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1 INTRODUCTION 1

1 Introduction

The Information-Centric Networking (ICN) proposal is receiving more and more attraction in
the ongoing search for a future Internet architecture. The ratio of host-centric communication,
where users are interested in communication with a particular host in the network, is declin-
ing. Instead, the information-centric usage of the Internet is steadily increasing. Fostered by
social networks, video-on-demand services and the like, fairly large shares of network load
are caused by the very same content that is repeatedly delivered to consumers.

The ICN approach aims for reflecting these changes in usage of the Internet and is thus
dragging content awareness into the network, for instance to let the network itself decide
where to acquire requested data from and thereby utilize content caches to increase the
data dissemination efficiency. All this is backed by the use of the publish/subscribe paradigm
that is utilised to announce content availability and request its delivery.

Since the ICN paradigm is entirely different from todays Internet, new challenges arise within
the area of network security. NDN/CCNXx, as the most popular ICN approach, claims to solve
a couple of different security flaws which the actual Internet is suffering from. This raises the
questions of which vulnerabilities still exist and if maybe new issues arise.

In section 2 we will present attacks that we anticipate ICN in general, as well as NDN/CCNXx
in particular, to be vulnerable to. Further we will take a closer look at two of those attacks,
namely the Resource Exhaustion and State Decorrelation case. We will describe scenarios
that lead to exploitation of these issues as well as the data that is needed to verify the re-
percussions in section 3. In section 4 we describe methodologies to acquire the previously
specified data. Further the testbed and simulation approach are investigated. Their char-
acteristics, risks and recommendations about their applicability is presented as well as the
setups we are aiming for. We finalise our work by summing up the results and the succeeding
steps in section 5.

2 Research Question

In what follows, we take a closer look at the actual research questions which arise in the con-
text of ICN security. The depicted list elaborates threats we anticipate ICN to be vulnerable
to.

Resource Exhaustion A massive generation of content subscriptions or publications,
caused for instance by malicious misuse or misconfiguration, will result in an extensive
utilisation of memory and processing resources. This could likely lead to a Denial-of-
Service (DoS).

State Decorrelation Through the asynchronous nature of the publish/subscribe based data
transmission, a decorrelation of the distributed states may lead to service disruption
and unwanted traffic flows.

Path & Name Infiltration Through the publishment of a name or name prefix within the net-
work, subscription messages are attracted. This can be used to blackhole subscription
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messages or to start man-in-the-middle attacks by issuing falsified publication mes-
sages. The fact that distributed cached copies need to be registered to optimally use
the caching infrastructure, as posed in [11], makes the genuineness validation of pub-
lishments even harder.

Cache Pollution Through the use of content caches within the routers, the network aims to
perform better while disseminating the same content again and again. By spoiling the
cache relevance, the usefulness and thus the performance of the cache are vulnerable.
Further randomly filling the cache also leads to an increase in control traffic and routing
table maintenance.

Cryptographic Breaches Long lived signing keys combined with large amounts of pub-
lished data provide increased opportunities to compromise the cryptographic creden-
tials used to secure the authentication of the publisher as well as the integrity of the
content itself.

Additional resources that elaborate on the security risks and threats of ICN are [16, 12, 10].
In the further course we will focus our attention especially on the Resource Exhaustion as
well as on the State Decorrelation case.

The research questions derived from the list above are as follows. Do the anticipated is-
sues exist, is the ICN provably susceptible to Resource Exhaustion and State Decorrelation
attacks? Under which circumstances are those attacks feasible? How do systems behave
when they are under attack? What are potential counter measures to eliminate or at least
mitigate the impact?

3 Evaluation approaches

To approach the questions raised in section 2, we pursue the following steps. At first we
will develop threatening scenarios in subsection 3.1. In subsection 3.2 we will then define
metrics and the data that is needed to answer the raised questions.

3.1 Threatening scenarios

Since we focus on the Resource Exhaustion vulnerability, it is necessary to figure out con-
stellations that might lead to high resource consumption. All resources that a router relies
on are potential candidates for this attack. These resources are namely the CPU time and
the routers main memory. The routers forwarding plane is not part of this list, because data
forwarding is its primary task. Since there is no way of distinguishing between proper and
faulty data transfers in the first place, just the cases of stressing the routers inferior resources
like CPU time or its memory are unsolicited attacks that need to be prevented.

