
Modern Elliptic Curve Cryptography for

Constrained Devices
Project Report — PR2

Tobias Markmann

tobias.markmann@haw-hamburg.de

April 9, 2015

Constrained devices see wide application in wireless sensor network (WSN)

andmore recently the Internet of Things (IoT). Security is an important aspect

of these networks as nodes communicate over open wireless channels or via

the insecure global Internet. Elliptic curve cryptography (ECC) provides a

cryptographic basis for modern security protocols by requiring smaller keys

and faster operation compared to classic RSA cryptosystems.

This report covers the implementation of twisted Edwards curves — a sim-

pler and faster form of curves for ECC — to the RELIC library. Two coordi-

nate formats are supported by our implementation, standard projective and

extended projective coordinates. We test the performance of our implementa-

tion in three benchmarks, a low-level ECC microbenchmark, an Elliptic Curve

Diffie-Hellman (ECDH) macrobenchmark and a high-level benchmark of an

identity-based signature (IBS) signature. These tests are carried out on a high-

end desktop, an embedded and a constrained hardware platform.

We show that our implementation of the twisted Edwards curve can provide

improvements of up to 31% on our embedded platforms for the ECC point mul-

tiplication, when compared to the existing short Weierstrass implementation

in RELIC.

1

mailto:tobias.markmann@haw-hamburg.de

Contents

1 Introduction 1

1.1 Operations and Nomenclature . 1

2 Related Work 2

3 Background 3

4 Implementing Edwards Curves for Constrained Devices 5

4.1 Implementation of Twisted Edwards Curves 6

4.2 Implementation of Extended Coordinates 8

4.3 Implementation of Mixed Coordinate Scalar Multiplication 9

5 Evaluation 10

5.1 Elliptic Curve Microbenchmark . 12

5.2 Elliptic Curve Diffie–Hellman Macrobenchmark 13

5.3 vBNN-IBS Benchmark . 14

5.4 Memory Footprint . 16

6 Conclusion 17

References 18

Appendices 21

1 Introduction

With Internet of Things (IoT) adoption on the rise many questions open up regarding how

to secure these networks and devices. Elliptic curve cryptography (ECC) is the foundation

of many current asymmetric security mechanisms.

In the beginning of 2014, the Crypto Forum of the Internet Research Task Force (IRTF)

began to work on defining a set of standard elliptic curves for various security levels to

provide security to the users of the world wide web (WWW).

ECC provides better scalability with an increasing security level and at normal security

levels for global communication, it outperforms classic asymmetric algorithms like RSA [1]

cryptosystems and the Digital Signature Algorithm (DSA). To increase the adoption of

ECC in the IoT and its constrained devices we aim to improve the performance of the ECC

algorithms in the open source RELIC [2] C library.

In our previous work [3] we looked at various identity-based signature (IBS) schemes

for application in IoT scenarios. The analysis covered an overview of IBSs and how they

compare to classic public-key cryptography (PKC) with respect to securing communication

patterns in the IoT. Performance measurements of three different IBSs showed ECC as a

promising building block for asymmetric signature schemes due to their good balance

between scalability in security and performance on different hardware architectures.

This report continues the work by showing the performance benefits of modern ECC

with an implementation of a twisted Edwards [4] curve in the RELIC [2] C library.

We test our implementation of twisted Edwards curves in standard projective and ex-

tended projective coordinates on a wide range of hardware architectures. Our test evalu-

ates the performance of our implementation for its basic ECC group operations and when

used in basic protocols like Elliptic Curve Diffie-Hellman (ECDH). Further we evaluate

our new implementation when used in conjunction with vBNN-IBS [5], an ECC-based IBS.

IBS allow to use already existing information like IPv6 addresses as public keys and are an

attractive option for securing networks where low communication overhead is important.

This report is structured as follows. Section 2 looks at related work in this area, specifi-

cally existing benchmark results of the scientific community and optimizations of ECC

algorithms for highly constrained devices. Section 3 briefly covers background of Edwards

and twisted Edwards curves and their common point representations. In Section 4 we

describe the addition formulas and algorithms used in our implementation followed by

an evaluation using benchmarks on three different hardware platforms in Section 5. We

close with conclusions and a short outlook in future research opportunities in Section 6.

1.1 Operations and Nomenclature

The computational complexity of formulas for operations on elliptic curves (e.g. addition,

doubling, etc.) is commonly specified in terms of operations in the underlying field. The

following notation is used within this paper.

Let n = log
2
q, i.e. the number of bits required to store q, for the finite field Fq.

1

Notation Description

I Inversion

M Multiplication

S Squaring

D Mulitplication with constant

add Addition

Table 1: Notation used for describing the complexity of ECC operations.

Additions and subtractions (add) in Fq have the lowest cost. They can be performed in

linear time complexity O(n).
General multiplication (M) has quadratic time complexity O(n2) and is commonly im-

plemented using Montgomery’s multiplication.

Special cases like constant multiplication (D) and squaring (S) are faster than the general

case. D has a lower complexity than S. However, the ratio of cost betweenM, S and D varies

between different hardware platforms.

Inversions (I) are undoubtedly the most expensive operations due to their common

implementation using the extended Euclidian algorithm. A naive implementation has

a computational complexity of O(n3). This can be further optimized but it will still be

slower than general multiplication.

More detailed information can be found in [6, Chapter 2 and 14].

2 Related Work

In this section we focus on three different works related to implementing and benchmark-

ing modern elliptic curve cryptography (ECC) on constrained devices.

eBACS [7] is a widely accepted resource on benchmark results for common cryptographic

operations. The project assembles benchmarks for various primitives like eBATS for asym-

metric cryptosystems, eBASC for stream ciphers and eBASH for cryptographic hash func-

tions.

The eBATS benchmark are of particular interest to us, as they cover asymmetric signa-

tures and protocols like Diffie-Hellman key exchange. While they include measurements

for Curve25519 [8], they are using the Montgomery curve with anX-coordinate ladder [9]

to compute Elliptic Curve Diffie-Hellman (ECDH) shared secrets. In contrast, the code

described in this report and existing short Weierstrass curve code in RELIC uses full pro-

jective and extended projective coordinates for its computations.

Furthermore, eBATS does currently not cover identity-based signatures (IBSs) at all,

which leaves ECDH as the sole algorithm for any comparison.

While the benchmarks of our implementation are not directly comparable to the various

benchmarks of implementations in eBATS, it provides a good estimate on the absolute

2

performance gap between our implementation and the top performing ECDH implemen-

tations on a particular architecture.

