
Integrating BGPsec Validation with
the RTRlib and So�ware Routers

Colin Sames

Grundprojekt

Fakultät Technik und Informatik
Studiendepartment Informatik

Faculty of Engineering and Computer Science
Department of Computer Science

Colin Sames

Integrating BGPsec Validation with the RTRlib and Software
Routers

Integrating BGPsec Validation with the RTRlib and Software Routers eingereicht im Rahmen

des Grundprojekt

im Studiengang Master of Science Informatik

am Department Informatik

der Fakultät Technik und Informatik

der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Thomas C. Schmidt

Eingereicht am: July 11, 2018

Contents

1 Introduction 1

2 The Border Gateway Protocol 3
2.1 Protocol Description . 4

2.2 BGP Attack Surface . 6

2.2.1 BGP Update Manipulation . 6

2.2.2 Tra�c Abuse . 7

2.2.3 Real world examples . 8

3 Protection Methods for BGP 9
3.1 Route Origin Protection using RPKI . 9

3.2 BGPsec . 10

3.3 Existing Implementations . 13

3.4 Deployment . 15

4 BGPsec Implementation Concept for RTRlib and So�ware Routers 17
4.1 Conceptual Considerations . 18

4.2 Step 1: Negotiation . 19

4.3 Step 2: Data Preparation . 20

4.3.1 Algorithm Suite Identi�cation . 20

4.3.2 Required Parameters . 22

4.4 Step 3: Validation . 23

4.5 Step 4: Generating the Signature . 26

4.6 Work�ow . 29

5 Conclusion 31

iii

1 Introduction

The Internet is not a single network where everyone is directly connected with each other, but

instead is a large network of smaller networks. These networks are called Autonomous Systems

(ASes). All devices that are connected to the Internet are provided with an IP address. This IP

address is part of an IP address range, called IP pre�x. Such pre�xes are maintained by ASes,

where each unique pre�x is maintained by one AS only. If an Internet user connects to a certain

Internet service, the data tra�c between client and server is forwarded from AS to AS until it

reaches its destination. To forward data tra�c, an AS needs to know where the data tra�c

should be forwarded to next. To achieve this, dedicated routers within an AS implement the

Border Gateway Protocol (BGP) [1]. With this protocol, routers share updated and withdrawn IP

pre�xes with other autonomous systems. Since two ASes are not necessarily directly connected

to each other, they depend on intermediate ASes to forward the announcements to ASes they

otherwise would not be able to reach. Such announcements contain information about which

AS maintains a certain IP pre�x (origin), and how to reach it (AS path). Altering any of these

information, be it origin or AS path, may lead to wrongly forwarded tra�c. Although altering

the information is not always of malicious intent, it still causes undesirable e�ects. The results

are unreachable Internet services, online fraud or espionage.

BGP itself provides no security mechanisms to protect the contents of announcements.

Therefore, external protection mechanisms have been designed. Today, the deployed coun-

termeasures to route manipulation only cover the pre�x and its origin but not the AS path.

Veri�cation of the ownership is realized by the Resource Public Key Infrastructure (RPKI) [2]. It

provides a way for ASes to verify that the pre�x within an announcement indeed does belong

to the AS that originates the announcement. The client part of this RPKI feature called route

origin validation is implemented by the RTRlib [3]
1
.

With the origin being protected, the AS path is still vulnerable to manipulation. The solution

to secure the AS path is BGPsec [4], an extension to BGP which adds cryptographic validation

to the path attribute. The contents of an announcement that are to be protected are hashed

and then signed. If any of the protected information is changed, the hash changes accordingly

1http://rtrlib.realmv6.org/

1

http://rtrlib.realmv6.org/

1 Introduction

and validating the signature fails. Each AS that receives a BGPsec announcement can validate

that the AS path information was not altered by any AS along the forwarding chain. If route

origin validation and AS path validation are combined, route manipulation can be prevented.

This work introduces a concept to integrate BGPsec AS path validation into RTRlib, to

extend its current RPKI features. Additionally, considerations are made regarding o�ering this

functionality to software routers such as the FRRouting suite (FRR)
2
, which handles routing

interior and exterior routing of an AS. The result is an API that is designed to be lightweight

and intuitive to use.

Currently, there are only few BGPsec implementations that cover AS path validation [5].

While such implementations o�er the whole set of features that are speci�ed by the RFC, our

BGPsec implementation for RTRlib only provides the features that are necessary to validate and

sign BGPsec AS paths. The library also aims to stay independent from any routing suites, so

no operational features of BGPsec should be provided to prevent specialization with a certain

software.