There exist at least two possible ways to invoke such high burden on the inferior resources.
One way is by making the router accept and process routing updates that one sends to it.
Through issuing loads of deliberately chosen routing updates the content router is forced
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to continuously recalculate shortest paths and keep its routing table up-to-date. Also the
memory consumption increases through the rising amount of information that needs to be
kept available. This procedure is further referred to as FIB-Attack.

The second approach to exhaust router resources depends on the Pending Interest Table
(PIT). Whenever an Interest is received by a CCNx content router that can not be satisfied by
local data and thus needs to be forwarded to neighboring nodes, it is temporarily maintained
in the PIT. All related information that is needed to forward the data, which is flowing on the
reverse path from origin towards the subscriber, is represented by the PIT entry.

By issuing bulks of Interests the PIT fills up and so does the memory. If the rate of Interest
creation and issuing is high, the router may suffer Memory Exhaustion. Another effect might
also be an extensive CPU resource consumption, due to the soft-state that is maintained for
each associated Pending Interest. When a considerable amount of Interests is pending, the
overall performance of the content router is likely to degrade. The soft-state timer related to
each entry assures that Interests that do not receive the requested data will be erased as
a prevention for the PIT to overflow. This overflow prevention mechanism may also appear
when the incoming Interest rate is very high, with the difference that even still valid entries
get dropped. This might lead to State Decorrelation events, where some content routers still
maintain state for Interests that others just dropped.

We also expect the position of the content router to influence the amount of Pending Interests
entries. Because data retrieval eliminates active PIT entries, the overall amount of Pending
Interests is expected to decline on the way towards the content origin. Consequently a lower
resource burden is expected for the content routers located closer (hop wise) towards the
origin than for those further away.

The effect of Interests accumulation in the content routers PIT will even be worse when
content is requested that is not actually existing. Thus there is no data transmitted on the
reverse path that could purge PIT entries. As a matter of this the entries will remain in the
PIT until the corresponding timers expire.

3.2 Metrics

To be able to make statements about the performance and the vulnerability to the Resource
Exhaustion and State Decorrelation threats, we need to gather data that can consecutively
be analysed and interpreted. We thus define the following list of metrics that are needed to
evaluate the vulnerability of the NDN concept.

e PIT count e FIB-Entry count
The amount of non expired Pending The amount of entries the Forward In-
Interests existing on each and every formation Base consists of.

router.
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e Memory consumption e Interest retransmission rate
The amount of memory that the con- The amount of Interests that have to
tent routing process consumes. be reissued because of timeouts or
there like.
e CPU utilisation
The amount of CPU time that the con- o Network utilization
tent routing process is consuming. The amount of data that is transferred

over CCNx. This is used to indic-
ate the effective efficiency of the data
transfer.

e Time-to-completion
The time it takes for content items to
completely arrive at the subscriber.

4 Methodology

By now we have defined the scenario that we want to look at as well as the data that is
needed in order to make a statement about the behaviour of CCNx in case of an attack.
Three different approaches exist to acquire the above mentioned data.

e Theoretical considerations By building an accurate model of the system, at an ap-
propriate level of abstraction, it is possible to gain the required values by basic calcu-
lations.

e Testbed By deploying the prototype software within a test environment the required
data can be collected while executing the concrete scenarios.

e Simulation By building models of all the involved components it is possible to evaluate
a complete complex system within a simulation environment and gather the required
data that way.

The characteristics of those approaches differ, they are not interchangeably applicable. In
what follows we will compare the attributes of a testbed to those of the simulation approach.

4.1 Testbed

The testbed has specific characteristics, which we will discuss next. It is followed by an
introduction to the testbed setup, like we build it, which is then followed by a critical survey of
risks and shortcomings that one has to be aware of when utilizing the testbed to analyse the
raised questions.
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4.1.1 Testbed characteristics

The testbed environment is a non-deterministic approach to collect the required data. There
exists no realistic opportunity of controlling the environment in a way that the preconditions
of two arbitrary runs are the same.