Optimization of modern ECC using Curve25519 and ED25519 for latest mobile ARM

microcontrollers was evaluated by Bernstein et al. [10]. They achieve a performance of

527,102 cycles for an ECDH shared secret computation on a Cortex A8 chip. However, the

Cortex A8 ARM microcontroller has a much higher clock frequency (1 GHz) compared to

the Cortex M3 (186 MHz). Furthermore the Cortex A8 supports complex instructions like

NEON vector instructions and the ECC implementation has optimized assembler to take

advantage of the vector instructions. The highly constrained and low-energy Cortex M3

microcontroller is missing support for vector instructions.

Even though Cortex A8 and Cortex M3 are both using the ARM architecture there is a

huge difference in the specific design and features of both microcontrollers. The Cortex

A8 is primarily used in mobile phones and tables which come with a rather large battery

compared to Internet of Things (IoT) devices and are regularly charged. Achieving a simi-

lar performance is out of reach due to the large differences in features and performance

between the Cortex A8 and the Cortex M3 used in our work. However, it is important to

note that Bernstein et al. also use aX-coordinate only Montgomery ladder for the shared

secret ECDH computation.

de Clercq et al. [11] focused on improving the performance of ECC on ultra low-power

platforms, in their case the ARM Cortex-M0+. They compared variable-base and fixed-

based scalar multiplication for ECC of various implementations, including RELIC [2]. In

addition, they proposed a new field multiplication algorithm for binary fields based on

the López-Dahab algorithm [12]. By using fixed registers this new algorithm performs 15%

better compared to a similar algorithmwith rotating registers. When combined with scalar

multiplication algorithms for elliptic curves, their variable-based scalar multiplication out-

performs other software-based implementations with regard to energy use by a factor of

at least 3.0.
However, their analysis and their newly proposed algorithms only work for binary fields

and ECC using binary fields. Our work focuses on prime fields and performance improve-

ments of ECC based on prime fields as they have a more stable security history. Neverthe-

less, their ”López-Dahab with fixed registers” algorithm would be an interesting candidate

to combine with Edwards curves defined over binary fields, also known as binary Edwards

curves [13].

3 Background

In 2007 Edwards [4] proposed a new form of elliptic curves over number fields that are

defined by the equation x2 + y2 = c2(1 + x2y2).
All elliptic curves over non-binary finite fields are transformable into the Edwards form

of elliptic curves. However this transformation sometimes requires the Edwards form to

be defined over a field extension of the original field [14].

3

Building on Edwards proposal, Bernstein et al. [14] defined an expanded formula for

Edwards curves to include more curves for possible transformation to Edwards curves

without change of the underlying finite field. Their formula for Edwards curves is x2+y2 =
c2(1 + dx2y2) where cd (1− dc4) 6= 0 holds.
They propose a formula for Edwards curves to include all curves x2+y2 = 1+dx2y2 and

proof that all elliptic curves with a point of order 41 are transformable to this Edwards curve

formula. The addition law for Edwards curves is unified, meaning that it can be used for

both addition and doubling. It is also complete, meaning it is valid for all possible inputs,

including the identity element. Neither of these properties apply to classic Weierstrass

curves and implementations need to handle special cases. Bernstein et al. also presented

fast addition and doubling formulas and showed their advantage for the performance of

elliptic curve cryptography (ECC).

Having a unified and complete addition law not only enables compact implementations

but also reduces the attack surface on side-channels. ECC implementations using classic

Weierstrass curves commonly have a highly branched addition law handling various special

cases. Since not all branches are of equal computational complexity, the implementation

is subject to simple power analysis (SPA), timing attacks and other side-channel attacks.

Following up, Bernstein et al. [16] generalized the Edwards curve formula even further

and introduced twisted Edwards curves. They are a generalization of the Edwards curve

formula and defined as ax2 + y2 = 1 + dx2y2 with a, x, y, d ∈ Fp.

As a generalization, an increasing amount of elliptic curves in Weierstrass form can be

transformed into twisted Edwards curves. Essentially all twisted Edwards curves can be

written as Montgomery [9] curves and vice versa [16, section 3].

Furthermore, the Edwards curve EE,1,(d/a) : x̄
2 + ȳ2 = 1 + (d/a)x̄2ȳ2 is isomorphic to

the twisted Edwards curve EE,a,d : ax2 + y2 = 1 + dx2y2. If a is a square in the finite

field of EE,1,(d/a) then its isomorphic twisted Edwards curve also exists in the same finite

field. Else it only exists in an extension of the field. The points can be transfered from the

Edwards curve group to the twisted Edwards curve group using the map (x, y) = (x̄/
√
a, ȳ)

[16, section 3].

This isomorphism already shows one possible performance advantage of twisted Ed-

wards curves. For existing Edwards curves with the d̄ parameter — also representable

as (d/a) with a being a square — it can be a computational advantage to work with the

isomorphic twisted Edwards curve instead.

An ECC group operation like point addition requires amultiplication with the d̄ constant.
The same operation for twisted Edwards curves uses twomultiplications by d and a instead.
In cases where the multiplications by d and a are cheaper than a multiplication by (d/a) it
is preferable to perform computations on the twisted Edwards curve instead [16, section 7].

This shows that unified, complete and fast ECC addition formulas, i.e. the twisted Ed-

wards addition formulas, are available for a wider range of curves. For details on the

1The order of point P is the smallest positive integer x with x · P = O, with O being the identity element

of the elliptic curve group [15, p. 20].

4

number of Edwards and twisted Edwards curves over a finite field Fp see [16, section 4].

Later on Hisil et al. [17] suggested another point representation for twisted Edwards

curves using a forth auxiliary coordinate, T , in addition to the three standard projective

coordinates. While the curve formula remains the same, points are now represented as

(X,Y, T, Z) with T =
XY

Z
. Further details on the point representation are described in [17,

p. 330].

The advantage of these extended coordinates lies in the addition formula associated with

them. The addition formula for the extended coordinates saves one multiplication and

one squaring, providing a significant further performance improvement. However, this

comes at the cost of a performance drop for the doubling formula. The doubling formula

for extended twisted Edwards curves is one multiplication operation more expensive than

the doubling formula for standard projective coordinates. See Table 2 and Table 3 for a

direct cost comparison.

With a mixed coordinate scalar multiplication algorithm however there is still a perfor-

mance advantage overall [17, p. 337] and the formulas for extended coordinates allow for

heavy parallelization on multi-processor systems.

4 Implementing Edwards Curves for Constrained Devices

RELIC [2] is an open source cryptographic C library targeting at constrained devices. This

specialization on constrained devices is reflected in the lightweight design and modular-

ization. Furthermore, some low-level primitives come with optimized assembly instruc-

tions for architectures common in constrained environments like wireless sensor network

(WSN) or the Internet of Things (IoT).

RELIC already provides elliptic curves over prime and over binary fields, supporting

both affine and projective point representations.

