args:std::vector<std:.string>)
+parent_set(args:std::vector<std:.string>)
+children_set(args:std::vector<std:.string>)

method_caller
+methods: std::map<std::string, function_pointer>

http_message
+header: std::string
+payload: std::string
+type: int
+length: int

1

1

1

0..*

 0..* 1

Figure 7: Daemon class diagram

4.3 Monitoring Collector

The collector has two main behaviours, a multicast module that is used for the node discovery
and a TCP-Server that handles all incoming TCP-Connections. Figure 8 shows the class
diagram of the collector.

Command line arguments The collector needs three command line arguments in order to
execute. The first argument specifies a HAMcast multicast group that will allow him to execute
the node discovery. The second argument is a time interval that indicates how frequently
the collector sends connect messages into the multicast group. The third argument is a time
interval that indicates how frequently the collector will update the data model for connected
daemons. All arguments are fully optional, if they are not set the default values will be used.
The default value for the group is set to ip://239.0.0.1:1234, the port for the tcp-server is set
to 35000, the time value for the node discovery is set to 30 seconds and the time interval to
update the node data is set to 10 seconds.

4 Implementation 14

Program behaviour At start up the monitoring collector frequently sends connect messages
into the multicast group using the multicast module. The connect message contains the IP-
address and port of the collector. After a monitoring daemon joins the multicast group, it
will receive the message and open a TCP-connection with the collector. After a connection
is successfully established, the daemon will send his daemon id immediately to the collec-
tor. The collector memorises the daemon id and TCP-connection object in a map. For every
TCP-connection the collector holds a data model, this data model will be frequently updated
depending on the time interval set. Every TCP-Connection object runs a timer set to the spec-
ified time value. If the timer is triggered the data model for this connection will be updated.
To do so, the collector executes the method a daemon offers over the REST-Interface using
the http_message class to create the requests. All incoming messages will are handled as
describes in the program behaviour of the daemon. If the message is an HTTP 200 OK the
payload of the message contains which call created this payload and how it should be handled.
This is done by checking the method entry of the XML document.

tcp_server
+connections: std::map<std::string,tcp_session>
+update_rate: int
+collector: collector
+function_wrapper: method_caller

tcp_session
+socket: boost::asio

method_caller
+methods: std::map<std::string, function_pointer>

function_wrapper
+nodes: std::map<std::string,node>

+group_list(args:std::vector<std:.string>)
+node_list(std::vector<std:.string>)
+node_data(std::vector<std:.string>)
+group_data(std::vector<std:.string>)
+group_tree(std::vector<std:.string>)

http_message
+header: std::string
+payload: std::string
+type: int
+length: int

1

1 0..*

1

Figure 8: Collector class diagram

4.4 Monitoring Viewer

The view provides an intuitive, groupfocused visualization of the network. All groups existing
in the HAMcast network are clearly displayed in a list view, to get an overview of the network.
There is also a second view that lists all nodes and their properties in a tree view. The tree view

4 Implementation 15

will be set with the group information when a user clicks on a group address in the list view. On
Double click of a group address a new tab opens where the forwarding tree is rendered (fig.
11). The group nodes are represented by icons connected with lines. Every line represents
the parent children relation between nodes. If the user scrolls over the icon a tool tip window
opens showing the interface address of the node, the interface technology and the number of
children this node has. A left click on a node icon opens a small movable window containing
detailed information about the node in a tree view, equal to the information of the tree view.
The UI and graphical trees are created using the Qt-framework [12]. All items in the graphics
tree are graphic object created using the the QGraphicsView framework. The class diagram
(fig. 9) shows the most important classes of the viewer.

Program behaviour The program behaves as follows, on start up a configuration window will
show up (fig. 10). In this configuration window the user has to set the IP-address and port of
the collector. Optional a time interval that indicates how frequently the data will be updated,
can be committed to the software. All entries are set with default values, the IP-address of the
collector is set to localhost, the port is set to 35000 and the time interval is set to 10 seconds.
Thereafter a connection to the collector will be established. A list of all multicast groups will be
fetched and displayed using the group_list method from the REST-interface of the collector. If
a user requests to get detailed information about a group, all needed data will be retrieved by
executing the group_data call and the node_data call of the REST-Interface. The group_data
call returns a list of group members for the group, for each entry in this list the node_data call
will be executed to get the node details. If the user wants to display the graphical group tree, the
viewer calls the group_tree call from the collector, this call returns a list of all edges in the tree.
For every node in the edge list a image_node graphics object will be created. The image_node
class defines the paint method and mouse listeners for a graphical object. To connect the
graphics objects, edge objects will be created from the the edge_class. The edge_class draws
a line between two image_nodes. The image_nodes. will be connected as defined by the
edge list. At last the node positions will be calculated and the tree can be displayed. For the
calculations of the node positions we use the igraph library [2]. This library supports data types
for graphs as well as functions for generating and manipulating graphs. Also it provides layout
algorithms for different types of graphs. We use the Reingold and Tilford layout algorithm. This
Layout algorithm is directed downwards, children are centered below their parent. In parallel
an update thread is running to keep the displayed graphs current. If this data changes, all
currently opened views that are afflicted by that will be updated.

