
Opportunities and Challenges of Peer-to-Peer
Internet Video Broadcast

Jiangchuan Liu∗, Sanjay G. Rao†, Bo Li‡, and Hui Zhang§

∗School of Computing Science, Simon Fraser University
Burnaby, British Columbia, Canada

Email: jcliu@cs.sfu.ca

†School of Electrical and Computer Engineering, Purdue University
West Lafayette, Indiana, USA
Email: sanjay@ecn.purdue.edu

‡Department of Computer Science and Engineering, Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong

Email: bli@cs.ust.hk

§School of Computer Science, Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

Email: hzhang@cs.cmu.edu

Abstract— There have been tremendous efforts and many
technical innovations in supporting real-time video streaming
in the past two decades, but cost-effective large-scale video
broadcast has remained an elusive goal. IP multicast represented
the earlier attempt to tackle this problem, but failed largely due
to concerns regarding scalability, deployment, and support for
higher level functionality. Recently, peer-to-peer basedbroadcast
has emerged as a promising technique, which has been shown to
be cost effective and easy to deploy. This new paradigm brings a
number of unique advantages such as scalability, resilience and
also effectiveness in coping with dynamics and heterogeneity.

While peer-to-peer applications such as file download and voice
over IP have gained tremendous popularity, video broadcast
is still in its early stages and its full potential remains to be
seen. This article reviews the state-of-the-art of peer-to-peer
Internet video broadcast technologies. We describe the basic
taxonomy of peer-to-peer broadcast and summarize the major
issues associated with the design of broadcast overlays. Weclosely
examine two approaches, namely,tree-basedand data-driven, and
discuss their fundamental trade-off and potential for large-scale
deployment. Finally, we outline the key challenges and open
problems, and highlight possible avenues for future directions.

I. I NTRODUCTION

A large number of emerging applications, including In-
ternet TV, broadcast of sports events, online games, and
distance education, require support for video broadcast, i.e.,
simultaneously video delivery to a large number of receivers.
The vision of enabling simultaneous video broadcast as a
common Internet utility in a manner that any publisher can
broadcast content to any set of receivers has been driving the
research agenda in the networking community for over two

decades. For much of the 1990’s, the research and industrial
community investigated support for such applications using
the IP Multicast architecture [13]. However, serious concerns
regarding its scaling, support for higher level functionality, and
deployment have dogged IP Multicast. The sparse deployment
of IP Multicast, and the high cost of bandwidth required for
server-based solutions or Content Delivery Networks (CDNs)
are two main factors that have limited broadcast to only a
subset of Internet content publishers. While many network
service providers have enabled IPTV services that deliver
quality video to their own subscribers using packet switching,
there remains a need for cost-effective, ubiquitous support for
Internet-wide video broadcast, and the solutions will certainly
be beneficial to IPTV as well.

In recent years, there has been significant interest in the
use of peer-to-peer technologies for Internet video broadcast.
There are two key drivers making the approach attractive.
First, such technology does not require support from Inter-
net routers and network infrastructure, and consequently is
extremely cost-effective and easy to deploy. Second, in such
a technology, a participant that tunes into a broadcast is not
only downloading a video stream, but also uploading it to
other participants watching the program. Consequently, such
an approach has the potential to scale with group size, as
greater demand also generates more resources. The scaling
challenge for video broadcast is enormous. To reach 100
million viewers, delivery of TV quality video encoded in
MPEG-4 (1.5Mbps) will require 1.5 Tbps aggregate capacity.
To put things into perspective, consider two of the largest scale



Internet video broadcasts: the AOL broadcast of Live 8 concert
in July 2005 [50], which at the peak has 175,000 simultaneous
viewers, and the CBS broadcast of the NCAA tournament [49]
in March 2006, which at the peak has 268,000 simultaneous
viewers. Even with today’s low bandwidth Internet video
of 400 Kbps, the CBS/NCAA broadcast needed more than
100Gbps server and network bandwidth. As a comparison,
Akamai, the largest commercial CDN service provider, reports
a peak aggregate capacity of 200Gbps with its tens of thou-
sands of servers [41].

Peer-to-peer technologies have emerged as important for
a wide range of applications such as file download and
voice over IP [41]–[43], [48]. However, video broadcast
applications pose very different challenges than these other
applications. Specifically, video broadcast imposes stringent
real-time performance requirements in terms of bandwidth and
latency. This is in contrast to file download applications like
BitTorrent [42], where the objective is to download a complete
file, and timeliness requirements are not critical. In fact,it
may typically take several hours to a few days to download
large files using BitTorrent, and such delays are clearly not
feasible for video broadcast applications. While voice over
IP applications also involve real-time requirements, video
broadcast applications are much more challenging given they
need tosimultaneouslysupport a large number of participants,
deal with dynamic changes to participant membership, and
cope with high bandwidth requirement of the video.

The distinguishing and stringent requirements of video
broadcast necessitate fundamentally different design decisions
and approaches. This article reviews the state-of-the-artof
peer-to-peer technologies for Internet video broadcast, and
presents a taxonomy of various solutions that have emerged.
In particular, two broad approaches have emerged:tree-based
approachesand data-driven randomized approaches. We ex-
amine typical examples and their differences. We then outline
future challenges that must be addressed to make Internet
video broadcast using peer-to-peer services a reality.

The remainder of this article is organized as follows. Section
II briefly discusses the architectural choices for Internetbroad-
cast. In Section III, we highlight the key difference between
video broadcast and conventional peer-to-peer applications,
and taxonomize the existing approaches for peer-to-peer video
broadcast. Case studies for the typical approaches are pre-
sented in Section IV. We then present technical challenges
and open issues in Section V. The deployment status of the
practical peer-to-peer broadcast systems are reviewed in Sec-
tion VI, followed by a discussion on the potential deployment
challenges. Finally, Section VII concludes the article and
highlights possible avenues for future directions.

II. A RCHITECTURAL CHOICES FORINTERNET

BROADCAST

We first review the architectural choices for supporting
Internet broadcast/multicast (see Fig. 1). There are subtle
differences between broadcast and multicast: the former isto
all the destinations and the latter is to a group of destinations

Router-Based
(IP Multicast)

No Router Support

Infrastructure-Centric
(CDNs, e.g. Akamai)

Application End-points Only,
End-System Only

Application End-points
or end-systems with 
infrastructure support

End-System, Application-Level, 
Overlay, or Peer-to-Peer Multicast 

Fig. 1. Taxonomy of architectures for Internet broadcast

only. While broadcast is possible in air, cable networks, or
local area networks, it simply cannot be carried over the global
Internet. Nevertheless, given the popular use of this term in
radio and TV industries, in this article, we do not distinguish
it from multicast if the context is clear.

A. Router-Based Architectures: IP Multicast

In the Internet environment, the primary issue for broad-
cast/multicast is which layer it should be implemented. There
are two conflicting considerations that we need to reconcile.
According to the end-to-end argument, a functionality should
be 1) pushed to higher layers if possible; unless 2) implement-
ing it at the lower layer can achieve significant performance
benefits that outweigh the cost of additional complexity. In
his seminal work in 1989 [13], Deering argued that this
second consideration should prevail and multicast should be
implemented at the IP layer. This view has since been widely
accepted, leading to the IP multicast model.