The remainder of this report is structured as follows. A brief introduction to BGP as well

as its attack surface is given in Section 2. In Section 3, the current methods for securing BGP

contents are presented. Further, a concept for extending RTRlib with BGPsec functionality is

presented in Section 4. This work concludes in Section 5.

2https://frrouting.org/

2

https://frrouting.org/

2 The Border Gateway Protocol

Networks across the Internet that use BGP are called Autonomous Systems (AS), since they

autonomously manage their assigned Internet resources, such as IP address space, also called

IP pre�x. These autonomous systems exchange routing information with each other via BGP.

BGP in its current state was standardized by the Internet Engineering Task Force (IETF)1 in RFC

4271 [1]. In this section, a brief summary of the most important aspects of BGP are presented.

Additionally, the attack vector of BGP is examined.

An AS consists of one or more networks that are governed by a single institution and controls

routers that are dedicated to running BGP. An AS operates the IP pre�xes that are assigned

to it by itself. The assignment of IP pre�xes originates from the Internet Assigned Numbers

Authority (IANA)2. This institution passes IP pre�xes down to one of �ve Regional Internet

Registries (RIRs) [6] and from there they are distributed to ASes all over the world. Each RIR

covers a certain region on the globe, e.g., the European region falls under the responsibility of

RIPE NCC
3
. In addition to IP pre�xes, each AS receives a unique Autonomous System Number

(ASN) [7, 8]. This number is used to identify an AS anywhere on the Internet.

Although BGP is used to exchange routing information, it also resembles availability of

routers, reachability of ASes and the willingness to forwarding tra�c [9]. Two ASes that are

connected to each other hold a certain relationship. These kind of relationships are classi�ed

by the Gao-Rexford model [10]. This model suggests that two directly connected ASes have a

provider-customer or a peer-to-peer relationship [11–13]. In the �rst case, an AS (the customer)

pays another AS (the provider) for transit service, so that the customer is enabled connectivity

to the rest of the Internet. In the latter case, two ASes are treating each other as equals and

exchange tra�c, usually without money involved. This model holds true for most of the time,

but since internal policies are still up to the provider, some ASes might stray from this rule.

1https://www.ietf.org/
2https://www.iana.org/
3https://www.ripe.net/

3

https://www.ietf.org/
https://www.iana.org/
https://www.ripe.net/

2 The Border Gateway Protocol

2.1 Protocol Description

Each BGP message consists of a header and a message content. There are four types of

BGP messages: open, update, keepalive and noti�cation [1, 12]. The open message contains

information about con�guration and capabilities of the router. The update message contains

routing information such as announcements or withdrawals of ownership of IP pre�xes.

Keepalive messages are used to maintain a connection with a peering router. The noti�cation

message informs a peering router about any errors that occur during a session.

Before proceeding with the protocol procedure, the update message is described in more

detail. The update message contains the propagated routing information such as the pre�x(es)4

and the AS path. The announced pre�x covers the IP pre�x of the origin AS. The AS path is a

sequence of ASNs that indicates, along which path the update message was forwarded through

the Internet. This way an AS can tell, how to reach the announced pre�x. The origin AS, i.e.,

the holder of the announced IP pre�x, can always be found at the rightmost position of the

AS path. In literature, the AS path is often written as (65522, 65511), with AS 65511 being the

origin AS. The AS path length is the amount of elements in the path, which is 2 in this case.

Figure 2.1 shows, how an update message looks like.

Figure 2.1: A BGP update message. The AS path and the pre�x information are

underlined.
5

After speaker and receiver have established a TCP connection, they both send an open

message. In case both routers agree with the contents of the open message, a keepalive is sent.

If at any time during the session a router detects an error or incompatibility, it may send a

noti�cation message with the occurred error and then close the connection. As long as no

errors occur, both routers may send update messages which contain the routing information.

4

We will further only use the singular form pre�x and imply that the usage of multiple pre�xes is also possible

5

Screenshot taken from https://www.cloudshark.org/captures/0216380f8421

4

https://www.cloudshark.org/captures/0216380f8421

2 The Border Gateway Protocol

To terminate the session, a router may send a noti�cation message with an appropriate error

code and then close the TCP connection [1, 12]. As an example, Figure 2.2 shows the message

sequence of two routers.

ReceiverSender

UPDATE

UPDATE

NOTIFICATION

KEEPALIVE

OPEN

NOTIFICATION

TCP

Figure 2.2: After a TCP connection is established, both routers send an open message.

If they agree with the con�gurations, they send a keepalive message. They

now send updates as they please. To keep the connection up, they send

keepalive messages. Before closing the connection, a noti�cation message

is sent.