RELIC implements the following algorithms for general scalar multiplications on elliptic

curves:

1. Binary method [15, p. 146] (BASIC)

2. Sliding window method [15, p. 149] (SLIDE)

3. Montgomery’s ladder [15, p. 287] (MONTY)

4. Left-to-right window NAF method [15, p. 153] (LWNAF)

Due to the current design of RELIC the existing algorithms for scalar multiplication

in an elliptic curve group could not directly be reused. However, the scalar multiplica-

tion algorithms could easily be duplicated from the short Weierstrass curve prime field

implementation and adapted to our new twisted Edwards curve implementation. In addi-

tion our twisted Edwards curve implementation takes advantage of the RELIC prime field

implementation.

5

The next three sections will introduce details of the implementation of twisted Edwards

curve, the extended coordinate format for twisted Edwards curves, and finally the mixed

coordinate scalar multiplication.

4.1 Implementation of Twisted Edwards Curves

We implement twisted Edwards curves using projective coordinates to reduce the number

of expensive inversions in Fp for operations on the elliptic curve. This is a wide-spread

approach and can also be seen in the existing RELIC implementation for short Weierstrass

curves and other elliptic curve cryptography (ECC) libraries.

Our implementation is part of a new RELIC module for twisted Edwards curves, the

EDmodule. The curve formula for twisted Edwards curves using projective coordinates is
(aX2 + Y 2)Z2 = Z4 + dX2Y 2 with points as (X1, Y1, Z1) being equivalent to the affine

point
(
X1

Z1
,
Y1

Z1

)
. We implement twisted Edwards curves for lightweight ECC as described

by Bernstein et al. [16].

The formulas for point addition and doubling arithmetic in the twisted Edwards elliptic

curve group used by our implementation are as follows.

The point addition (X3, Y3, Z3) = (X1, Y1, Z1) + (X2, Y2, Z2) is computed using the

following formulas:

X3 = A · F · ((X1 + Y1) · (X2 + Y2)− C −D) with A = Z1 · Z2

Y3 = A ·G · (D − aC) F = B − E with B = A2

Z3 = F ·G C = X1 +X2 E = dC ·D
D = Y1 · Y2
G = B + E

These formulas sum up to a computational complexity of 10M+1S+2D+7add [16, p. 12].

The point doubling (X3, Y3, Z3) = 2 · (X1, Y1, Z1) is computed using the following

formulas:

X3 = (B − C −D) · J with B = (X1 + Y1)
2

Y3 = F · (E −D) C = X1
2

Z3 = F · J D = Y1
2

E = aC

F = E +D

J = F − 2H with H = Z1
2

These formulas sum up to a computational complexity of 3M+ 4S+ 1D+ 7add [16, p. 12].

In the following, we compare the costs of these formulas with the addition formulas

already implemented in RELIC. We compare the computational costs of the existing short

6

Weierstrass curve implementation in RELIC with our new twisted Edwards curve imple-

mentation.

Table 2 shows the computational costs for addition of two elliptic curve points for the

existing short Weierstrass curve implementations in the top half of the table and our new

twisted Edwards curve implementations in the lower half. The computational costs are

described as basic operations required in the underlying finite field for the point addition.

The basic operations are explained in Table 1.

Curve Coordinates Cost in Fp

Short Weierstrass Affine 1I+ 2M+ 1S+ 6add

Short Weierstrass Projective 11M+ 5S+ 9add

Twisted Edwards Projective 10M+ 1S+ 2D+ 7add

Twisted Edwards Extended Projective 9M+ 2D+ 7add

Table 2: Computational complexity of point addition methods implemented in RELIC for

Weierstrass and Edwards curves. Existing implementations at the top; new Ed-

wards curve implementations at the bottom.

Table 3 compares the cost for point doubling. The interesting observation here is be-

tween the projective and extended projective coordinates for twisted Edwards curves. At

a first glance the extended projective coordinates are 1M operation more expensive. How-

ever, this multiplication is used for the T coordinate which is not required for the doubling

method and thus can be skipped during multiple consecutive doublings and calculated

once at the end.

Curve Coordinates Cost in Fp

Short Weierstrass Affine 1I+ 2M+ 2S+ 8add

Short Weierstrass Projective 3M+ 5S+ 8add

Twisted Edwards Projective 3M+ 4S+ 1D+ 7add

Twisted Edwards Extended Projective 4M+ 4S+ 1D+ 7add

Table 3: Computational complexity of point doubling methods implemented in RELIC

for Weierstrass and Edwards curves. Existing implementations at the top; new

Edwards curve implementations at bottom.

It is worth noting that the cost for the twisted Edwards curve operations describe com-

plete, e.g. constant time, implementation that does not need to handle special cases.

This reduces possible side-channels. To make short Weierstrass operations similarly safe

against side-channel attacks would require additional code which increases code complex-

ity and may introduce performance penalties.

7

As a first example, we implement the twisted Edwards curve ED22519, defined asE(Fp) :

ax2 + y2 = 1 + dx2y2 with a = −1, d = −121665

121666
and p = 2255 − 19. This curve was

introduced by Bernstein et al. [18] in their crypto system for high-speed and high-security

asymmetric signatures. The equivalent short Weierstrass curve is already implemented in

RELIC.

Further twisted Edwards curves can easily be added to RELIC by specifying its parame-

ters, i.e. the curve parameters a and d, the prime of the field, the base or generator point

with its x- and y-coordinate and the cofactor of the elliptic curve group h.

4.2 Implementation of Extended Coordinates

We followed up with an implementation of extended twisted Edwards coordinates [17] and

their addition and doubling formulas. These coordinates further reduce the cost of ECC

point additions in exchange for more complex scalar multiplication methods.

The formulas used for point addition and doubling for extended coordinates are the

following.

The point addition (X3, Y3, T3, Z3) = (X1, Y1, T1, Z1)+(X2, Y2, T2, Z2) is computed using

the following formulas:

X3 = E · F with E = (X1 + Y1) · (X2 + Y2)−A−B with A = X1 ·X2

Y3 = G ·H F = D − C B = Y1 · Y2
T3 = E ·H G = D + C C = 2Z1

2

Z3 = F ·G H = B − aA D = Z1 · Z2

These formulas sum up to a computational complexity of 9M+2D+7add in Fp [17, p. 331].

The point doubling (X3, Y3, T3, Z3) = 2·(X1, Y1, T1, Z1) is computed using the following

formulas:

X3 = E · F with E = (X1 +X1)
2 −A−B with A = X1

2

Y3 = G ·H F = G− C B = Y1
2

T3 = E ·H G = D +B C = 2Z1
2

Z3 = F ·G H = D −B D = aA

These formulas sum up to a computational complexity of 4M+ 4S+ 1D+ 7add in Fp [17,

p. 333].

Comparing the addition formulas for projective twisted Edwards coordinates and ex-

tended twisted Edwards coordinates, we see a saving of 1M+ 1S.
However, this is counteracted by the penalty for doubling in extended coordinates, which

requires 1Mmore in extended coordinates compared to projective coordinates.