IP multicast is a loosely coupled model that reflects the basic
design principles of the Internet. It retains the IP interface,
and introduces the concept of open and dynamic groups,
which greatly inspires later proposals. Given that the network
topology is best-known in the network layer, multicast routing
in this layer is also the most efficient. Unfortunately, despite
the tremendous effort in the past 15 years, today’s IP multicast
deployment remains limited in reach and scope. The reason is
complex, which involves not only technical obstacles, but also,
more importantly, economic and political concerns. First,IP
multicast requires routers to maintain per-group state, which
not only violates the ”stateless” architectural principle, but also
introduces high complexity and serious scaling constraints at
the IP layer. Second, IP multicast is a best-effort service,and
attempts to conform to the traditional separation of routing
and transport that has worked well in the unicast context.
However, providing higher level features such as error, flow,
and congestion control has been shown to be more difficult
than in the unicast case. Finally, IP multicast calls for changes
at the infrastructural level, and this slows down the pace of
deployment. In particular, there is a lack of incentive to install
multicast-capable routers and to carry multicast traffic.

B. Non Router-Based Architectures

The placement of the multicast functionality was revisited
in the new millennium, and several researchers have advocated

2



moving multicast functionality away from routers towards end
systems [6], [9], [16], [38]. In these approaches, multicast
related features, such as group membership, multicast routing
and packet duplication, are implemented at end systems,
assuming only unicast IP service. End systems participate in
multicast communication via an overlay structure, in the sense
that each of its edges corresponds to a unicast path between
two nodes in the underlying Internet.

Moving multicast functionality to end systems has the
potential to address many of the problems associated with IP
multicast. Since all packets are transmitted as unicast packets,
deployment is accelerated. It maintains the stateless nature of
the network by requiring end systems, which subscribe only
to a small number of groups, to perform additional complex
processing for any given group. In addition, solutions for sup-
porting higher layer features can be significantly simplified by
leveraging well understood unicast solutions, and by exploiting
application-specific intelligence.

It must be noted that moving multicast functionality away
from routers involves performance penalties. For example,it is
impossible to completely prevent multiple overlay edges from
traversing the same physical link and thus some redundant traf-
fic on physical links is unavoidable. Further, communication
between end systems involves traversing other end systems,
potentially increasing latency. Hence, many research efforts
have focused on addressing these performance concerns with
overlays.

C. Peer-to-Peer Architectures

Given that non-router based architectures push functionality
to the network edges, there are several choices in instantiating
such an architecture. On the one end of the spectrum is
an infrastructure-centricarchitecture, where an organization
that provides value-added services deploys proxies at strategic
locations on the Internet. End systems attach themselves to
nearby proxies, and receive data using plain unicast. Such an
approach is also commonly referred to as Content Delivery
Networks (CDNs), and has been employed by companies
such as Akamai [41]. On the other end of the spectrum is a
purely application end-pointarchitecture, where functionality
is pushed to the users actually participating in the multicast
group. Administration, maintenance, responsibility for the
operation of such a peer-to-peer system are distributed among
the users, instead of being handled by a single entity.

The focus of this paper is on simultaneous video broadcast
using the application end-point architecture, referred toas
peer-to-peer broadcast/multicast. Such similar terms asend-
system multicast, overlay multicast, application-layer multi-
cast,have also been used in the literature. In the purest form,
such architectures rely exclusively on bandwidth resources at
application end-points. However, one could also conceive of
hybrid architectures that seek to use the bandwidth resources
of application end-points to the extent possible, but may
leverage infrastructure resources where available. We will
include such architectures in our discussion of peer-to-peer
broadcast.

Category Bandwidth-sensitive Delay-sensitive Scale

File download × × Large
On-demand streaming

√ √
Large

Audio/video conferencing
√

/×
√

Small
Simultaneous broadcast

√ √
Large

TABLE I

A TAXONOMY OF TYPICAL PEER-TO-PEER APPLICATIONS.

The motivation behind basing applications on the peer-to-
peer paradigm derives to a large extent from its ability to
leverage the bandwidth resources of end systems actually par-
ticipating in the communication. Addition of new participants
not only requires more bandwidth support, but also involves
additional bandwidth contributed by the new participants.In
contrast, while an infrastructure-centric service can potentially
deal with a smaller number of well-defined groups, it is unclear
whether it can support the bandwidth requirements associated
with deploying tens of thousands of high-bandwidth broadcast
applications. Further, the application end-point architecture is
instantaneous to deploy, and can enable support of applications
with minimal setup overhead and cost.

While the application end-point architectures have the
promise to enable ubiquitous deployment, the infrastructure-
centric architecture can potentially provide more robust data
delivery with dedicated, better provisioned and more reli-
able proxies placed at strategic locations. In contrast, the
application end-point architectures potentially involvea wide
range of autonomous users that may not provide as good
performance but easily fail or leave at will. Individual user
joining and leaving have more significant impact on the system
performance. Thus, the key challenge for application end-point
architectures is to function, scale and self-organize witha
highly transient population of users, without the need of a
central server and the associated management overhead.

III. PEER-TO-PEER V IDEO BROADCAST

In this section, we discuss the distinguishing characteristics
of video broadcast applications. We then discuss why these
correspond to a very different domain requiring very different
solutions than many other peer-to-peer applications.

A. Contrast from other Peer-to-Peer Applications

A video broadcast system typically has a single dedicated
source, which may be assumed not to fail, and is present
throughout a broadcast session. The address of the source
is known in advance, serving as an rendezvous for new
users to join the session. There are several distinguishing
characteristics of such a system:
• Large scale, corresponding to tens of thousands of users
simultaneously participating the broadcast.
• Performance-demanding, involving bandwidth requirements
of hundreds of kilobits per-second and even more.
• Real-time constraints, requiring timely and continuously
streaming delivery. While interactivity may not be critical
and minor delays can be tolerated through buffering, it is
nevertheless critical to get video uninterrupted.

3



• Gracefully degradable quality, enabling adaptive and flexi-
ble delivery that accommodates bandwidth heterogeneity and
dynamics.

The above characteristics combined yield a unique ap-
plication scenario that differs from other typical peer-to-
peer applications, includingon-demand streaming, audio/video
conferencing, andfile download(see Table I).

Among these applications, on-demand streaming and au-
dio/video conferencing also have stringent delay and band-
width requirements. However, in on-demand streaming, the
users are asynchronous, and it thus belongs to a different
problem domain. Audio/video conferencing applications differ
from broadcast applications in that they are interactive with
latency being even more critical, and are multi-point, that
is, may require any participant to be a source. However,
such applications are typically of smaller scales, involving
only a few hundred participants. Example systems of this
kind include Skype [48] (limited to audio conversation), and
research proposals such as Narada [10] and Gossamer [6].

Peer-to-peer file download applications such as BitTor-
rent [42], and EMule [43] too involve information distribution
to tens of thousands of participants. However, the stringent
real-time and bandwidth requirements make video broadcast
more challenging. For example, BitTorrent enables peers to
exchange any segment of the content being distributed, given
the order in which they arrive is not important. In contrast,
such techniques are not feasible in streaming applications.
Further, given the timeliness requirements, streaming video
applications typically must cope by including techniques for
graceful degradation of video quality rather than involving
excessive delays.

Another key problem in peer-to-peer file download is to
design techniques for efficient indexing and search, that is,
locating the massive number of files distributed among the
massive number of peers. Solutions in this space include
Napster, Gnutella, and Distributed Hashing Table (DHT) tech-
niques [30], [44], [46]. While the design of overlays for
efficient indexing and searching a large video repository pose
several issues, in peer-to-peer video broadcast, we are more
interested in the efficiency of data communication.