When a speaker receives an update message, various conditions are checked before the

contained new route is added to the routers routing table [12]. At �rst, policy �lters are applied

to the route. If the route is not �ltered, the router will check, whether or not the received route

to the announced pre�x is better than the currently held route. Therefore, multiple conditions

such as lowest AS path length are evaluated. If the new route is considered better than the old

one, the old route is replaced.

Before a router forwards or sends the BGP update, it has to prepend its own ASN to the AS

path within the message. The own ASN is always prepended to the leftmost position of the AS

path, as shown in Figure 2.3.

5

2 The Border Gateway Protocol

AS 1 AS 4

(1)

(2, 1)

(3, 2, 1)

AS 3 AS 2

Figure 2.3: AS 1 sends a BGP update to AS 2. AS 2 prepends its own AS number to

the AS path and forwards it to AS 3.

2.2 BGP A�ack Surface

The Border Gateway Protocol is, by design, not robust to attacks. It is very prone to miscon�g-

uration and the transported information can be manipulated without much e�ort. This section

covers the most common attacks that can be launched against BGP.

2.2.1 BGP Update Manipulation

To manipulate Internet routing, three common techniques exist [14]. Depending on the

technique, a new BGP update needs to be forged and propagated, or a received update is

manipulated and then forwarded to other ASes. In the following examples, AS X is an AS that

tries to hijack the tra�c of AS 1. Hijacking the tra�c of AS 1 means that AS X tries to route

the tra�c of AS 1 via its own AS.

The �rst way of manipulation is to claim ownership of an IP pre�x, even though this pre�x

belongs to another AS. Therefore, AS X has to propagate an update that announces the IP

pre�x of AS 1 with AS X as origin AS. Without external mechanisms, other routers have no

way of telling that the announced pre�x (controlled by AS 1) does not actually belong to the

originator of the update (AS X). Because of this, a forged announcement might be accepted by

a receiving router.

The second way to manipulate Internet routing is by announcing a pre�x that is more

speci�c than the pre�x of another AS. As an example, the pre�x 1.2.3.0/25 is more speci�c than

the pre�x 1.2.3.0/24. BGP routers are con�gured to accept announcements which contain IP

pre�xes that are more speci�c than the pre�xes that are currently held within their routing

table. Assume that AS 1 controls the pre�x 1.2.3.0/24 and the routing table of AS 2 contains

that pre�x. AS X now tries to hijack the tra�c of AS 1 by forging an update that contains

6

2 The Border Gateway Protocol

the pre�x 1.2.3.0/25 and AS X as originator. If AS 2 now receives the bogus announcement of

AS X, it determines that the announced pre�x is more speci�c than the current entry. AS 2

overwrites the entry of AS 1 with the new one, even though the propagated pre�x does not

belong to AS X.

Routers are also con�gured to prefer shorter routes over longer routes. Thus, the AS path is

target to manipulation as well [13]. This leads to the third technique. If the AS path within an

announcement is arti�cially elongated, it might be rejected by a router that holds an entry

with a shorter path to the announced pre�x. An AS path may also be manipulated to suggest

routing via the own AS, or making it more attractive to other routers by shortening it. Assume

that AS 5 contains the entry with the AS path (4,3,2,1) for the pre�x of AS 1. AS X can try

to manipulate the forwarded tra�c to AS 1 by claiming that it knows a shorter path to the

victim. Therefore, AS X forges an update that contains the wrong but shorter AS path (X,1). If

AS 5 receives such an update, the route selection algorithm determines that the route via AS

X is shorter and replaces the current path with the new path. AS 5 now forwards the tra�c

destined for AS 1 via AS X.

Any of these methods may be used with malicious intentions, but are also often cause of

miscon�gured routers. Because of this, directed attacks and innocent miscon�gurations are

hard to distinguish. Nevertheless, it is possible to cause trouble for other ASes by, e.g., making

them unreachable [15, 16]. The next section presents the e�ects of BGP update manipulation.

2.2.2 Tra�ic Abuse

When an AS successfully gains control over the pre�x of another AS, there are three malicious

ways to deal with the hijacked tra�c [17].

The �rst one is Blackholing. The attacking AS simply drops all hijacked tra�c, instead of

forwarding it. As a result, the AS whose pre�x has been hijacked is not reachable for potentially

a lot of Internet users. This is a Denial of Service (DoS) [18] attack on the victim AS.

The second option of treating the hijacked tra�c is Interception. When intercepting tra�c,

the hijacking AS proceeds to forward the tra�c to the original destination. This way, the

attack is hard to discover since there are hardly any anomalies for the victim to discover. Such

an attack must be carefully planned though. The hijacking AS still requires an intact path to

the victim AS, otherwise the forwarded tra�c would not reach the target. If maintaining a

path to the victim is accomplished, the tra�c is reaching its target, although it is routed via a

di�erent path. This attack can be used to eavesdrop on the tra�c of Internet users.