8

Since we converted the existing scalar multiplications algorithms available in RELIC

to our twisted Edwards curve module, this penalty for doubling could easily be tested.

Indeed it showed that, when using the same scalar multiplication algorithm, the extended

coordinates were slightly slower than projective coordinates for twisted Edwards curves.

This lead us to implement an adjusted LWNAF algorithm specifically for extended twisted

Edwards curve coordinates. Hisil et al. [17, p. 337] describe a mixed coordinate scalar

multiplication algorithm which we adopt for the existing LWNAF implementation and

describe in the next section in more detail.

4.3 Implementation of Mixed Coordinate Scalar Multiplication

We implemented the mixed coordinate scalar multiplication proposed by Hisil et al. [17]

to take advantage of the extended twisted Edwards curve formulas. This algorithmwill use

the fact that one multiplication in the doubling formula is used for the T coordinate which

is not a required input for the doubling formula. This means on subsequent doublings this

multiplication can be skipped making the doubling formula of extended twisted Edwards

coordinates as cheap as the formula for projective twisted Edwards coordinates.

The idea of the algorithm suggested by Hisil et al. follows the same idea as in [19]. Dur-

ing the scalar multiplication, the current value of the loop is not always held in extended

coordinate representation but sometimes also in simple projective coordinate representa-

tion.

We adopted the existing LWNAF algorithm with the following two rules [17, p. 337] to the

LWNAF_MIXED algorithm:

1. if a point doubling is followed by another doubling then skip the calculation of the

T coordinate in the doubling

2. if a point doubling is followed by a point addition then use the full doubling formula

plus extended coordinate addition

Listing 1 shows the relevant part of the adjusted LWNAF implementation.

9

ed_set_infty(r);
for (i = l - 1; i >= 0; i--, _k--) {
n = *_k;
if (n == 0) {
/* doubling is followed by another doubling */
if (i > 0) {
ed_dbl_short(r, r);

} else {
/* use full extended coordinate doubling for last step */
ed_dbl(r, r);

}
} else {
ed_dbl(r, r);
if (n > 0) {
ed_add(r, r, t[n / 2]);

} else if (n < 0) {
ed_sub(r, r, t[-n / 2]);

}
}

}

Listing 1: Snippet from the LWNAF_MIXED algorithm implementation.

The basic LWNAF algorithm and the LWNAF_MIXED algorithm we have implemented

are not hardened in any way against side-channel attacks. Okeya et al. [20] proposed

modifications to the LWNAF algorithmwhich add protections against simple power analysis

(SPA).

5 Evaluation

To test our implementation for correctness, the RELIC test suite for elliptic curves has

been extended by a test suite for our twisted Edwards curve implementation, based on the

existing tests for short Weierstrass curves over prime fields in RELIC. The test suite covers

testing the addition formula for commutativity and associativity based on random points

as input, the testing of the scalar multiplication methods in use with twisted Edwards

curves and testing of utility functionality like conversion functions for elliptic curve points

from and to a binary representation.

Our performance evaluation consists of three parts: evaluating the lower level perfor-

mance of our additions to the RELIC elliptic curve cryptography (ECC) support by run-

ning the RELIC microbenchmark suite, a macrobenchmark running Elliptic Curve Diffie-

Hellman (ECDH) shared secret calculation, and testing the higher level performance of

an ECC-based identity-based signature (IBS).

We compare the existing Weierstrass curve implementation over Fp, denoted as E(Fp),
the new twisted Edwards curve implementation over Fp using projective coordinates, de-

noted as E(Fp), and using extended coordinates, denoted as Ee(Fp). This notation for

E(Fp) and Ee(Fp) is the same as in [17, p. 337]. For the benchmarks using the short Weier-

strass curve over Fp, we use Curve25519 [8] which is birationally equivalent to the twisted

Edwards curve ED25519. Currently, we have only implemented ED25519 in RELIC but more

twisted Edwards curves can easily be added.

10

All three parts of our evaluation benchmarks cover all three elliptic curve configurations.

The benchmarks are executed on a high-end desktop platform (X86_64), a low power

embedded platform (ARM11) and an Internet of Things (IoT) platform (ARM Cortex-M4).

This covers complex instruction set computing (CISC) and reduced instruction set com-

puting (RISC) platforms. The IoT platform is of particular interest due to its highly limited

RAM compared to the other two platforms, and its missing CPU caches.

The detailed configurations of the test environments are shown in Table 4.

PC Pi IoT

Device Dell Optiplex 7010 Raspberry Pi STM32F4discovery

Architecture Intel ARM ARM

CPU Corei5 ARM1176 ARM Cortex-M4

Word size 64 bit 32 bit 32 bit

Clock speed 2 GHz 800 MHz 168 MHz

L1 Cache 256 kB 32 kB —

L2 Cache 1024 kB (256 kB) —

L3 Cache 6144 kB — —

RAM 16 GB 256 MB 192 kB

OS Ubuntu 14.04 Debian 3.10.11-1+rpi7 RIOT 2[21]

Compiler GCC 4.8.2 GCC 4.8.3 GCC 4.8.4

Note: The L2 Cache is used by the GPU on the Raspberry Pi and therefore is not available

to the CPU.

Table 4: Test environments and compilers used for the benchmark.

Our benchmark procedure is generally the same for the low-level as for the high-level

benchmark. We build RELIC, the newly introduced C++ wrapper for RELIC either and the

benchmark code natively or cross-compiled.

All builds use the -O2 optimization level. The -O2 optimization level includes most

optimizations provided by GCC. Using the highest optimization level -O3 3 would result

in more aggressive unrolling of loops and further function inlining which increases the

resulting code size. However, compact code is important for embedded IoT devices because

memory is a critical resource.

Benchmark time is measured via low-level CPU cycle counters which are available on all

of our test platforms. Each benchmark run executes the tested operation only one time.

This is to prevent the cycle counter wrapping around its word size more than once and

2Commit dc916ad4583def1af069e333affc28002380effe
3See GCC documentation on optimization levels: https://gcc.gnu.org/onlinedocs/gcc/
Optimize-Options.html

11

https://github.com/RIOT-OS/RIOT/commit/dc916ad4583def1af069e333affc28002380effe
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

thereby distorting our benchmark results.

Additionally, since the PC and PI test environments are multi-tasking systems, we do 30

benchmark runs and take the average cycle count for each benchmark as our final result.

More details on the benchmark results, including minimum, maximum and spread of the

values can be found in the appendix. Onmulti-tasking systems our benchmark code execu-

tion is subject to unavoidable side effects. One example of these side effects is preemptive

context switching through disadvantage scheduler behavior during the benchmarks.