B. Issues that must be addressed

The key problem in a peer-to-peer video broadcast system
is to organize the peers into a high quality overlay for
disseminating the video stream. Following are the important
criteria for overlay construction and maintenance.
• Overlay efficiency: The overlay constructed must be effi-
cient both from the network and the application perspectives.
For broadcast video, high bandwidth and low latencies are
simultaneously required. However, given that applications are
real-time but not interactive, a startup delay of a few seconds
can be tolerated.
• Scalability and load balancing:Since broadcast systems can
scale to tens of thousands of receivers, the overlay must scale
to support such large sizes, and the overheads associated must
be reasonable even at large scales.

• Self-organizing: The construction of overlay must take place
in a distributed fashion and must be robust to dynamic changes
in group membership. Further, the overlay must adapt to
long-term variations in Internet path characteristics (such as
bandwidth and latency), while being resilient to inaccuracies.
The system must be self-improving in that the overlay should
incrementally evolve into a better structure as more informa-
tion becomes available.
• Honor per-node bandwidth constraints:Since the system
relies on users contributing bandwidth, it is important to ensure
that the total bandwidth a user is required to contribute does
not exceed its inherent access bandwidth capacity. On the
other hand, users also have heterogeneous inbound bandwidth
capabilities, and it is desirable to have mechanisms to ensure
they can receive different qualities of video, proportional to
their ability.
• System Considerations:In addition to the above algorith-
mic considerations, several important system issues must be
addressed in the design of a complete broadcasting system.
Examples include the choice of transport protocol and the
interaction with video players. Further, a key challenge of
peer-to-peer systems involves the presence of large fractions of
users behind NATs and firewalls - the connectivity restrictions
posed by such peers may severely limit the overlay capacity.

C. Approaches for Overlay Construction

A large number of proposals have emerged in recent years
for peer-to-peer video broadcast [4]–[6], [8], [9], [14], [16],
[19], [22], [25]–[27], [32], [33], [36], [38]. While these
proposals differ on a wide-range of dimensions, in this article,
we focus on the approach taken towards the overlay structure
used for data dissemination. In particular, the proposals can
be broadly classified into two categories, namely,tree-based
anddata-driven randomized overlay construction, which we
discuss below.
Tree-Based Approaches:The vast majority of the proposals
to date can be categorized as a tree-based approach. In such an
approach, peers are organized into structures (typically trees)
for delivering data, with each data packet being disseminated
using the same structure. Nodes on the structure have well-
defined relationships, for example, “parent-child” relationships
in trees. Such approaches are typically push-based, that is,
when a node receives a data packet, it also forwards copies of
the packet to each of its children. Since all data packets follow
this structure, it becomes critical to ensure the structureis
optimized to offer good performance to all receivers. Further,
the structure must be maintained, as nodes join and leave the
group at will – in particular, if a node crashes or otherwise
stops performing adequately, all of its offspring in the tree will
stop receiving packets, and the tree must be repair. Finally,
when constructing tree-based structures, loop avoidance is an
important issue that must be addressed.

Tree-based solutions are perhaps the most natural approach,
and do not require sophisticated video coding algorithms.
However, one concern with tree-based approaches is that the
failure of nodes, particularly those higher in the tree may

4



disrupt delivery of data to a large number of users, and
potentially result in poor transient performance. Further, a
majority of nodes are leaves in the structure, and their out-
going bandwidth is not being utilized. In response to these
concerns, researchers have been investigating more resilient
structures for data delivery. In particular, one approach that
has gained popularity is multi-tree based approaches [5], [26],
which we discuss further in Section IV-B.
Data-Driven Approaches: Recently, researchers have pro-
posed data driven approaches for peer-to-peer broadcast [27],
[36]. Data-driven overlay designs sharply contrast to tree-
based designs in that they do not construct and maintain an
explicit structure for delivering data. The underlying argument
is that, rather than constantly repair a structure in a highly
dynamic peer-to-peer environment, we can use the availability
of data to guide the data flow.

A naive approach to distributing data without explicitly
maintaining a structure is to use gossip algorithms [15]. In
a typical gossip algorithm, a node sends a newly generated
message to a set of randomly selected nodes; these nodes
do similarly in the next round, and so do other nodes until
the message is spread to all. The random choice of gossip
targets achieves resilience to random failures and enables
decentralized operation. However, gossip cannot be used di-
rectly for video broadcast because its random push may cause
significant redundancy with the high-bandwidth video. Further,
without an explicit structure support, minimizing startupand
transmission delays become significant problems.

To handle this, approaches such as Chainsaw [27] and Cool-
Streaming [36] adopt pull-based techniques. More explicitly,
nodes maintain a set of partners, and periodically exchange
data availability information with the partners. A node may
then retrieve unavailable data from one or more partners,
or supply available data to partners. Redundancy is avoided,
as the node pulls data only if it does not already possess
it. Further, since any segment may be available at multiple
partners, the overlay is robust to failures – departure of a node
simply means its partners will use other partners to receivedata
segments. Finally, the randomized partnerships imply thatthe
potential bandwidth available between the peers can be fully
utilized.

The data-driven approach at first sight may appear similar
to techniques used in file download solutions like BitTor-
rent [42]. However, the crucial difference here is that the real-
time constraints imply that segments must be obtained in a
timely fashion. Thus, an important component of a data-driven
broadcast systems is a scheduling algorithm, which strivesto
schedule the segments that must be downloaded from various
partners to meet the playback deadlines.

IV. CASE STUDIES

In this section, we present concrete case studies on peer-to-
peer video broadcast system. We use End System Multicast
(ESM) and CoolStreaming as representative examples for tree-
based and data-driven systems, respectively. As discussedin
Section VI, both systems have been deployed among real

users. We also discuss the case of using multiple trees, which
represents a natural way to enhance tree-based approaches,
originally proposed in [5], [26], and being adopted in recent
versions of ESM.

A. Example Tree-based Approach: ESM [9]

The ESM system employs a structure-based overlay proto-
col which is distributed, self-organizing, performance-aware,
and constructs a tree rooted at the source. The tree is optimized
primarily for bandwidth, and secondarily for delay.
Group Management: Each ESM node maintains information
about a small random subset of members, as well as informa-
tion about the path from the source to itself. A new node joins
the broadcast by contacting the source and retrieving a random
list of members that are currently in the group. It then selects
one of these members as its parent using the parent selection
algorithm. To learn about members, a gossip-like protocol is
used. Each nodeA periodically picks one member (sayB)
at random, and sendsB a subset of group members thatA
knows, along with the last timestamp it has heard for each
member. WhenB receives a membership message, it updates
its list of known members. Finally, members are deleted if its
state has not been refreshed in a period.
Membership Dynamics:Dealing with graceful member leave
is fairly straight-forward: members continue forwarding data
for a short period, while its children look for new parents
using the parent selection method described below. This serves
to minimize disruptions to the overlay. Members also send
periodic control packets to their children to indicate live-ness.
Performance-Aware Adaptation: Each node maintains the
application-level throughput it is receiving in a recent time
window. If its performance is significantly below the source
rate, then it selects a new parent as described in the parent
selection algorithm. One key parameter is thedetection time,
which indicates how long a node must stay with a poor
performing parent before it switches to another parent. The
ESM system employs a default detection time of 5 seconds.
The choice of this timeout value has been influenced by the
fact that a congestion control protocol is running on the data
path (TCP or TFRC). Switching to a new parent requires going
through a slow-start phase, which may take 1 - 2 seconds to
get the full source rate. The protocol may need to adaptively
tune the detection time because nodes may not be capable
of receiving the full source rate, there may be few good
and available parent choices in the system, or nodes may
experience intermittent network congestion on links closeto
them. Changing parents under these environments may not be
fruitful.
Parent Selection:When a node (sayA) joins the broadcast,
or needs to make a parent change, it probes a random subset
of nodes it knows. The probing is biased toward members
that have not been probed or have low delay. Each nodeB
that responds provides information about: (i) the performance
(application throughput) it is currently receiving, and delay
from the source; (ii) whether it is degree-saturated or not;
and (iii) whether it is a descendant ofA. The probe also