The last of the three options is Impersonating. The attacker responds to the tra�c that was

hijacked. An Internet user that is responded to by the attacker might not notice any di�erence.

7

2 The Border Gateway Protocol

The received responses appear to come from the Internet service within the AS where the

requests were initially sent to. This way, an attacker can, e.g., mimic a website and trick users

to reveal sensitive personal information such as credit card numbers [14].

Often, the goal of an attacker is to misuse the hijacked tra�c by sending spam emails. The

email protocol SMTP [19] requires a TCP connection, thus the spammer requires the control

over an IP pre�x, if only for a short amount of time. A soon as the attacker obtains control, the

emails are sent. After sending all emails, the spammer can forget about the hijacked pre�x

since his goal has been achieved. At some point, the victim AS will regain control over the

pre�x, yet the emails are already sent.

2.2.3 Real world examples

There are numerous examples of BGP attacks all over the world. It is impossible to create a

complete list of all attacks as some go unnoticed or only last for a few minutes [20].

There are some infamous BGP attacks that have been made public. One very well-known

attack is the YouTube hijack from 2008 [21]. On the 24th of February, the AS Pakistan Telekom

claimed ownership of an IP pre�x belonging to the video hosting service. The announcement

spread across the Internet and YouTube was left unaccessible for about two hours.

Another, more recent case happened on April 26 in 2017. The AS Rostelecom announced

50 pre�xes of other autonomous systems [22]. Among the victims were ASes like Visa and

MasterCard. The whole incident lasted only a couple of minutes and it is unclear whether or

not it was done on purpose.

More well-known incident are the AS 7007 incident in 1997 [23], allegedly caused by mis-

con�guration and Googles May 2005 Outage [24].

8

3 Protection Methods for BGP

The two most important information within a BGP update are the origin AS of a pre�x as well

as the AS path. Both are not protected by BGP and must therefore be secured with external

mechanisms. Such mechanisms exist for both the origin AS and the AS path and are described

in this section.

3.1 Route Origin Protection using RPKI

The Resource Public Key Infrastructure (RPKI) [2] is dedicated to protecting the origin AS

information. RPKI holds cryptographically singed objects that contain three information: a

pre�x, a maximum pre�x length and the AS that owns the pre�x, the origin AS. These objects

are called Route Origin Authorizations (ROAs) [25]. They are cryptographically veri�able and

are stored in public repositories. To prevent the e�ort of validation for the routers, ROAs

are pre-validated and then stored in cache servers. Communication between router and cache

server is established by the RPKI to Router (RTR) protocol [26].

ROAs are cryptographic certi�cates that are created by the corresponding RIR of an AS.

Each RIR holds its own root certi�cate. Figure 3.1 shows the hierarchy after which certi�cates

are handed out. A root certi�cate is used to sign certi�cates of ASes within their region. These

certi�cates are the ROAs that hold information about the assigned pre�xes, length and origin

AS. Note that there are per se no invalid ROAs. All ROAs that are held by the RPKI cache

servers are validated by the corresponding RIR.

When a router receives a BGP update, it can validate the contained origin AS and pre�x. This

is done by comparing the pre�x-length-AS triplet within the update with the triplet contained

in the ROA. There are three outcomes to this validation [16].

1. The announcement is valid if it is covered by at least one ROA

2. The announcement is invalid if it is announced by an unauthorized AS (i.e., the AS does

not match the ROA entry for the announced pre�x) or is more speci�c (the announced

pre�x is more speci�c than the pre�x of a matching ROA)

3. The ROA is not found and the status therefore unknown

9

3 Protection Methods for BGP

ARIN LACNIC

ISP 2

AFRINICAPNICRIPE
NCC

Root Cert Root CertRoot Cert Root Cert Root Cert

ROA

ISP 1

ROA

ISP 3

ROA

Figure 3.1: The architecture after which certi�cates are passed down. This structure

is similar to the resource allocation hierarchy of IP pre�xes.

Based on this validation, the router chooses how to proceed with the BGP update. It is not

mandatory to accept a valid update, nor is it mandatory to deny an invalid update. This is

completely up to the ASes routing policy [2, 16, 27]. The process of validation is illustrated in

Figure 3.2.

AS 1 AS 2

AS X

AS 3

1.2.3.128/24
(1)

1.2.3.128/24
(2, 1)

1.2.3.128/24
(X)

ROA 1.2.3.128/24, AS X was not found

ROA 1.2.3.128/24, AS 1 was found

RPKI cache

Figure 3.2: AS 1 propagates its routing information. AS X tries to claim the pre�x of

AS 1 for himself. AS 3 now receives two updates and validates both by

requesting their ROA entries from the RPKI. Since there is only a ROA for

(1.2.3.128/24, AS 1), the bogus update from AS X must be invalid.