4 Implementation 16

mainwindow
+group_view: QtableWidget
+node_view: QtreeView
+tabs: QTabWidget
+graphs: QMap<QString,graph>
+monitor: monitor

image_node
+image: QImage
+parent: edge
+children: QList<edge>
+tree_view: QtreeView
+hamcast_node: node

edge
+source: image_node
+dest: image_node

graph
+view: QgraphicsView
+scene: QgraphicsScene
+nodes: QList<image_nodes>
+edges: QList<edge>

tcp_connection
+server_address: QString
+server_port: int

1

0..*

monitor
+update_rate: int
+nodes: QMap<QString,node>

1 1 1 1

1 0..*

2 1
1 0..*

1

0..*

Figure 9: Collector class diagram

Figure 10: Configuration window

5 Conclusion and Outlook 17

Figure 11: Tree visualization

5 Conclusion and Outlook

The motivation in developing a monitoring framework for HAMcast was to give the users a
tool at hand that can be used to debug and analyse hybrid multicast networks. We wanted
to develop a software that provides detailed information about multicast groups and tree vi-
sualization. The concept and implementation of the framework provides detailed informations
about multicast groups and nodes as well as a graphical representations of multicast forwarding
trees. Over the development cycle of this framework, we discovered several bugs that helped
us enhance the HAMcast technology modules and middleware.

Currently, we are working on a logging system for the collector that records the monitored
networks and an offline mode for the view that visualizes the recorded data. Furthermore,
we are planning to develop a web interface that uses the daemon and collector software of
the framework. This web interface should provide a second mobile view that can be used
on smaller devices like smart phones as well. We plan to implement statistics for HAMcast
networks. We also want to extend the demons enabling the user to run scripts on distributed
HAMcast nodes using the frameworks view. Also we want to extend the daemons to use
mtrace giving network administrator the possibility to view native forwarding trees under the
requirement that mtrace is installed on the routers. For the current implementation of the

References 18

view we use the Reingold and Tilford layout algorithm to position the nodes in our graphical
representation. It is planned to provide more layout algorithms in the near future to give the
user the possibility to arrange the graphs as preferred.

References

[1] : HAMcast project page

[2] The igraph library. Webseite. – URL http://igraph.sourceforge.net/. –
Letzter Aufruf am 9. Jannuar 2012

[3] OpenBSD System Manager’s Manual. Webseite. – URL http://www.openbsd.
org/cgi-bin/man.cgi?query=mrinfo#AUTHORS. – Letzter Aufruf am 9. Jan-
nuar 2012

[4] BACHER, David ; SWAN, Andrew ; ROWE, Lawrence A.: rtpmon: a third-party RTCP
monitor. In: Proceedings of the fourth ACM international conference on Multimedia. New
York, NY, USA : ACM, 1996 (MULTIMEDIA ’96), S. 437–438. – URL http://doi.
acm.org/10.1145/244130.244459. – ISBN 0-89791-871-1

[5] DEERING, Stephen E. ; CHERITON, David R.: Multicast routing in datagram internetworks
and extended LANs. In: ACM Trans. Comput. Syst. 8 (1990), May, S. 85–110. – URL
http://doi.acm.org/10.1145/78952.78953. – ISSN 0734-2071

[6] DIOT, Christophe ; NEIL, Brian ; BRYAN, Levine ; BALENSIEFEN, Kassem D.: Deployment
issues for the IP multicast service and architecture. In: IEEE Network 14 (2000), S. 78–88

[7] JIN, Xing ; CHENG, Kan-Leung ; CHAN, S.-H. G.: Island multicast: combining IP multicast
with overlay data distribution. In: Trans. Multi. 11 (2009), Nr. 5, S. 1024–1036. – ISSN
1520-9210

[8] MAKOFSKE, David B. ; ALMEROTH, Kevin C.: MHealth: A real-time multicast tree visu-
alization and monitoring tool. In: In Network and Operating System Support for Digital
Audio and Vid eo (NOSSDAV, 1999

[9] MAKOFSKE, David B. ; ALMEROTH, Kevin C.: Real-time multicast tree visualization and
monitoring. In: Softw. Pract. Exper. 30 (2000), July, S. 1047–1065. – URL http:
//dl.acm.org/citation.cfm?id=350554.350572. – ISSN 0038-0644