5



Fig. 2. A multi-tree broadcast with two trees.

enablesA to determine the round-trip time toB. A waits
for responses for a timeout period of1 second, a large enough
value of Internet round-trip times that maximizes the number
of responses received from members. From the responses
A receives, it eliminates its descendants and members that
are saturated. The system uses statically configured values
to assess the number of children a parent can support, and
requires users to indicate whether there is at least a 10 Mbps
up-link to the Internet.

For each nodeB that has not been eliminated,A evaluates
the performance (throughput and delay) it expects to receive
if B were chosen as a parent. For example, the expected
application throughput is the minimum of the throughputB
is currently seeing and the available bandwidth of the path
betweenB andA if the estimate is available. History of past
performance is maintained so ifA has previously chosenB
as parent, then it has an estimate of the bandwidth of the path
betweenB andA. If the bandwidth to nodes is not known, then
A picks a parent based on delay.A identifies the nodeB that
could best improve performance, and switches to the parentB
either if the estimated application throughput is high enough
for A to receive a higher quality stream, or ifB maintains
the same bandwidth level asA’s current parent, but improves
delay. The latter heuristic helps to increase tree efficiency by
clustering nearby nodes.

B. Example Resilient Structure Approach: Multi-trees [5],
[26]

As mentioned earlier, a single-tree based approach suffers
from two limitations: disruptive delivery due to failures of
high-level nodes, and under-utilized out-going bandwidthin
leaf nodes. More resilient structures, in particular, multi-
tree [5], [26], thus have been introduced. Here, the source
encodes the stream into sub-streams and distributes each sub-
stream along a particular overlay tree. The quality experienced
by a receiver depends on the number of sub-streams that
it receives. There are two key advantages of the multi-tree
solution. First, the overall resiliency of the system is improved,
as a node is not completely disrupted by the failure of an
ancestor on a given tree. Second, the potential bandwidth of
all nodes can be utilized, as long as each node is not a leaf in

at least one tree.
Figure 2 illustrates how broadcast content is delivered with

a multi-tree approach using two trees. The source distributes
a stream rateS/2 over each tree, whereS is the source
rate. C receivesS/2 from tree, with potentially different
parents to reconstruct the original content. Nodes A and
B each can contribute a bandwidthS/2, and allocate their
bandwidth in Tree2 and Tree1, respectively. In a single tree
approach, it would simply have not been possible to utilize
the contributions of these nodes.

Finally, we note that while multi-tree approaches offer
several attractive advantages over single-trees, leveraging the
full benefits of the approach involves use of specialized coding
algorithms that enable a receiver to get degraded quality when
it receives video from only a subset of trees. Such coding
algorithms are not readily available today in mainstream media
players, as we discuss further in Section V-E.

C. Example Data-driven Approach: CoolStreaming [36]

CoolStreaming is one of the first data-driven systems.
A CoolStreaming node consists of three key modules: (1)
membership manager, which helps the node maintain a partial
view of other overlay nodes; (2) partnership manager, which
establishes and maintains partnership with other nodes; (3)
scheduler, which schedules the transmission of video data.
Group and Partner Management: Like ESM, CoolStream-
ing requires newly joining nodes to contact the origin server
to obtain an initial set of partner candidates. Each node also
maintains a partial subset of other participants in the group. In
particular, CoolStreaming employs an existing Scalable Gos-
sip Membership protocol, SCAM, to distribute membership
messages, which enables scalable, light-weight, and uniform
partial view at each node.

 
�� �� � �� �

Fig. 3. An illustration of partnerships in CoolStreaming with A being the
source node.

The key aspect of the design where CoolStreaming differs
from tree-based approaches is the lack of a formal structure
for delivering data. More explicitly, a video stream is divided
into segments of a uniform length, and the availability of the
active segments in the buffer of a node is represented by a
Buffer Map (BM). Each node continuously exchange its BM
with its partners, and then determines which segment is to
be fetched from which partner accordingly. An example of
the partnership in CoolStreaming is shown in Fig. 3. Such
partnerships are adaptively configured throughout a broadcast
session.
Scheduling Algorithm: Timely and continuous segment de-
livery is crucial to video broadcast, but not to file download.

6



Playback point

Whole File

Sliding Window

(a)

(b)

Fig. 4. Buffer snapshots of BitTorrent (a) and CoolStreaming (b), where
shaded segments are available in the buffer.

In BitTorrent, the download phases of the peers are not
synchronized, and the segments can be downloaded out-of-
order. In CoolStreaming, the playback progresses of the peers
are semi-synchronized, and any segment downloaded after
its playback time will be useless. A sliding window thus
represents the active buffer portion, as shown in Fig. 4.

Suggested by experimental results, CoolStreaming adopts a
sliding window of 120 segments, each of 1-second video. A
BM thus consists of a bitstring of 120 bits, each indicating
the availability of the corresponding segment. The sequence
number of the first segment in the sliding window is recorded
by another two bytes, which can be rolled back for extra long
video programs (>24 hours). Given the BMs of a node and its
partners, a schedule is then generated for fetching the expected
segments from the partners. For a homogeneous and static
network, a simple round-robin scheduler may work well, but
for a dynamic and heterogeneous network, a more intelligent
scheduler is necessary. Specifically, the scheduling algorithm
strikes to meet two constraints: the playback deadline for
each segment, and the heterogeneous streaming bandwidth
from the partners. If the first constraint cannot be satisfied,
then the number of segments missing deadlines should be
kept minimum, so as to maintain a continuous playback. This
problem is a variation of theParallel machine scheduling,
which is known NP-hard. It is thus not easy to find an
optimal solution, particularly considering that the algorithm
must quickly adapt to highly dynamic network conditions.
Therefore, simple heuristics of fast response time have been
developed in CoolStreaming.

Failure Recovery and Partnership Refinement:A Cool-
Streaming node can depart either gracefully or accidentally
due to crash. In either case, the departure can be easily
detected after an idle time and an affected node can quickly
react through re-scheduling using the BM information of the
remaining partners. Besides this built-in recovery mechanism,
CoolStreaming also let each node periodically establish new
partnerships with nodes randomly selected from its local
membership list. This operation serves two purposes: first,
it helps each node maintain a stable number of partners in
the presence of node departures; second, it helps each node
explore partners of better quality, e.g., those constantlyhaving
a higher upload bandwidth and more available segments.