While RPKI helps protecting the origin AS, the AS path is still vulnerable. The following

section will introduce a way of securing this attribute.

3.2 BGPsec

BGPsec is designed as an extension for BGP that provides AS path protection. The protection

is achieved by cryptographically signing each element of the AS path. The protocol was

developed by the IETF, the RFC 8205 [4] was published in 2017. Along with this RFC, additional

10

3 Protection Methods for BGP

documents were published that cover, e.g., algorithms, key and signature formats [28] or

BGPsec router certi�cates [29].

The main feature of BGPsec is the replacement of the AS_PATH with the BGPsec_PATH at-

tribute. While the AS_PATH holds the AS path information of a BGP update, the BGPsec_PATH

of a BGPsec update additionally includes cryptographic signatures for each AS path element.

BGPsec utilizes public-private-key cryptography [30] to sign and validate the AS path of update

messages. The private key is stored and kept secret on the router, while the public key is stored

inside the RPKI. BGPsec capable routers are able to validate, whether the AS path of a received

update message has been tempered with. The private key is used to sign the contents of a

BGPsec update message. Therefore, all information that need to be protected are hashed and

the resulting digest is then signed with the private key. The resulting signature is appended

to the BGPsec_PATH of the BGPsec update, which can then be send or forwarded to peering

routers.

There are two very important cryptographic properties of a signature. One is authentication.

Authentication proves ownership of the private key. If a signature is created with a certain

private key, it can only be successfully validated by the public key that belongs to that private

key. Validating a signature with anything other than the appropriate public key will fail. If

a signature is successfully validated, it is certain that this signature was created by the one

person or device that holds the private key.

A second property of signing is integrity. This means that anyone is prevented from temper-

ing with the signed contents. For validating a signature, the original message, in this case the

hashed content, is required. If a malicious AS changes any of the protected information, the

calculated digest would consequently change as well. The validation of a signature with the

wrong digest leads to an invalid result.

Before two routers are able to exchange BGPsec updates, they �rst need to negotiate BGPsec

support. If one of the two participants does not speak BGPsec (or chooses not to), the session

may continue, yet only BGP messages are exchanged between them for the rest of the session.

Should both routers agree on BGPsec support, the sending router can begin building the

BGPsec update message. It constructs the BGPsec_PATH and inserts its own ASN, the pre�x,

a Subject Key Identi�er (SKI) and other information into it. The SKI is used to later identify

the public key of a router. A complete list of all information can be found in Section 4.3.2.

These information are hashed, signed and then appended to the BGPsec_PATH attribute. The

update is then send to the target peer, as shown in Figure 3.3. The detailed contents of the

BGPsec_PATH attribute can be seen in Figure 3.4.

11

3 Protection Methods for BGP

AS 1 AS 2 AS 3
Target AS: 2
Sig(
 Prefix,
 AS 1,
 Target AS 2,
 ...
)
Prefix

1.2.3.4/24

Target AS: 3
Sig(
 Sig(
 Prefix,
 AS 1,
 Target AS 2,
 ...),
 Prefix,
 AS 2,
 Target AS 3,
 ...
)
Prefix

(1) (2, 1)

Figure 3.3: AS 1 creates a BGPsec update. Contained is the signature over the pre�x,

its ASN and other information. AS 2 adds itself to the AS path, updates

the target AS �eld and creates a signature over all previous signatures and

its own information.

As soon as the peering router receives the update message, it starts the validation process.

Validation begins with the last appended signature. The router takes the SKI that was last

appended to the update message and fetches the appropriate public key from the RPKI. The

router then calculates the hash with the required information. Using the resulting digest and

the public key, the last appended signature can be validated. If the signature is valid, the router

continues by repeating the whole procedure with the second to last signature. The router

proceeds until every signature inside the update message was validated this way. If a signature

is not successfully validated, the process ends prematurely. Should all signatures be valid, the

update itself is. If there is at least one invalid signature, the update is considered not valid. The

process of AS path validation is illustrated in Figure 3.5.

12

3 Protection Methods for BGP

BGPsec_PATH
Secure Path

Signature_Block

Secure Path
Secure_Path Length

Secure_Path Segments

Secure_Path Segment
pCount

Confed_Segment flag

AS Number

Signature_Block
Signaure_Block Length

Algorithm Suite Identifier

Signature Segments

Signature Segment
Subject Key Identifier (SKI)

Signature Length

Signature

Figure 3.4: Structure of the BGPsec_PATH attribute in an UML like fashion. Both

the Secure Path as well as the Signature_Block may contain multiple

Secure_Path Segments and Signature Segments.