To further support reliable benchmark timingswe apply the same guidelines as described

by the SUPERCOP toolkit 4, i.e., disable hyper-threading where supported by the CPU,

and disable energy saving features like Intel’s TurboBoost which change the CPU clock

speed on the fly depending on the current demands of the system.

On our IoT test platform, we only execute one run as RIOT supports cooperative schedul-

ing resulting in a deterministic cycle count as benchmark result. For the benchmarks on

the PC and Pi platforms, we execute 30 runs per platform and test. We use the mean over

all runs of a test on a platform as final value for our tables for that test and platform. A

statistical analysis for these benchmark runs can be found in the appendix.

The following three sections present the results and interpretation of the microbench-

mark, the macrobenchmark and the benchmark of the IBS.

5.1 Elliptic Curve Microbenchmark

RELIC provides amicrobenchmark that covers basic utility functions, arithmetic on elliptic

curve points and various scalar multiplication algorithms. We used this benchmark to test

the performance improvements of our implementations compared to the existing RELIC

short Weierstrass curve implementation.

add, sub, dbl and neg describe the basic ECC group operations, i.e. point addition,

point subtraction, point doubling and point negation, respectively. mul describes scalar

multiplication of a point and mul_gen the scalarmultiplication of the generator of the ECC

group. ForE(Fp) and E(Fp) the scalar multiplication algorithm used is LWNAF. For Ee(Fp)
we used the newly implemented mixed coordinate multiplication LWNAF algorithm, the

LWNAF_MIXED algorithm.

Table 5, Table 6 and Table 7 show that the current implementation for scalar multiplica-

tion of ECC points using extended twisted Edwards coordinates outperform the projective

twisted Edwards coordinate formulas on all three systems in a similar manner.

However, on the ARM platforms the overall improvement of the twisted Edwards im-

plementation compared to the short Weierstrass implementation is slightly smaller than

on the Intel platform. On the ARM platforms the time required for scalar multiplication

using twisted Edwards curves was cut down to roughly 76%-82% of the original short

Weierstrass runtime. On the Intel platform the time was cut down to 72%-78% of the

original short Weierstrass time.

The lower cycle count of the Pi system compared to IoT system can be explained in part

by the level 1 data and instruction cache. The access time for the level 1 data cache is only

4See section ”Reducing randomness in benchmarks” on http://bench.cr.yp.to/supercop.html

12

http://bench.cr.yp.to/supercop.html

Benchmark Short Twisted Edwards Twisted Edwards

Weierstrass Extended

Cycles Cycles
Twisted Ed.

Weierstrass
Cycles

Twisted Ed. Ext.

Weierstrass

add 10,072 7,952 0.79 6,762 0.67

sub 10,190 8,019 0.79 6,951 0.68

dbl 7,530 5,193 0.69 5,815 0.77

neg 274 264 0.96 303 1.11

mul 2,752,780 2,009,179 0.73 1,983,242 0.72

mul_gen 2,529,737 1,982,392 0.78 1,969,771 0.78

Table 5: Microbenchmark results from RELIC benchmark suite for PC system.

Benchmark Short Twisted Edwards Twisted Edwards

Weierstrass Extended

Cycles Cycles
Twisted Ed.

Weierstrass
Cycles

Twisted Ed. Ext.

Weierstrass

add 58,102 45,712 0.79 38,859 0.67

sub 58,119 46,002 0.79 39,363 0.68

dbl 39,183 29,145 0.74 32,354 0.83

neg 441 325 0.74 504 1.14

mul 12,838,647 10,448,499 0.81 10,221,945 0.80

mul_gen 12,300,693 10,228,595 0.83 10,054,267 0.82

Table 6: Microbenchmark results from RELIC benchmark suite for Pi system.

3 cycles while an access to the primary memory can take up to 116 cycles [22]. The IoT

system does not have any cache and every memory access is expensive.

In addition, it is clearly shown that the doubling for the extended projective coordinates

is slower compared to simple projective coordinates for twisted Edwards curves. This

confirms the relevance of a dedicated scalar multiplication algorithm for the extended

coordinates, namely LWNAF_MIXED. This dedicated algorithm is used in our benchmarks

for scalar multiplication for all twisted Edwards extended coordinate benchmarks.

5.2 Elliptic Curve Diffie–Hellman Macrobenchmark

We also conducted a macrobenchmark on the ECDH shared secret calculation. ECDH is

one of the most popular applications of ECC and there are benchmark results of other

groups to compare with, specifically the public eBACS [7] benchmark results.

Table 8 shows our best performance at 2.2million cycles for an ECDH shared secret com-

putation. The eBACS benchmark lists an ECDH shared secret computation for Curve25519

with 182,708 cycles, on a Intel Core i5 platform with 2.5 GHz compared to our 2 GHz

13

Benchmark Short Twisted Edwards Twisted Edwards

Weierstrass Extended

Cycles Cycles
Twisted Ed.

Weierstrass
Cycles

Twisted Ed. Ext.

Weierstrass

add 544,140 416,110 0.76 352,330 0.65

sub 550,250 422,560 0.77 361,580 0.66

dbl 391,460 281,750 0.72 309,670 0.79

neg 4,560 3,640 0.80 5,750 1.26

mul 128,423,880 99,252,370 0.77 97,069,800 0.76

mul_gen 121,671,750 97,127,110 0.80 95,051,180 0.78

Table 7: Microbenchmark results from RELIC benchmark suite for IoT system.

Benchmark Short Twisted Edwards Twisted Edwards

Weierstrass Extended

Cycles Cycles
Twisted Ed.

Weierstrass
Cycles

Twisted Ed. Ext.

Weierstrass

PC 2,867,657 2,238,981 0.78 2,219,457 0.77

Pi 13,141,632 11,001,186 0.84 10,877,226 0.83

IoT 133,496,430 107,280,770 0.80 105,243,430 0.79

Table 8: Microbenchmark results for ECDH shared secret benchmark

platform.

This huge difference is likely due to different factors:

• the implementation in eBACS uses a different scalar multiplication algorithm, an

X-coordinate only Montgomery ladder. The Montgomery ladder has less computa-

tional complexity than the LWNAF_MIXED algorithm with extended twisted Edwards

coordinates.

• there is difference in the benchmarking methods.

• our implementation of twisted Edwards curve support for the RELIC library is an

early implementation without much effort spent on optimization.

5.3 vBNN-IBS Benchmark

In this section, we consider the impact of twisted Edwards curves on a higher level, specifi-

cally in the context of ID-based signature schemes. For this we compare signature genera-

tion and verification performance of ECC-based IBS on the same three hardware platforms

used in the previous benchmarks. The IBS used for this benchmark is an implementation

of vBNN-IBS [5] by Cao et al.

14

The benchmark procedure is the same as for the microbenchmark. 30 runs are made

per benchmark configuration and the average cycle count is taken as result.