V. TECHNICAL CHALLENGES AND OPEN ISSUES

While the research on peer-to-peer broadcast has made great
strides in recent years, there are several technical challenges
and open issues to be overcome before ubiquitous Internet
video broadcast can be enabled by peer-to-peer solutions. We
discuss some of these issues in this section.

A. Tree based vs. data driven, could there be any hybrid?

Both tree-based structured and data-driven structureless
overlays have shown their success in practical deployment,
and yet neither completely overcomes the challenges from
the dynamic peer-to-peer environment. The selling point for
data-driven systems is their simplicity, but they suffer from a
latency-overhead trade-off [33], [35]. If nodes choose to send
notifications for every segment arrival, then the overhead will
be increased. Periodical notifications containing buffer maps
reduces the overhead but increase the latencies. A tree-based
system does not suffer from this trade-off, but has to face the
inherent instability and bandwidth under-utilization. A natural
question is therefore whether we can combine them to realize
a hybrid overlay that is both efficient and robust.

The combination can be achieved in different dimensions.
An example is Chunkyspread [33], which splits a stream into
distinct slices and transmits over separate but not necessarily
disjoint trees. The participating nodes also form a neighboring
graph, and the degree in the graph is proportional to its
desired transmission load. This hybrid design greatly simplifies
the tree construction and maintenance, and largely retainsits
efficiency and achieves fine-grained control over load.

 

 

Fig. 5. An illustration of a hybrid tree and data-driven design.

Another direction is a more explicit tree-bone based ap-
proach [34]. The basic idea is to identify a set of stable nodes
to construct a tree-bone, with most of the data to be pushed
over this backbone. These stable nodes, together with others,
will be further organized through a data-driven overlay to
explore the available bandwidth in leaf nodes. Fig. 5 shows
such an example. While only a single tree structure is shown,
a multi-tree-based backbone can also be deployed in practice.
The key challenge is that we need to identify the set of stable
overlay nodes and position them at appropriate locations in
the tree. Such a requirement can conflict with the bandwidth
and delay optimization in tree construction. An additional
complication when discussing stability is that this depends on
human behavior - that is, on how long the user decides to stay.
This might in turn be correlated to the performance seen by
the user.

7



B. Incentives and fairness

So far we have made an implicit assumption that users can
and are willing to collaborate. In reality however this is not
always the case. Measurement studies have shown that, in
some peer-to-peer broadcast systems, a small set of nodes
are requested to contribute 10 to 35 times more uploading
bandwidth than downloading bandwidth [3]. Such overhead
will hinder any potential users from being cooperative. These
autonomous users can be selfish and misbehave in order to
maximize their benefits. As a result, there could be many free
riders in a peer-to-peer system that either refuse to contribute
or avoid contributing bandwidth, e.g., in tree construction, al-
ways acting as a leaf by declaring a poor outbound bandwidth.
This situation, never happening in IP multicast, can seriously
affect the overall service quality experienced by cooperative
peers. Therefore, a proper incentive mechanism is criticalto
the performance of a peer-to-peer system.

Designing incentive mechanisms for video broadcast ap-
plications is more challenging than traditional file download
applications, due to the real-time requirements. In particu-
lar, one solution in the file download context involves use
of reputations based on past performance. However, this is
feasible because the total time to download a file can often
be long providing sufficient time to collect enough credits
or build reputation. Further, file download users can tolerate
slow download rates for a period of time by keeping the
program running at the background. In contrast, users in video
broadcast applications stay for shorter times, and will simply
leave the system when the playback quality is not satisfied.
A micro-payment mechanism may be a good solution that
enables video broadcast users to cooperate. However, this often
asks for a centralized broker for coordination that can hinder
the scalability of a peer-to-peer systems.

Segment 3

Segment 1

Segment 1

A

Seed

B

C

Segment 2

Fig. 6. An example of the tit-for-tat strategy.

BitTorrent-like applications adopt atit-for-tat strategy to
solve the incentive problem. Tit-for-tat is a highly effective
strategy in game theory originally proposed for the iterated
prisoner’s dilemma. The strategy works well in peer-to-peer
file download because the segments of a file are downloaded
independently. As depicted in Fig. 6, peers A, B, and C
download different segments from each other. This forms a

feedback loop; for example, uploading segment 2 from A to B
will be feedback to A by the upload of segment 3 from C to A,
which stimulate peer A to cooperate. However, this approach
does not trivially extend to video broadcast because of the
timeliness requirements involved. The design of a scalable,
light-weight incentive mechanism which can be incorporated
into video broadcast application remains an open problem.

C. Access Bandwidth Scarce Regimes

For a peer-to-peer system to be self-sustaining in a resource-
scare regime, the contribution or upload bandwidth from
nodes must exceed the bandwidth that nodes can receive.
The incentive and fairness measurements, if implemented,
can improve the overall upload bandwidth. However, a key
challenge is that the asymmetric nature of nodes means that
nodes behind DSL and cable can receive several hundreds of
kilobits per second, but can fundamentally only donate less.
We note this challenge is particularly important for streaming
applications compared to other peer-to-peer applications. File
download applications in such environments will simply see
much slower delivery times, and given that applications like
Skype are not bandwidth intensive, this is not much of an
issue.

To formally characterize the resources available in the en-
vironment, a metric called theResource Indexwas introduced
in [8]. The Resource Index (RI)is the ratio of the number
of receivers that the members in the group couldpotentially
sustain to the number of receivers in the group for a particular
source rate. The number of nodes that can be potentially
sustained is the sum of the existing nodes and the number
of free slots in the system. An RI less than 1 indicates not all
participating nodes can receive the full source rate, an RI of 1
indicates the system is saturated, and as the RI gets higher,the
environment becomes less constrained and it becomes more
feasible to construct a good overlay tree. As reported in [8],
several environments may see RI values lower than 1.

We see several directions towards handling this. The first
involves frameworks for application-level adaptation. A recent
work [31] has considered resource-scarce regimes where nodes
have heterogeneous upload bandwidth. The idea is to use a
multi-tree framework, where not all nodes receive the full
bandwidth. The amount of bandwidth a receiver is actually
entailed to depends on the total contribution that it makes,thus
ensuring nodes that contribute more receive better quality, yet
all nodes achieve some basic quality. A second direction may
involve using additional nodes not in the peer-to-peer system,
calledwaypoints. For instance, one could imagine longer-lived
peer-to-peer communities, where only a subset of nodes in the
community are actually present in any given broadcast. Then,
it may be possible to leverage the bandwidth resources of other
nodes not in the broadcast but present in the community.

Finally, we note that in addition to access bandwidth
availability in the environment, the feasibility of constructing
overlay structures may be further impacted by other factors
such as connectivity restrictions posed by NATs and firewall,
as we discuss in Section V-G.

8



D. Extreme Peer Dynamics and Flash Crowd

During a flash crowd, there is a large increase in the number
of users joining the broadcast in a short period of time. This
poses challenges for a peer-to-peer broadcast system as it
has to rapidly assimilate the new peers into the distribution
structure without significantly impacting the video quality of
existing and newly-arrived peers. The opposite situation is
when a large number of users leave a broadcast during a short
period of time. The peer-to-peer broadcast system has to repair
the delivery structure to minimize the service interruption.
During a high churn situation, users arrive and depart at a very
high rate, in which case the peer-to-peer broadcast system has
to continue to adapt with the peer dynamics.