3.3 Existing Implementations

One library that implements the router part of RPKI features is the RTRlib
1
. It provides two

core features:

• Implementation of the client part of the RTR protocol version 1

• Route Origin Validation

The RTR protocol allows for communication between router and cache server. The library

initializes and maintains such a connection. If a connection is established, RTRlib extracts the

entries of prevalidated ROAs from the cache server and stores them locally. The entries are

synchronized with the cache server to keep them up to date. Fetching router keys is a feature

of RTR version 1 [31]. When the router receives an update, it can pass the pre�x-length-AS

triplet to the RTRlib, which will perform route origin validation and then return the result.

RTRlib is a C library that provides an API for these functionalities, so any application can

include it and make use of RTR as well as route origin validation.

Some tools that are built upon RTRlib are a web browser extension (see Figure 3.6) that

allows the user to view the validity status on the currently visited website [32], rpki-read, a

1https://github.com/rtrlib/rtrlib

13

https://github.com/rtrlib/rtrlib

3 Protection Methods for BGP

Signature Segment 2

Secure_Path Segment 2

Signature Segment 1

Secure_Path Segment 1

Algorithm Suite Identifier

AFI

SAFI

NLRI

Valid?

Calculate digest

Validate
Signature

Router Key 2 Signature 2

No

Valid?

Calculate digest

Validate
Signature

Router Key 1 Signature 1

No

Yes

AS path
valid

AS path
not valid

Yes

Figure 3.5: On the left is the BGPsec_PATH attribute with the AS path (2, 1). On the

right is the AS path validation process of the receiving AS 3. The process

is slightly simpli�ed for the sake of illustration.

real-time RPKI dashboard, or REST BGP Validator (RBV), a RESTful interface that o�ers RPKI

validation over a web interface. The code is available in the RTRlib GitHub repository
2
.

Besides RTRlib, other software exists that implements the RTR protocol, such as the RPKI

Validator3
, which is developed by RIPE NCC. Another implementation is provided with the

RPKI Toolkit, developed by Dragon Research Labs
4
.

BGP is implemented by routing suites such as FRRouting (FRR) or BIRD
5
. FRR, a fork of

Quagga
6
, is a routing suite that supports an array of routing protocols for inter- and intra-

domain routing. AS operators use FRR to con�gure routers to handle routing for their AS and

apply policies to �lter routes. FRR also makes use of RTRlib to implement RPKI functionality.

2https://github.com/rtrlib
3https://github.com/RIPE-NCC/rpki-validator-3
4https://github.com/dragonresearch/rpki.net
5http://bird.network.cz/
6https://www.quagga.net/

14

https://github.com/rtrlib
https://github.com/RIPE-NCC/rpki-validator-3
https://github.com/dragonresearch/rpki.net
http://bird.network.cz/
https://www.quagga.net/

3 Protection Methods for BGP

Figure 3.6: The earth-shaped symbol at the top right signals that the website is covered

by a ROA. Green means valid, yellow means not found and red means

invalid.

BIRD is similar to FRR. It also implements routing protocols and includes RTRlib to o�er

route origin validation support.

3.4 Deployment

The deployment of RPKI throughout the Internet is still underway. In 2015, research yields that

there is a slow but steady increase of ROA coverage for IPv4 pre�xes [33]. While the coverage

was at about 2% in 2012, the number grew to about 5% in 2014. Later research shows that the

ROA coverage in 2015 increased to about 6% [34]. The continuous increase of covered unique

IPv4 pre�x/origin pairs is observed by the NIST RPKI Monitor [35], so that meanwhile almost

10% of all announced IPv4 pre�xes are covered by a ROA (2nd of May 2018) [36]. Yet, those

ASes who do use RPKI do not necessarily �lter invalid route announcements [37]. This may

be due to internal routing policies.

As for BGPsec deployment, one problem is transitioning from BGP to BGPsec [38]. Routers

will have to run performance critical actions, such as cryptographic validations. These actions

must be executed with every BGPsec update message that arrives at the router, resulting in

high overhead. Presumably, hardware upgrades must occur.

15

3 Protection Methods for BGP

Another concern is broad deployment across the Internet. BGPsec works in a way that

update messages only keep their cryptographic properties, as long as all routers along the path

speak BGPsec. One non-BGPsec router is enough to break the chain of forwarding a protected

AS path. ASes might hesitate to transition to BGPsec, while no one else does. Goldberg speaks

of a “chicken-and-egg problem” [38] for AS operators.

16

4 BGPsec Implementation Concept for
RTRlib and So�ware Routers

BGPsec AS path validation is not yet part of RTRlib, so AS paths cannot be validated there.