Benchmark Short Twisted Edwards Twisted Edwards

Weierstrass Extended

Cycles Cycles
Twisted Ed.

Weierstrass
Cycles

Twisted Ed. Ext.

Weierstrass

key extraction 2,590,048 2,178,755 0.84 2,135,772 0.82

σ generation 2,593,784 2,317,637 0.89 2,266,173 0.87

σ verification 6,590,112 5,285,968 0.80 5,163,782 0.78

Table 9: vBNN-IBS results from RELIC benchmark suite for PC system.

Benchmark Short Twisted Edwards Twisted Edwards

Weierstrass Extended

Cycles Cycles
Twisted Ed.

Weierstrass
Cycles

Twisted Ed. Ext.

Weierstrass

key extraction 12,487,573 10,683,095 0.86 10,530,146 0.84

σ generation 12,473,793 11,065,373 0.89 10,940,388 0.88

σ verification 30,291,546 25,269,266 0.83 24,903,077 0.82

Table 10: vBNN-IBS results from RELIC benchmark suite for Pi system.

Benchmark Short Twisted Edwards Twisted Edwards

Weierstrass Extended

Cycles Cycles
Twisted Ed.

Weierstrass
Cycles

Twisted Ed. Ext.

Weierstrass

key extraction 122,511,580 101,872,350 0.83 100,265,910 0.82

σ generation 122,543,000 106,351,140 0.87 104,737,590 0.85

σ verification 389,525,330 312,752,570 0.80 307,320,620 0.79

Table 11: vBNN-IBS results from RELIC benchmark suite for IoT system.

Table 9 and Table 10 show an improvement down to about 85% of the original runtime

for all operations of vBNN-IBS when used with twisted Edwards curves. Twisted Edwards

curves with extended coordinates reduce the runtime even more but minimally.

For vBNN-IBS, the signature verification is the most expensive operation. All platforms

show a speed-up down to between 80% and 83% of the original short Weierstrass curve

runtime for twisted Edwards curves with simple projective coordinates over prime fields.

The runtime for the twisted Edwards curves with extended coordinates ranges from 78%

to 82% of the original short Weierstrass curve runtime.

15

Overall the improvements of our twisted Edwards curve implementation compared to

the existing Weierstrass curve implementation in RELIC are in the same area across all

three different benchmarks.

Of all three tested platforms the Pi platform shows the lowest relative speed-up in all

three benchmarks. The CPU of the Pi platform, the PC platform and the IoT platform were

released in 2003, 2009 and 2011, respectively. Considering that the CPU of the Pi is more

than 5 years older than the other CPUs, it is technologically less advanced. This explains

the low relative speed-up on the Pi platform.

5.4 Memory Footprint

TheOS used on the IoT platform, RIOT, provides easy access to themaximal stackmemory

used by the program at runtime. Memory is a critical resource on constrained devices

like our IoT test platform. The small available memory must be shared between our

cryptographic functions and the rest of the application code. This means that security

algorithms for constrained platforms need to have a small memory footprint. Otherwise

nothing else but the security algorithm can run on the device and it would not be of any

use.

Curve Stack used (bytes)

Short Weierstrass 6,084

Twisted Edwards 5,828

Twisted Edwards Extended 6,156

Table 12: Memory usage on the IoT platform during the vBNN-IBS benchmark

Table 12 shows a reduced memory use of the twisted Edwards curve setting compared

to classic short Weierstrass curves. This is likely due to the simplified addition formula

which leads to simpler and shorter code. Note that the absolute values for stack usage

are not representative for a realistic scenario since the benchmark covers running a key

generation center (KGC) and two identities exchanging messages.

The increase in memory consumption for the twisted Edwards extended coordinate

setting is explained by the additional coordinate per elliptic curve point during all com-

putations and storage. The additional 4th T coordinate makes up for a 32 byte increase of

memory usage per elliptic curve point in the code.

Twisted Edwards curves are in clear advantage over classic short Weierstrass curves here.

twisted Edwards curves do not only come with a performance boost which is especially

important in energy constrained environments, but also need less memory at runtime.

This way there is more available runtime memory for the actual IoT application.

16

6 Conclusion

In this report, we presented the implementation of twisted Edwards elliptic curves for the

RELIC library. We have evaluated its performance and the performance of the identity-

based signature (IBS) vBNN-IBS on a variety of platforms including a highly constrained

Internet of Things (IoT) board.

Implementing for and testing on constrained embedded hardware comeswith additional

challenges as keeping a balance between implementation convenience and memory use

when the implementation language is C.

We showed that the improvements of twisted Edwards curves in RELIC support the

use of newer asymmetric cryptography schemes in constrained environments. However

compared to optimized and specialized implementations there is still a gap to close.

An outlook into possible further improvements to elliptic curve cryptography (ECC)

performance in RELIC is twofold.

A possible area of improvement would profiling the code for heavily used code paths

and analyzing this code for opportunities for inline assembler.

The adoption of further algorithmic improvements to the elliptic curve computations

would be another area. This includes optimizations like the use of differential additions

formulas [23] which further cut down the cost of the addition and doubling primitives for

twisted Edwards curves.

The fastest Elliptic Curve Diffie-Hellman (ECDH) implementation in the eBATS [7]

benchmark uses a twisted Edwards curve with a X-coordinate only Montgomery ladder

[9] for scalar point multiplication. The X-coordinate only Montgomery ladder only re-

quires a single value (X) in affine space or two values (X , Z) in projective space for the

scalar multiplication. This reduces the required computational and storage complexity for

point addition and doubling inside the multiplication loop. The use of the single coordi-

nate Montgomery ladder is possible because every twisted Edwards curve is birationally

equivalent to a Montgomery curve.

Symmetric cryptography already has commonhardware acceleration available inmodern

desktop CPUs in form of the AES-NI instruction set. This support is available for years

for the Intel/AMD 64-bit CPUs. The ARMv8-A is the first architecture that comes with

similar hardware support for the ARM platform. However, it is a new architecture with

first products released since 2013.

This shows that common hardware accelerated cryptography for constrained devices

will not be available soon. Exceptions are custom developments which extend the basic

CPU with external processing units optimized for the custom cryptographic needs. Using

instruction set extensions and cryptographic coprocessors for heavily used finite field

operations further performance and efficiency gains can be attained [24, 25].

17

References

[1] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital Signatures

and Public-key Cryptosystems,” Commun. ACM, vol. 21, no. 2, pp. 120–126, New York,

NY, USA: ACM, Feb. 1978.

[2] D. F. Aranha and C. P. L. Gouvêa, RELIC is an Efficient LIbrary for Cryptography,

http://code.google.com/p/relic-toolkit/.

[3] T. Markmann, “Performance Analysis of Identity-based Signatures,” Tech. Rep., 2014.