An advantage of the testbed approach is that the actual code of the system under test is
used, which mitigates the possible flaws of a differing behaviour, when conducting the meas-
urement with an abstract implementation. On the other hand, a larger number of testbed
nodes is required, in our case one node for each CCNx router, which also leads to an even
higher management overhead. The different nodes need to be managed. The whole envir-
onment for example needs to be reset to its initial state prior to each run, to assure that every
measurement starts in a clean environment without any influences left behind by previous
runs.

All the execution is dependent on the interaction of various nodes, and not just the nodes
that are measured, also switches or routers that the testbed relies on, will influence the
measurement.

Clock synchronisation is another issue within the testbed. To be able to combine the log
files created on the different nodes, the clocks of all nodes have to be accurately synced to
preserve the causal relation between all accruing events.

4.1.2 Setup
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Figure 1: Testbed logical topology

Our testbed consists of five CCNx nodes named CCNx1 to CCNx5. These nodes are all
virtualised Linux machines running on top of a VMware ESX server. We chose such virtual-
ised environment to be able to simply change the hardware configuration of each machine.
Through this eased configurability we are able to simulate homogeneous as well as different
heterogeneous node constellations fairly easy. In the basic setup all nodes are equipped with
3 GB of RAM, 2 x 2.4 GHz cores and a virtual Ethernet interface connected to a standard
VMware vSwitch.
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Regarding CCNx, we focus on the repository application, which is part of the CCNx proto-
type, as the source of content and the ccnd routing daemon for inter-node connectivity.
Figure 1 depicts the logical testbed topology we chose to conduct our measurements. Each
of the nodes is running a local CCNx routing daemon (ccnd). The routing information of
all these nodes is configured manually. This means that static routing entries are configured
in the testbed setup phase instead of using a dynamic routing protocol. Within the setup
there exist two distinct routes, referring to the names ccnxshort and ccnxlong. We choose
the names regarding the hop count from node CCNx1 to node CCNx5. While the route
ccnxshort traverses just two hops, from CCNx1 through CCNx2 towards CCNx5, ccnxlong
extends through all of the five nodes from CCNx1 to CCNx5.

CCNx1 in addition to the ccnd runs the client software that is using the CCNx Java API to
request and retrieve the content used for measurement.

CCNXx5 is hosting the additional process of the afore mentioned content repository. The re-
pository is pre-filled with content, matching the namespaces ccnxlong and ccnxshort. Hence
the client can request the content which is then delivered on the reverse path the Interest
took.

The timely resolution of our measurement setup is limited through the use of the Unix
timestamps, which have a resolution of one second. This resolution is considered sulfficient
to examine the test scenarios and answer our research questions, since we want to ana-
lyse the general system characteristics and its behaviour in threatening scenarios, instead of
arguing on exact numbers.

To be able to remotely execute commands in batch mode, Secure Shell (SSH) is used.
Hence the central executed control script is able to run the necessary commands on the
testbed nodes and thereby controls the overall measurement process.

4.1.3 Risks

The testbed runs the actual CCNx code in a small straightforward environment. As already
described, this approach carries a lot of management overhead with it. The management
overhead is increasing with each additional node that needs to be controlled. We chose to
deploy five CCNx nodes in the testbed to keep the overhead and the resulting increased
error susceptibility low. This decision comprises the risk that too few nodes are utilised, such
that some effects that just arise in larger networks will not manifest oneself. On the other
hand, effects that will be proven in this constellation will presumably also arise in topologies
of larger scale.

Within our testbed the loss of clock synchronisation would also tend to problems since the
accruing events and effects would no longer be visible as coherent effects. This issue is mitig-
ated through the use of a single virtualisation server that offers the capability of synchronising
the virtual machine clocks to the host clock. According to [15] this clock synchronisation is
by default performed every minute, which is sufficient for our measurement resolution of one
second.

Further the pre-measurement phase is quite time-consuming. The testbed setup and con-
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trol functionality implementation require significant amounts of workforce that is not directly
dedicated to the measurements conduction.