The goal is to add this validation feature to RTRlib. While the operational part of BGPsec is

covered by a software router such as FRR, validation functionality is handled by RTRlib. The

procedure of AS path validation should mimic the procedure of origin validation in RTRlib

(see Figure 4.1).

RTRlib

VALIDATE

Router Cache

(PFX, LEN, ASN)

STATUS

FETCH

ROAS

RTRlib

VALIDATE

Router PKI

BGPSEC ATTRS

STATUS

FETCH

ROUTER KEYS

Origin Validation AS Path Validation

Figure 4.1: Left: the sequence of events when performing origin AS validation. Right:

the sequence when validating an AS path. Both sequences are strongly

simpli�ed.

RTRlib aims to stay independent from any routing suite. The RPKI features of the library

should be available to as many applications as possible, helping the deployment of RPKI even

further. To make matters more easy to explain at some parts, FRR is chosen as an example for

a software routing suite, but any other routing suite would serve just as well. There are a few

reasons, why RTRlib and FRR were chosen for a BGPsec AS path validation implementation.

First, RTRlib implements RTR version 1, which supports fetching and storing router keys. This

is an essential feature for AS path validation. Second, because RTRlib is open source, free

and widely acknowledged, it is likely to be picked up by anyone interested in using RPKI

17

4 BGPsec Implementation Concept for RTRlib and Software Routers

functionalities. A third, and more subjective reason is that the author is familiar with RTRlib

as well as FRR.

There are two scopes to the implementation. One scope covers the operational functionalities

such as negotiating BGPsec support, parsing and sending updates, etc. This is attributed to

the routing suite. The other scope is the validation and signing process. These tasks will be

carried out by RTRlib. In detail, there are four steps to successfully validate a BGPsec update.

1. Negotiate BGPsec support with a peering router

2. Parse, prepare and pass the data from the update to RTRlib

3. Validate the data and return the result

4. Sign the AS path and generate a BGPsec update.

Steps 1 and 2 need to be executed by the software router and are therefore implemented

there. Step 3 is handled by RTRlib. The last step takes place in both RTRlib and the router.

Sections 4.2 to 4.5 will cover the four steps in order.

4.1 Conceptual Considerations

Currently, RTRlib implements route origin validation. This functionality can be used by any

application that includes the library without implementing any validation features itself. AS

path validation aims for the same goal. Therefore, all necessary validation steps need to take

place within RTRlib. The software router should not need to do any validation and only

prepares the data in order to pass it to RTRlib. This way, a clear line can be drawn between

what has to be done on side of the router, and what falls under the responsibility of RTRlib. An

additional bene�t to this approach is that the routing software does not need to include any

libraries that are required for cryptographic operations itself. Instead it lets RTRlib include

necessary libraries. Having a routing suite like FRR include some libraries that are already

included by RTRlib just to perform AS path validation would be redundant.

Since AS path validation support for the routing suite depends on RTRlib, this feature should

be checked at compile time. If the RTRlib version does not support AS path validation in

general, BGPsec support for the router must be omitted. Otherwise, the router can make use

of this feature.

Another consideration regards RPKI validation. RFC 8207 suggests, that BGPsec speakers

should, in addition to AS path validation, also perform route origin validation [39]. A valid AS

path does not mean that the announced pre�x belongs to the origin AS. If validation of the

origin AS is performed, it should be done before AS path validation, for the simple reason of

18

4 BGPsec Implementation Concept for RTRlib and Software Routers

performance. If the origin validation already concludes that the announcement is invalid, there

is no need to do a performance critical AS path validation on top of that. For this concept, route

origin validation is implicitly handled and therefore not explicitly depicted in any graphics.

With this settled, the aforementioned four steps are now described.

4.2 Step 1: Negotiation

Before BGPsec updates can be exchanged, a router must ensure that a peering router is able to

speak BGPsec. BGPsec support is negotiated via the capability �eld of a BGP open message.

A speaker may send an open message where the capability �eld contains a capability with

code 7, which indicates BGPsec support. A payload is appended to the capability, containing

BGPsec speci�c settings.

Current BGP implementations will need to extend capability parsing for code 7 and its

payload. The payload contains information about whether or not a router wants to send or

receive BGPsec updates and which Address Family Identi�er (AFI) [40] it supports. It is either

IPv4 or IPv6. As an example, a router may choose that it can send BGPsec updates for both

IPv4 and IPv6. It propagates these information to a peering router by adding two capabilities

to the open message.

Version = 0, Direction = 1, AFI = 1

Version = 0, Direction = 1, AFI = 2

The �rst capability tells the peering router that the sending router is capable to send BGPsec

updates (direction set to 1) with IPv4 pre�xes (AFI set to 1). The second capability tells the

same about IPv6 pre�xes (AFI set to 2).