As discussed in [29], flash crowd and high churn situation
are very common. The extreme scenario can be very difficult to
handle. Consider the example of a popular concert broadcast
that attracts 1 million users. If these users arrive within the
the first 100 seconds of the concert, the peak arrival rate will
be 10,000 peers per second. If the video quality is not good
for the initial period, a user is more likely to quit. This not
only represents a failure of the system to provide service to
this particular user, but also generates a peer departure event,
thus more churn in the system. Designing peer-to-peer video
broadcast system that is robust to extreme peer dynamics is
still an open research problem.

E. Support for Heterogeneous Receivers

Heterogeneity also exists in the download bandwidth – for
example hosts behind Ethernet, dial-up and DSL have very
different downloading capabilities. Supporting receivers at a
single video rate is not appropriate, as it can either overwhelm
slower receivers, or provide insufficient quality to powerful
receivers. The need for such support is unique to streaming
applications, and distinguishes them from BitTorrent-like sys-
tems.

ESM adopts a pragmatic approach to supporting receiver
heterogeneity. Video is encoded at multiple bit-rates in parallel
and is broadcast simultaneously, along with the audio stream.
Unicast congestion control is run on the data path between
every parent and child, along with a prioritized packet for-
warding scheme. Audio is prioritized over video streams, and
lower quality video is prioritized over higher quality video.

The design above involves overhead, when used with or-
dinary codecs. To address this, various streaming systems
have proposed using scalable coding techniques such as
layered coding [12], [24]. A cumulative layered coder, or
scalable coder, generates a stream consisting of multiple
layers, achieved through scaling frame rate, size, or quality.
A receiver, depending on its capability, can subscribe to the
base layer only with the basic playback quality, or subscribe
to additional layers that progressively refine the reconstruction
quality.

Recent proposals such as [5], [26] leverage another spe-
cialized coding algorithms called Multiple Descriptive coding
(MDC), as also discussed in Section IV-B. An MD coder
generates multiple streams (referred to as descriptions) for the

source video. Any subset of the descriptions, including each
single one, can be used to reconstruct the video. A simple
implementation of MD coding can be achieved by splitting
even and odd numbered frames. Advanced methods including
interleaving of sub-sampled lattice, MD scalar quantization,
and MD transform. The descriptions are then distributed over
multiple paths, preferably disjoint, to enhance robustness and
to accommodate user heterogeneity.

While the scalable coding techniques hold promise, they are
yet to be deployed in mainstream media players. To date, the
single-rate (or single-layer, single-description) videocoding
remains the most efficient and effective technique. Scalable
coding usually has low efficiency because of the iterative
motion estimation and transform for all the layers. Trans-
porting the layers incurs bandwidth penalty as well, e.g., the
extra bits for synchronizing layers. Multiple descriptioncoding
is still in its infancy. To ensure acceptable visual quality,
each description must carry sufficient information about the
original video. This can significantly reduce the compression
efficiency. On the receiver’s side, a scalable or MD video
stream requires a high computation power to assemble and
decode multiple layers. Further progress is required on these
fronts before they can be used in actual peer-to-peer streaming
systems.

F. Network Coding: Coding at Peers ?

A conventional assumption in many communication net-
works, in particular, the Internet, is that the intermediate nodes
should do nothing on the data packets but forwarding. Network
coding is a new tool in information theory that drastically
breaks with this conventional assumption [2]. The fundamental
insight in network coding is that if data can be encoded in in-
termediate nodes then the optimal multicast throughput canbe
achieved. While historically Forward Error Correction (FEC)
or transcoding have been applied in certain network nodes,
they are application-tailored services for individual streams
only. Network coding instead treats coding as a network
primitive and targets global network optimization. In addition,
it has been shown that linear operation is sufficient, which is
considerably simpler than conventional coding/transcoding.

The initial theoretical results however cannot be applied to
the IP multicast network with dummy routers. Fortunately,
it soon finds practical uses in peer-to-peer applications. A
typical example is Avalanche [18], which applies random
linear network coding in peer-to-peer file download, and shows
that the throughput can be 2-3 times better with coded data
blocks. Recent studies also show that network coding enhances
the robustness, adaptability, and data availability of a peer-to-
peer overlay, because the information is evenly spread in the
coded data blocks [17].

The potentials of network coding in peer-to-peer video
broadcast have yet to be explored. There are additional issues
arising from the unique features of streaming video. First,un-
like file, video is loss-tolerant. With network coding, however,
available data blocks might not be decodable if one or more
blocks are missing before playback deadline. Second, giventhe

9



Child Parent
Public NAT Firewall
UDP Transport

Public
√ √ √

NAT
√

?⋆ ?

Firewall
√

? ?⋆
TCP Transport

Public
√ √ √

NAT
√

⋆ ×
Firewall

√
× ⋆

TABLE II

CONNECTIVITY MATRIX .
√

MEANS CONNECTIVITY IS ALWAYS POSSIBLE.

? MEANS CONNECTIVITY IS POSSIBLE FOR SOME CASES OF

NAT/FIREWALL AND ⋆ MEANS CONNECTIVITY IS ONLY POSSIBLE IF THE

NODES ARE IN THE SAME PRIVATE NETWORK.

unbounded session time of live streaming, the buffer at each
node has to be updated over time to remove obsolete data. This
is different from bulk file download where the buffer is just
allocated for the file with minimizing the filling up time being
the key objective. Existing proposals suggest that a streambe
divided into generations[7]. Clearly, the coding efficiency is
improved with a longer generation, but the startup delay can
be increased if a new peer joins in the middle of a generation.
These problems are further aggravated given that the video
packets are of different importance and the streaming rate is
not constant. The interactions with layered coding or multiple
description coding can be even more complex.

G. Implementation Issues

Finally, to deploy real peer-to-peer broadcast systems over
the Internet, there are many non-trivial implementation issues
to be addressed. We now highlight three that we have encoun-
tered during building practical systems.

NATs and Firewalls. NATs and firewalls impose funda-
mental restrictions on pair-wise connectivity of nodes on an
overlay, and may prohibit direct communication with one an-
other. Whether communication is possible between two nodes
depends on several factors such as the transport protocol (UDP
or TCP), the particular kind of NAT/firewall (see [21] for a
classification), and whether the nodes are located behind the
same private network. Table II characterizes these restrictions
for the different transport protocols, where columns represent
parents and rows represent children. For example, communi-
cation is not possible between two NATed nodes using TCP
unless they happen to be in the same private network. “?”
denotes that communication is possible using UDP between
two NATed nodes for certain kinds of NAT nodes. Given that
Internet environments can have over50% of nodes behind
NATs and firewalls, the connectivity constraints of NATs and
firewalls are a significant challenge to the viability of a peer-
to-peer approach to video broadcast.

Transport Protocol. The transport protocol used in peer-to-
peer broadcast systems has important implications. It has been
long debated whether TCP is suitable for streaming media.
Several research proposals have suggested use of TFRC as the
transport protocol, which enables rate-smoothed TCP-friendly

REGION USER NUM

CHINA 32217
HONG KONG 20725

UNITED STATES 3290
SPAIN 2989

KOREA 1834
CANADA 1707

GREAT BRITAIN 1326
TAIWAN 1213
FRANCE 1088

ITALY 1059
SINGAPORE 578
GERMANY 555

JAPAN 519
OTHERS 2163

TOTAL 71652

TABLE III

GEOGRAPHICAL DISTRIBUTION OFCOOLSTREAMING USERS.

transmission and is supposed to suit streaming better. However,
TCP is readily available, widely tested, and may often be
engineered to work well, and thus is not necessarily a poor
choice. Indeed, real implementations such as [8], [36] have
employed TCP as the transport protocol. Another complicating
factor in the choice of the transport protocol is they may have
different levels of penetration of NATs and firewalls, and may
be treated differently by various enterprise policies.