[Online]. Available: http://inet.cpt.haw- hamburg.de/teaching/ss-
2014/master-projekt/tobias_markmann_prj1.pdf.

[4] H. M. Edwards, “A normal form for elliptic curves,” Bulletin of the American Mathe-

matical Society, vol. 44, no. 3, pp. 393–422, Providence, RI, USA: American Mathe-

matical Society, 2007.

[5] X. Cao, W. Kou, L. Dang, and B. Zhao, “IMBAS: Identity-based multi-user broadcast

authentication in wireless sensor networks,” Computer Communications, vol. 31, no.

4, pp. 659–667, Amsterdam, Netherlands: Elsevier, 2008.

[6] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptog-

raphy. Boca Raton, Florida, USA: CRC Press, 1996.

[7] D. J. Bernstein and T. Lange, Eds., EBACS: ECRYPT Benchmarking of Cryptographic

Systems, accessed 3 February 2015, 2015. [Online]. Available: http://bench.cr.
yp.to.

[8] D. J. Bernstein, “Curve25519: New Diffie-Hellman Speed Records,” in Public Key Cryp-

tography - PKC 2006, ser. Lecture Notes in Computer Science, M. Yung, Y. Dodis, A.

Kiayias, and T. Malkin, Eds., vol. 3958, Berlin, Heidelberg, Germany: Springer, 2006,

pp. 207–228.

[9] P. L. Montgomery, “Speeding the Pollard and elliptic curvemethods of factorization,”

Mathematics of Computation, vol. 48, no. 177, pp. 243–264, Providence, RI, USA:

American Mathematical Society, 1987.

[10] D. J. Bernstein and P. Schwabe, “NEON Crypto,” in Cryptographic Hardware and

Embedded Systems — CHES 2012, ser. Lecture Notes in Computer Science, E. Prouff

and P. Schaumont, Eds., vol. 7428, Berlin, Heidelberg, Germany: Springer-Verlag,

2012, pp. 320–339.

[11] R. de Clercq, L. Uhsadel, A. Van Herrewege, and I. Verbauwhede, “Ultra Low-Power

Implementation of ECC on the ARM Cortex-M0+,” in Proceedings of the 51st Annual

Design Automation Conference, ser. DAC ’14, San Francisco, CA, USA: ACM, 2014,

pp. 1–6.

[12] J. López and R. Dahab, “High-Speed Software Multiplication in F2m,” English, in

Progress in Cryptology— INDOCRYPT 2000, ser. Lecture Notes in Computer Science,

B. Roy and E. Okamoto, Eds., vol. 1977, Springer Berlin Heidelberg, 2000, pp. 203–

212.

18

http://code.google.com/p/relic-toolkit/
http://inet.cpt.haw-hamburg.de/teaching/ss-2014/master-projekt/tobias_markmann_prj1.pdf
http://inet.cpt.haw-hamburg.de/teaching/ss-2014/master-projekt/tobias_markmann_prj1.pdf
http://bench.cr.yp.to
http://bench.cr.yp.to

[13] D. J. Bernstein, T. Lange, and R. Rezaeian Farashahi, “Binary Edwards Curves,” in

Cryptographic Hardware and Embedded Systems — CHES 2008, ser. Lecture Notes

in Computer Science, E. Oswald and P. Rohatgi, Eds., vol. 5154, Springer Berlin

Heidelberg, 2008, pp. 244–265.

[14] D. J. Bernstein and T. Lange, “Faster Addition and Doubling on Elliptic Curves,” in

Advances in Cryptology—ASIACRYPT 2007, ser. Lecture Notes in Computer Science,

K. Kurosawa, Ed., vol. 4833, Berlin, Heidelberg, Germany: Springer, 2007, pp. 29–50.

[15] H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, and F. Vercauteren,

Handbook of Elliptic and Hyperelliptic Curve Cryptography, ser. Discrete Mathemat-

ics and Its Applications. Abingdon, United Kingdom: Taylor & Francis, 2005.

[16] D. J. Bernstein, P. Birkner, M. Joye, T. Lange, and C. Peters, “Twisted Edwards Curves,”

in Progress in Cryptology — AFRICACRYPT 2008, ser. Lecture Notes in Computer

Science, S. Vaudenay, Ed., vol. 5023, Berlin, Heidelberg, Germany: Springer, 2008,

pp. 389–405.

[17] H. Hisil, K. K.-H. Wong, G. Carter, and E. Dawson, “Twisted Edwards Curves Revis-

ited,” in Advances in Cryptology—ASIACRYPT 2008, ser. Lecture Notes in Computer

Science, J. Pieprzyk, Ed., vol. 5350, Berlin, Heidelberg, Germany: Springer, 2008,

pp. 326–343.

[18] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, “High-speed high-

security signatures,” Journal of Cryptographic Engineering, vol. 2, no. 2, pp. 77–89,

Berlin, Heidelberg, Germany: Springer-Verlag, 2012.

[19] H. Cohen, A. Miyaji, and T. Ono, “Efficient Elliptic Curve Exponentiation Using

Mixed Coordinates,” in Advances in Cryptology — ASIACRYPT 1998, ser. Lecture

Notes in Computer Science, K. Ohta and D. Pei, Eds., vol. 1514, Berlin, Heidelberg,

Germany: Springer, 1998, pp. 51–65.

[20] K. Okeya and T. Takagi, “The Width-w NAF Method Provides Small Memory and

Fast Elliptic Scalar Multiplications Secure against Side Channel Attacks,” in Topics

in Cryptology — CT-RSA 2003, ser. Lecture Notes in Computer Science, M. Joye, Ed.,

vol. 2612, Berlin, Heidelberg, Germany: Springer, 2003, pp. 328–343.

[21] E. Baccelli, O. Hahm, M. Günes, M. Wählisch, and T. C. Schmidt, “RIOT OS: To-

wards an OS for the Internet of Things,” in Proc. of the 32nd IEEE INFOCOM. Poster,

Piscataway, NJ, USA: IEEE Press, 2013.

[22] P. J. Drongowski,Memory hierarchy and access time, 2013. [Online]. Available: http:
//sandsoftwaresound.net/raspberry-pi/raspberry-pi-gen-1/memory-
hierarchy/.

[23] L. Marin, “Differential Elliptic Point Addition in Twisted Edwards Curves,” in 27th In-

ternational Conference on Advanced Information Networking and ApplicationsWork-

shops (WAINA), Mar. 2013, pp. 1337–1342.

19

http://sandsoftwaresound.net/raspberry-pi/raspberry-pi-gen-1/memory-hierarchy/
http://sandsoftwaresound.net/raspberry-pi/raspberry-pi-gen-1/memory-hierarchy/
http://sandsoftwaresound.net/raspberry-pi/raspberry-pi-gen-1/memory-hierarchy/

[24] A. Höller, N. Druml, C. Kreiner, C. Steger, and T. Felicijan, “Hardware/Software

Co-Design of Elliptic-Curve Cryptography for Resource-Constrained Applications,”

in Proceedings of the 51st Annual Design Automation Conference, ser. DAC ’14, San

Francisco, CA, USA: ACM, 2014, pp. 207–213.