[10] MEILING, Sebastian ; CHAROUSSET, Dominik ; SCHMIDT, Thomas C. ; WÄHLISCH,
Matthias: System-assisted Service Evolution for a Future Internet – The HAMcast Ap-
proach to Pervasive Multicast. In: Proc. of IEEE GLOBECOM 2010, Workshop MCS
2010. Piscataway, NJ, USA : IEEE Press, Dec. 2010, S. 913–917

http://igraph.sourceforge.net/
http://www.openbsd.org/cgi-bin/man.cgi?query=mrinfo#AUTHORS
http://www.openbsd.org/cgi-bin/man.cgi?query=mrinfo#AUTHORS
http://doi.acm.org/10.1145/244130.244459
http://doi.acm.org/10.1145/244130.244459
http://doi.acm.org/10.1145/78952.78953
http://dl.acm.org/citation.cfm?id=350554.350572
http://dl.acm.org/citation.cfm?id=350554.350572

References 19

[11] NAMBURI, Pavan ; SARAC, Kamil ; ALMEROTH, Kevin: Practical utilities for monitoring
multicast service availability. In: Comput. Commun. 29 (2006), June, S. 1675–1686. –
URL http://dl.acm.org/citation.cfm?id=1646665.1647082. – ISSN
0140-3664

[12] NOKIA: Qt a cross-platform application and UI framework. Webseite. – URL http:
//qt.nokia.com/products/. – Letzter Aufruf am 9. Jannuar 2012

[13] PRZYBILSKI, Michael: REST - REpresentational State Transfer. URL http:
//www.cs.helsinki.fi/u/chande/courses/cs/MWS/reports/
MichaelPrzybilski_REST.pdf, ? – Forschungsbericht

[14] RADOSLAW KRZYWANIA AND ROMAN LAPACZ: Multicast Visualisation Tool MUVI. Web-
seite. – URL http://muvi.man.poznan.pl/index.php?id=0l. – Letzter
Aufruf am 9. Jannuar 2012

[15] SARAC, Kamil ; ALMEROTH, Kevin C.: Tracetree: a scalable mechanism to discover
multicast tree topologies in the internet. In: IEEE/ACM Trans. Netw. 12 (2004), Octo-
ber, S. 795–808. – URL http://dx.doi.org/10.1109/TNET.2004.836123.
– ISSN 1063-6692

[16] WÄHLISCH, Matthias ; SCHMIDT, Thomas C.: Between Underlay and Overlay: On Deploy-
able, Efficient, Mobility-agnostic Group Communication Services. In: Internet Research
17 (2007), November, Nr. 5, S. 519–534. – URL http://www.emeraldinsight.
com/10.1108/10662240710830217

[17] WÄHLISCH, Matthias ; SCHMIDT, Thomas C. ; VENAAS, Stig: A Common API for
Transparent Hybrid Multicast / IRTF. URL http://tools.ietf.org/html/
draft-irtf-samrg-common-api, January 2012 (04). – IRTF Internet Draft –
work in progress

[18] YEO, C.K. ; LEE, B.S. ; ER, M.H.: A survey of application level multicast
techniques. In: Computer Communications 27 (2004), Nr. 15, S. 1547 –
1568. – URL http://www.sciencedirect.com/science/article/pii/
S0140366404001616. – ISSN 0140-3664

[19] ZHANG, Beichuan ; WANG, Wenjie ; JAMIN, Sugih ; MASSEY, Daniel ; ZHANG, Lixia:
Universal IP multicast delivery. In: Computer Networks 50 (2006), Nr. 6, S. 781–806. –
ISSN 1389-1286

http://dl.acm.org/citation.cfm?id=1646665.1647082
http://qt.nokia.com/products/
http://qt.nokia.com/products/
http://www.cs.helsinki.fi/u/chande/courses/cs/MWS/reports/MichaelPrzybilski_REST.pdf
http://www.cs.helsinki.fi/u/chande/courses/cs/MWS/reports/MichaelPrzybilski_REST.pdf
http://www.cs.helsinki.fi/u/chande/courses/cs/MWS/reports/MichaelPrzybilski_REST.pdf
http://muvi.man.poznan.pl/index.php?id=0l
http://dx.doi.org/10.1109/TNET.2004.836123
http://www.emeraldinsight.com/10.1108/10662240710830217
http://www.emeraldinsight.com/10.1108/10662240710830217
http://tools.ietf.org/html/draft-irtf-samrg-common-api
http://tools.ietf.org/html/draft-irtf-samrg-common-api
http://www.sciencedirect.com/science/article/pii/S0140366404001616
http://www.sciencedirect.com/science/article/pii/S0140366404001616

	1 Introduction
	2 Related work
	2.1 HAMcast
	2.2 Multicast Monitoring

	3 Concept of the monitoring framework
	3.1 Architecture
	3.2 Monitoring Framework modules

	4 Implementation
	4.1 Shared utilities
	4.2 Monitoring Daemon
	4.3 Monitoring Collector
	4.4 Monitoring Viewer

	5 Conclusion and Outlook
	References