Startup delay and Buffer interaction. The startup and chan-
nel switching delays remain problems in peer-to-peer broad-
cast. A new peer may spend 10 to 15 seconds to join a
peer-to-peer overlay, and take another 10 to 15 seconds to
launch the media player and buffer certain data. The delay
can be significantly longer for some unpopular channels, and
will be further prolonged if using TCP and network coding.
Also note that the existing peer-to-peer broadcast systems
generally separates the streaming engine and the playback
engine. Popular players such as Apple QuickTime, RealPlayer,
and Microsoft MediaPlayer have been used for the latter,
which simplifies system design and ensures compatibility and
portability. Given each engine has its own buffer, an interesting
question is whether the overall buffering time will be increased
or not. While a naive design will certainly increase the
latency, efficient use of this 2-stage buffer might deliver better
performance, e.g., use the player’s for smoothing and the
streaming engine’s for aggressive pre-fetching.

VI. D EPLOYMENT STATUS AND CHALLENGES

A. Deployment Status

Several peer-to-peer video broadcast systems are being
built and deployed both by the research community, and the
industry. Prominent research efforts include the CoolStreaming
and ESM systems. Key industrial efforts include PPLive [47],
TVAnts [39], TVUPlayer [40], GridMedia [35], and Zat-
too [51]. Many broadcasts have attracted peak group sizes of
thousands of participants – for example, the CoolStreaming
system has had more than 50,000 concurrent users in the
system and 25,000 users in one channel at peak times. Even
larger user bases have been reported with other systems [20].

10



The deployment has reached a wide portion of the Internet
- to users across multiple continents, in home, academic
and commercial environments, and behind various access
technologies. Table III summarizes the distribution of theIP
addresses of the CoolStreaming users from 20:26 Mar 10
GMT to 2:14 Mar 14, 2005, totally around 78 hours. We
believe this demonstrates the deployment potential of the peer-
to-peer broadcast architectures - in contrast, the usage ofthe
MBone [45] was more prevalent in academic institutions.

The service quality of these deployments has been promis-
ing, with most users reporting satisfactory viewing experi-
ence [8], [36], [37]. They have indicated that the current
Internet has enough available bandwidth to support TV-quality
streaming of 300-450 Kbps. Further, the experience has been
that these results hold at larger scales: with higher user partic-
ipation, the statistical results are even better. This validates
the theoretical scaling law for peer-to-peer streaming [28].
Given that broadcast often attracts more simultaneously online
users than that of individual file download, this also partially
explains why peer-to-peer video broadcast systems can sustain
a high and constant downloading speeds, though there are
additional real-time constraints in scheduling as compared to
BitTorrent.

B. Deployment Challenges

There is a general belief that streaming video will have a
significant impact on the future Internet and will ultimately
deliver its much anticipated revenues. Recently there have
been several developments that seem to be promising in
that direction: 1) Streaming video has gained popularity in
enterprise applications, especially in distance education and
online business; 2) Since the successful trial of research
prototypes such as ESM and CoolStreaming, several peer-to-
peer video broadcast platforms have proliferated to large scale
with millions of subscribers online, as discussed previously;
3) The success of Youtube and its recent acquisition by
Google also confirms the mass market interests in Internet
video sharing, where peer-to-peer broadcast may serve as an
underlying vehicle.

However, there are still major obstacles in mainstream
adaptation of the peer-to-peer broadcast services. In particular,
both network and content service providers have to face a
series of interest conflicts, which might well be the biggest
hurdle that needs to be overcome. The conflicts lie largely in
the differences between how the Internet and the traditional
video content providers operate – The Internet triumphs on
placing intelligences at the edge of the network rather than
inside the network core, which facilitate the rapid development
and deployment of new services; Traditional video content
providers however rely on dedicated networks, e.g., cable
networks, that offer a few well-defined services with stringent
and centralized control.

For Internet service providers, peer-to-peer video broadcast
demonstrates the great flexibility of the Internet and certainly
opens new business opportunities. However, peer-to-peer file
download applications have already put unprecedented pres-

sure on the network capacity. Video broadcast demands more
resources, and it is known that some of the existing systems
are aggressive in consuming bandwidth [3]. Internet service
providers soon have to face the problem of re-provisioning
their capacity and service, as well as to revisit the charging
models for subscribers.

On the other hand, video content providers such as TV
stations have to carefully evaluate this new of type of service
in order to protect their revenue in current program offering. It
is still unclear what the appropriate revenue model for peer-to-
peer broadcast with users scattered over the global Internet is.
In fact, while users have positively commented on the existing
deployment, whether they are willing to pay for the otherwise
free streaming services today remains a question. The service
fluctuation in terms of delay and in the worst case program
disruption, which cannot be fully eliminated in the best-effort
Internet environment, put challenges to any payment-based
business.

Such problems are further complicated given that telecom
and cable companies often have dual roles as both content
and network providers, and there are also restrictions on their
service offerings from government regulations. All these issues
have to be properly addressed before the commercial-grade
video broadcast using peer-to-peer services becomes a reality
over the global Internet.

VII. SUMMARY

Despite multiple unsuccessful starts, the Internet video has
come of age. In the very near future, video would become the
dominant type of traffic over the Internet, dwarfing other types
of traffic. Among the three video distribution modes: broad-
cast, on-demand streaming, and file download, broadcast is the
most challenging to support due to the strong scalability and
performance requirements. Peer-to-peer solutions represent
the most promising technical approaches for Internet video
broadcast due to the self-scaling property of this architecture.

In this article, we reviewed the state-of-art of peer-to-peer
Internet video broadcast. On one hand, peer-to-peer solutions
have shown great promise in supporting video broadcast, as
witnessed by their increasingly widespread deployments. On
the other hand, there are a number of key technical challenges
that need to be overcome before the peer-to-peer solutions
can approach the service quality of conventional broadcast
and cable TV. In the near term, most of the challenges have
to do with the limited amount of access capacity in the
Internet. As broadband networks become more ubiquitous and
higher-speed, the issues of peer dynamics and incentive will
become more important. The most difficult challenge to peer-
to-peer solutions, for all three of video broadcast, on-demand
streaming, and file download applications, lies in the tussle
among content service providers, consumers, and network
service providers. To be successful, peer-to-peer solutions
not only need to provide a compelling services to content
providers and consumers, but also need to address the concerns
of network service providers.

11



REFERENCES

[1] E. Adar and B. A. Huberman, “Free riding on gnutella”,First Monday,
2000.

[2] R. Ahlswede, N. Cai, S. Li, and R. Yeung, “Network information flow”,
IEEE Transactions on Information Theory, vol. 46, pp. 1204-1216, 2000.

[3] S. Ali, A. Mathur and H. Zhang, “Measurement of commercial peer-
yo-peer live video streaming”, inProc. Workshop on Recent Advances
in P2P Streaming, Waterloo, ON, Canada, August 2006.

[4] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable appli-
cation layer multicast”, inProc. ACM SIGCOMM’02, Pittsburgh, PA,
August 2002.