[25] A. Targhetta, D. Owen, and P. Gratz, “The Design Space of Ultra-low Energy Asym-

metric Cryptography,” in 2014 IEEE International Symposium on Performance Analy-

sis of Systems and Software (ISPASS), Piscataway, NJ, USA: IEEE, Mar. 2014, pp. 55–

65.

20

Appendices

Measurement Results

Benchmark Minimum Average Median Maximum SD (σ)

Short Weierstrass

add 9,914 10,072 9,957 11,461 329.77

sub 10,128 10,190 10,180.5 10,260 29.88

dbl 7,421 7,530 7,509 8,210 133.99

neg 271 274 273 279 1.83

mul 2,744,805 2,752,780 2,747,711.5 2,769,049 9,922.30

mul_gen 2,522,361 2,529,737 2,528,065 2,546,866 6,897.78

Twisted Edwards

add 7,876 7,952 7,928.5 8,592 125.21

sub 7,942 8,019 8,011.5 8,137 42.30

dbl 5,142 5,193 5,178.5 5,255 33.47

neg 258 264 262 282 5.39

mul 2,002,409 2,009,179 2,008,183 2,029,378 5,014.11

mul_gen 1,975,802 1,982,392 1,979,839.5 2,002,221 7,149.99

Twisted Edwards Extended

add 6,726 6,762 6,747 6,946 43.90

sub 6,913 6,951 6,945.5 7,084 31.88

dbl 5,763 5,815 5,813.5 5,917 30.56

neg 284 303 295.5 331 15.67

mul 1,979,384 1,983,242 1,982,975 2,002,056 3,921.36

mul_gen 1,963,029 1,969,771 1,965,886.5 1,982,699 8,481.99

Table 13: RELIC ECC microbenchmark result details for PC platform

21

Curve Minimum Average Median Maximum SD (σ)

Short Weierstrass 2,858,625 2,867,657 2,863,809.5 2,892,076 9,152.88

Twisted Edwards 2,231,510 2,238,981 2,236,059.5 2,261,128 7,375.31

Twisted Edwards

Extended

2,209,973 2,219,457 2,217,974 2,240,279 8,343.63

Table 14: RELIC ECDH microbenchmark result details for PC platform

Benchmark Minimum Average Median Maximum SD (σ)

Short Weierstrass

key extraction 2,570,981 2,590,048 2,586,961.5 2,624,979 12,739.45

σ generation 2,573,893 2,593,784 2,593,286 2,617,714 9,408.32

σ verification 6,457,207 6,590,112 6,597,665 6,708,968 58,185.01

Twisted Edwards

key extraction 2,153,245 2,178,755 2,178,520 2,197,218 10,844.20

σ generation 2,295,408 2,317,637 2,316,813 2,353,461 13,364.52

σ verification 5,191,710 5,285,968 5,277,239.5 5,365,183 39,903.24

Twisted Edwards Extended

key extraction 2,117,356 2,135,772 2,136,192.5 2,158,110 9,488.73

σ generation 2,245,462 2,266,173 2,264,449.5 2,302,786 12,780.58

σ verification 5,125,996 5,163,782 5,156,810 5,236,812 31,413.15

Table 15: vBNN-IBS benchmark result details for PC platform

22

Benchmark Minimum Average Median Maximum SD (σ)

Short Weierstrass

add 57,068 58,184 57,208.5 62,452 1,606.28

sub 58,055 58,673 58,134.5 65,192 1,448.97

dbl 39,158 39,587 39,220.5 45,821 1,231.07

neg 422 438 436 486 13.16

mul 12,817,426 12,857,835 12,840,762 12,917,203 31,440.31

mul_gen 12,243,690 12,270,165 12,263,303.5 12,312,997 21,611.93

Twisted Edwards

add 45,676 46,049 45,716 47,508 646.19

sub 45,974 46,509 46,022 48,852 886.52

dbl 29,114 29,339 29,186.5 30,746 465.09

neg 321 327 325 373 9.10

mul 10,375,774 10,403,706 10,390,606.5 10,471,579 28,575.17

mul_gen 10,217,779 10,246,793 10,235,363 10,339,442 29,500.41

Twisted Edwards Extended

add 38,815 39,200 38,917 40,882 602.20

sub 39,270 39,786 39,363.5 41,154 701.15

dbl 32,316 32,562 32,403.5 35,449 594.43

neg 500 514 506 569 17.66

mul 10,153,516 10,183,698 10,170,829 10,234,014 26,787.70

mul_gen 10,021,413 10,054,940 10,043,526 10,116,308 30,623.47

Table 16: RELIC ECC microbenchmark result details for Pi platform

Curve Minimum Average Median Maximum SD (σ)

Short Weierstrass 13,090,396 13,141,632 13,121,832 13,205,319 39,565.74

Twisted Edwards 10,975,403 11,001,186 10,993,576 11,077,250 24,525.14

Twisted Edwards

Extended

10,854,718 10,877,226 10,874,611 10,934,841 18,242.99

Table 17: RELIC ECDH microbenchmark result details for Pi platform

23

Benchmark Minimum Average Median Maximum SD (σ)

Short Weierstrass

key extraction 12,379,736 12,487,573 12,467,894 12,702,623 74,186.48

σ generation 12,377,568 12,473,793 12,455,732 12,648,606 66,124.68

σ verification 29,618,768 30,291,546 30,312,045 30,622,710 234,458.84

Twisted Edwards

key extraction 10,600,637 10,683,095 10,682,977 10,826,918 51,435.21

σ generation 10,958,818 11,065,373 11,059,678 11,183,270 63,285.55

σ verification 24,976,280 25,269,266 25,192,384.5 25,760,335 190,828.01

Twisted Edwards Extended

key extraction 10,404,731 10,530,146 10,522,690.5 10,678,465 64,064.06

σ generation 10,864,321 10,940,388 10,929,376.5 11,040,277 45,732.01

σ verification 24,449,496 24,903,077 24,897,385 25,176,369 187,517.30

Table 18: vBNN-IBS benchmark result details for Pi platform

24

	Introduction
	Operations and Nomenclature

	Related Work
	Background
	Implementing Edwards Curves for Constrained Devices
	Implementation of Twisted Edwards Curves
	Implementation of Extended Coordinates
	Implementation of Mixed Coordinate Scalar Multiplication

	Evaluation
	Elliptic Curve Microbenchmark
	Elliptic Curve Diffie–Hellman Macrobenchmark
	vBNN-IBS Benchmark
	Memory Footprint

	Conclusion
	References
	Appendices