4.2 Simulation

The simulation has specific characteristics, which will be discussed next. In section 4.2.2
we compare different NDN simulation implementations. This is followed by a description
of the simulation setup we aim to build. Eventually the chapter is closed by a challenging
examination of risks and shortcomings in section 4.2.4 that one has to keep in mind when
utilizing the simulation to analyse the questions raised in section 2.

4.2.1 Simulation characteristics

The simulation attempt is deterministic, meaning that since there is no randomness explicitly
introduced and preconditions stay the same, consecutive runs will always yield exactly the
same results. This is also due to the fact that all operations are executed solely within the
memory of the simulation host. Even the time within a discrete simulation environment is
completely decoupled from real time. This decoupling of simulation and real time is also a
basic requirement to be able to simulate the operation of a large amount of nodes on a simu-
lation host. Simulations are meant to imitate the operations of an arbitrary number of entities,
in our case the CCNx content router nodes. This is viable because the code used within the
simulation framework is not the original implementation code. By reducing the functionality
and simplifying the system, the computational effort and the complexity is decreased. This
approach, however, is just applicable up to a certain point, where the underlying procedures
and principals still exist. The outcome of this is a lowered footprint of the simulation compared
to the real implementation, which helps to build a scalable measurement environment.

The handling of a simulation in most cases is fairly easy compared to the management
of a testbed environment. The simplest way of defining scenarios is by building them in
a programmatic or some other descriptive way. Consecutively the scenario description is
interpreted and executed by the simulation framework. Predefined events will be processed
throughout the simulation. Everything that happens within the simulation is observed in exact
causal relation to one another. Hence it is possible to analyse the accruing events and their
related effects throughout the whole network.

4.2.2 Frameworks

Different projects exist that implement the NDN/CCNXx operations in a simulation framework.
Some of them are proprietary, others rely on well known network simulation frameworks.
Hereinafter we will give a short overview about different NDN/CCNXx simulation implementa-
tion as well as their features.

Table 1 shows a comparison of the following four simulators: CCNPL-SIM [1] that runs on
top of CBCBSim [5], ccnSim [2] an Omnet++ [7] module, DCE [4] and ndnSim [3] which are
both NS-3 [6] modules.



4 METHODOLOGY 8

| cenSim | CCNPL-Sim | DCE | ndnSim

Real code execution X X v X
Debugger support v v v v
Tracing support v v v v
Scalability +4++ ? + ++
Deployment ++ ++ + ++

Table 1: NDN simulations comparison [9]

While the DCE simulation allows the execution of the real code of the CCNx prototype, the
other simulation tools rebuild the behavior of NDN/CCNXx within their environment. Debug-
ging and tracing is supported by each of the four candidates.

In terms of their scalability, the ccnSim software is performing best, which means that ccnSim
has the lowest resource requirements per simulation node. On the contrary DCE is perform-
ing worse, which is due to the execution of the real CCNx code. The real code execution
contains more overhead then the abstract simulation implementations. Further the deploy-
ment status of DCE is rated lower than of the other simulation implementations. Since we
aim to simulate large topologies, the DCE implementation seams inadequate due to its lack
of scalability. The ccnSim implementation is performing well in case of scalability, but primar-
ily focuses on the caching behavior research. Hence we opt for the ndnSim simulation as the
basis for our studies. It is a well documented implementation and beyond that developed by
the University of California, Los Angeles (UCLA) which is also involved in the development
of NDN/CCNK.

4.2.3 Setup

We utilize the NS-3 based network simulator, ndnSIM [8], in the version as of the 6th Novem-
ber 2012 to extend our analysis of the impact of data-driven states on ICN. Further we make
use of the Sprintlink topology #1239, provider by the Rocketfuel [13] topology mapping en-
gine, with its 315 nodes to form our simulation core topology. These core nodes are intercon-
nected by point-to-point links with a bandwidth of 10 Mbit/s and the corresponding latency
values derived from the topology description. The topology is further extended by three ad-
ditional edge nodes that are created per each core router. The connections between each
core router and its associated edge nodes is established via links of 1 Mbit/s with a fixed
latency of 10 ms. Figure 2 illustrates the resulting topology via a screenshot of the simulator
gui.

Since we want to highlight the accruing effects of data-driven states, the nominal bandwidth
of the links carries no meaning, thus we stick with these low bandwidths for the sake of
simplified simulation conduction.