[5] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron
and A. Singh, “SplitStream: High-bandwidth multicast in cooperative
environments”, inProc. ACM SOSP’03, New York, USA, October 2003.

[6] Y. Chawathe, S. McCanne, and E. A. Brewer, “An architec-
ture for Internet content distribution as an infiastmcture service”,
http://yatin.chawathe.com/-yafin/papers/scattercast.ps

[7] P. A. Chou, Y. Wu, and K. Jain, “Practical network coding,in Proc. 41st
Allerton Conf. Communication, Control and Computing, Monticello, IL,
October 2003.

[8] Y.-H. Chu, A. Ganjam, T.S. E. Ng, S. G. Rao, K. Sripanidkulchai, J.
Zhan, and H. Zhang, “Early deployment experience with an overlay
based Internet broadcasting system”, inProc. USENIX Annual Technical
Conference, June 2004.

[9] Y.-H. Chu, S. G.Rao, and H. Zhang, “A case for end system multicast”,
in Proc. ACM SIGMETRICS’00, June 2000.

[10] Y.-H. Chu, S. G.Rao, S. Seshan, and H. Zhang, “Enabling conferencing
applications on the Internet using an overlay multicast architecture”, in
Proc. ACM SIGCOMM’01, August 2001.

[11] B. Cohen, “Incentives build robustness in bittorrent”, in Proc. P2P
Economics Workshop, Berkeley, CA, 2003.

[12] Y. Cui and K. Nahrstedt, “Layered peer-to-peer streaming”, in Proc.
NOSSDAV’03, June 2004.

[13] S. Deering and D. Cheriton, “Multicast routing in datagram internet-
works and extended LANs”,ACM Transaction on Computer Systems,
vo. 8, no. 2, pp. 85-110, May 1990.

[14] H. Deshpande, M. Bawa, and H. Garcia-Molina, “Streaming live media
over peer-to-peer network”,Technical Report, Stanford University, 2001.

[15] P. Eugster, R. Guerraoui, A.-M. Kermarrec, and L. Massoulie, “From
epidemics to distributed computing”,IEEE Computer, 2004.

[16] P. Francis, “Yoid: Extending the Interent multicast architecture,”
http://www.icir.org/yoid/.

[17] C. Gkantsidis, J. Miller, and P. Rodriguez, “Comprehensive view of a
live network coding P2P system”, inProc. ACM SIGCOMM/USENIX
IMC’06, Brasil, October 2006.

[18] C. Gkantsidis and P. Rodriguez, “Network coding for large scale content
distribution”, in Proc. IEEE INFOCOM’05, Miami, FL, Mar. 2005.

[19] M. Heffeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava, “PROMISE:
Peer-to-peer media streaming using CollectCast”, inProc. ACM Multi-
media’03, Berkeley, CA, November 2003.

[20] X. Hei, C. Liang, J. Liang, Y. Liu, and K.W. Ross, “Insights into PPLive:
A measurement study of a large-scale P2P IPTV system”, inProc.
Workshop on Internet Protocol TV (IPTV) services over WorldWide
Web in conjunction with WWW2006, Edinburgh, Scotland, May 2006.

[21] C. Huitema,J. Rosenberg, J. Weinberger, and R. Mahy, “STUN - Simple
traversal of UDP through network address translators”,IETF-Draft,
December 2002.

[22] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: High
bandwidth data dissemination using an overlay mesh”, inProc. ACM
SOSP’03, New York, USA, October 2003.

[23] X, Liao, H, Jin, Y, Liu, L, M. Ni, and D, Deng, “AnySee: Scalable live
streaming service based on inter-overlay optimization”, in Proc. IEEE
INFOCOM’06, 2006.

[24] J. Liu, B. Li, and Y.-Q. Zhang, “Adaptive video multicast over the
Internet”, IEEE Multimedia, vol. 10, no. 1, pp. 22-31, Jan./Feb. 2003.

[25] V. N. Padmanabhan, H. Wang, P. Chou, “Resilient peer-to-peer stream-
ing”, in Proc. of IEEE ICNP’03, November 2003.

[26] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sripanidkulchai,
“Distributing streaming media content using cooperative networking”,
in Proc. NOSSDAV’02, USA, May 2002.

[27] V. Pai, K. Tamilmani, V. Sambamurthy, K. Kumar, and A. Mohr,
“Chainsaw: Eliminating trees from overlay multicast”, inProc. The

4th International Workshop on Peer-to-Peer Systems (IPTPS), February
2005.

[28] T. Small, B. Liang, and B. Li, “Scaling laws and tradeoffs in peer-to-
peer live multimedia streaming”, inProc. ACM Multimedia’06, Santa
Barbara, CA, October 2006.

[29] K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang, “The
feasibility of supporting large-scale live streaming applications with
dynamic application end-points”, inProc. ACM SICOMM’04, August
2004.

[30] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for Internet applica-
tions”, in Proc. of ACM SIGCOMM’01, San Diego, CA, August 2001.

[31] Y.-W. Sung, M. Bishop and S. G. Rao, “Enabling contribution awareness
in an overlay broadcasting system,” inProc. ACM SIGCOMM’06, Pisa,
Italy, September 2006.

[32] R. Tian, Q. Zhang, Z. Xiang, Y. Xiong, X. Li, W. Zhu, “Robust
and efficient path diversity in application-layer multicast for video
streaming”, IEEE Transactions on Circuits and Systems for Video
Technology, vol. 15, no. 8, pp. 961-972, August 2005.

[33] V. Venkataraman, P. Francis, and J. Calandrino, “ChunkySpread: Multi-
tree unstructured peer-to-peer multicast”, inProc. The 5th International
Workshop on Peer-to-Peer Systems, February 2006.

[34] F. Wang, Y. Xiong, and J. Liu, “TreeBone: A hybrid structure for
efficient peer-to-peer live streaming”,Technical Report, August 2006.

[35] M. Zhang, J.-G. Luo, L. Zhao, and S.-Q. Yang, “A peer-to-peer network
for live media streaming - using a push-pull approach,” inProc. ACM
Multimedia’05, November 2005.

[36] X. Zhang, J. Liu, B. Li and T.-S. P. Yum, “DONet/CoolStreaming:
A data-driven overlay network for live media streaming”, inProc.
INFOCOM’05, Miami, FL, USA, March 2005.

[37] X. Zhang, J. Liu, and B. Li, “On large-scale peer-to-peer live video
distribution: CoolStreaming and its preliminary experimental results”,
in Proc. IEEE Multimedia Signal Processing Workshop (MMSP’2005),
Shanghai, China, October 2005.

[38] S. Q. Zhuang, B. Y. Zhao, and A. D. Joseph, “Bayeux: An architecture
for scalable and fault-tolerant wide-area data dissemination”, in Proc.
NOSSDAV’01, New York, June 2001.

[39] http://cache3.tvants.com/
[40] http://tvunetworks.com/
[41] http://www.akamai.com
[42] http://www.bittorrent.com
[43] http://www.emule-project.net
[44] http://www.gnutella.com
[45] http://www.mbone.net
[46] http://www.napster.com
[47] http://www.pplive.com/en/index.html
[48] http://www.skype.com
[49] http://www.techweb.com/wire/networking/183700547
[50] http://www.thewhir.com/marketwatch/aol070505.cfm
[51] http://www.zattoo.com/

12