Every simulation node is provided with a protocol stack consisting of the link-layer Face
(ndn::NetDeviceFace), and the NDN protocol (ndn::L3Protocol) implementation. For the For-
wardingStrategy, the module that defines how Interests and data are being forwarded, the
ndn::BestRoute implementation is used, whereas the ContentStore module is not in use,
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Figure 2: Simulation topology

and hence left uninstantiated in our configuration. It may also be worth mentioning that the
maximum size of the PIT of each node is not explicitly limited.

To generate traffic in the network, we utilize the ndn::Producer and ndn::ConsumerCbr ap-
plications. The Consumer applications issue Interests at a configurable frequency, and thus
initiate the data transfers. The Producer applications are configured to reply with a data
packet of 1024 Byte size in response to each received Interest, which is addressed to their
specific namespace.

In each simulation run, we create a configurable amount of Producers that are randomly
distributed among the network nodes. This placement is, however, constrained to either just
core or edge nodes. Regardless of the position, the maximum amount of Producers per node
is limited to one. Consumer nodes on the contrary are placed solely on edge nodes, and
allow for multiple Consumers on the same node. In the case of multiple Consumers per node,
it is just assured that different Consumer applications on one node do not issue Interests that
are processed by one and the same Producer. The routing information required to forward
Interests towards the content producers is provided by a helper class that is shipped with
the ndnSim simulator. The helper class is aware of the topology as well as the available
providers, with their position within the topology and the namespace they provide data for.
This way the routing information is pre-computed by the ndn::GlobalRoutingHelper and the
content routers are automatically feed with the static routing information in the simulation
initialisation phase.
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4.2.4 Risks

The simulation approach relies on an accurate model creation. The model needs to follow the
basic principals of simulation modelling, as defined by [14]. Thus a model needs to fulfill the
mapping, reduction and pragmatism criteria. The mapping criteria predicates that an object
of the world that is to be modeled needs to be mapped to an object within the simulation
environment. The reduction criteria allows the model to comprise of less properties than exist
in the real word, whereas the pragmatism criteria claims that the model serves a purpose,
hence it has to contain all properties necessary to serve its purpose.

These criteria introduce the problem of deciding which properties are necessary and which
are not. When leaving out certain parts of the model, it may be the case that the simulation
models behaviour diverges from the real implementation behaviour. In our case, this could
lead to conclusions that may not apply to the real implementation.

We hope to mitigate the risk of choosing the wrong abstraction or even wrong behaviour
implementation by picking the ndnSim simulation of the UCLA, who are themselves involved
in the implementation of the NDN/CCNXx prototype.

The simulation environment, since it is a discrete event simulation, acts deterministic. This
holds the advantage that measurement results are well reproducible. On the other hand,
many effects in real code execution arise through non-deterministic events, like for instance
race-conditions or the like. We are not interested in race-conditions or similar implementation
effects, but the resulting overall network behavior. Nevertheless some effects may not arise
within the simulation because of the lack of non-determinism.

5 Conclusion and Outlook

Throughout this paper we elaborated on different threats we anticipate ICN to be vulner-
able to. Further we focused on the attacks of Resource Exhaustion and State Decorrelation,
where the performance of content routers is negatively affected. To analyse these assump-
tions we reviewed the use of a testbed and a simulation environment. Methodical pros and
cons of both approaches have been discussed and a road map for their implementation has
been drawn. The testbed approach is feasible in a small environment, whereas the simula-
tion approach is also applicable to topologies of larger scale. The Testbed approach requires
more management effort, whereas the simulation suffers of running code that is not the ac-
tual code of the main implementation.

In our ongoing work we will conduct both, simulation as well as testbed analysis. Through
this, we will be able to run the actual code in the testbed on a small scale and subsequently
crosscheck the simulation behavior with the behavior of that prototype. Through the larger
scale simulation we will be able to map the results to an Internet or at least single provider
scale topology.

If the attack vector exists, counter measures have to be conceived, to prevent ICN from
suffering Resource Exhaustion or State Decorrelation attacks. The additional anticipated
vulnerabilities listed in section 2 also need detailed investigations, which is also considered
as future work.
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