The peering routers open message contains two capabilities as well.

Version = 0, Direction = 0, AFI = 1

Version = 0, Direction = 0, AFI = 2

This time, the direction is set to 0, which indicates that the router can receive BGPsec updates.

Again, both AFI information must be sent via separate capabilities. If any router chooses not

to support a certain AFI, the respective capability is omitted. Should both routers not �nd a

common denominator, such as that a sending router only sends IPv6 pre�xes, yet the peering

router only wants to receive IPv4 pre�xes, BGPsec updates cannot be sent and instead BGP

must be used.

Figure 4.2 illustrates the whole process of capability negotiation.

Next, a received BGPsec update needs to be parsed and the included data needs to be prepared

before it is passed to RTRlib.

19

4 BGPsec Implementation Concept for RTRlib and Software Routers

Router

PARSE
CAPABILITIES

Peering
Router

SEND CAPABILITIES

SEND CAPABILITIES

Capability Negotiation

FORWARD
BGPSEC UPDATE

Figure 4.2: Before a router receives BGPsec updates, the capabilities must be ex-

changed via the open message. After a successful negotiation, BGPsec

updates can be exchanged.

4.3 Step 2: Data Preparation

As soon as a BGPsec update arrives at the router, the router must perform an array of checks

to make sure that the update is of integrity. The RFC speci�es conditions that need to be met

before further processing an update. A few examples are that there must be one Signature

Segment for each Secure_Path Segment, or that the BGPsec update must not contain the BGP

speci�c AS_PATH attribute. Because such checks are not part of the validation process, they

fall under the responsibility of the software router.

An extra step that the routing suite needs to perform is checking, whether RTRlib supports

the algorithms that were used to perform hashing and signing for the received update.

4.3.1 Algorithm Suite Identification

A BGPsec update contains an Algorithm Suite Identi�er. This identi�er tells an application,

which hashing and signing algorithms were used. Any hashing or signing operations must be

performed with the same algorithms that were used by the origin AS. Before any validation

process is triggered, the software router needs to make sure that RTRlib supports the propagated

20

4 BGPsec Implementation Concept for RTRlib and Software Routers

algorithm suite. If RTRlib is not capable of performing the validation, it would be unnecessary

to prepare the data for it. Thus, RTRlib must be able to expose all of its supported algorithm

suites to an application. So in case RTRlib does not support a certain algorithm suite, FRR or

any other software is able to check this. Such a check can be made by invoking one of two

RTRlib functions.

Listing 4.1: Function headers of the algorithm support functions. The first one takes the

algorithm suite identifier and returns 0 or 1, if supported or not. The second function returns

a pointer to the supported suites and the amount of algorithm suites.

1 int bgpsec_check_algorithm_suite(int alg_suite);
2

3 int bgpsec_get_algorithm_suites(char *suites);

Listing 4.1 shows the header of the function that takes the algorithm suite identi�er as

parameter and returns 0 if the suite is supported and 1, if not. It might be more suitable for a

routing suite like FRR to initially get all supported routing suites at once. To satisfy this need,

RTRlib o�ers the function in line 3. It takes a pointer and sets its address to a char pointer

that holds the identi�er of all supported algorithm suites. The return value is the amount of

suites the library supports. The routing suite can then check, if an announced algorithm suite

identi�er is stored at one of the addresses the pointer points to, instead of calling a function

each time an update arrives.

An advantage of having these functions instead of statically linking the supported algorithm

suites is that RTRlib could be exchanged with a new version that includes more suites, without

having to rebuild the routing suite e.g., FRR. Restarting the suite is su�cient to adapt to the

newly supported algorithm suites.

If the router receives a BGPsec update, it extracts the algorithm suite identi�er and asks

RTRlib if the algorithm is supported. If so, the software router can initiate the validation

process. If not, the router must downgrade the BGPsec update to a normal BGP update because

it has no way of validating its contents.

21

4 BGPsec Implementation Concept for RTRlib and Software Routers

4.3.2 Required Parameters

Besides the algorithm suite identi�er, there are various information required for AS path

validation. Except for the target AS, they are all contained within the BGPsec update. Below is

a list of all necessary parameters.

• Target AS

• All Signature Segments

– SKI

– Signature Length

– Signature

• All Secure_Path Segments

– pCount

– Flags

– AS Number

• Algorithm Suite Identi�er

• AFI

• SAFI

• NLRI

Before the information are hashed, they have to be ordered in a manner which is speci�ed

by the RFC. For signing as well as validating, the order is identical. When the data is arranged,

all the information (except for the Signature Segment appended last) are hashed with the

algorithm speci�ed by the algorithm suite identi�er. The resulting digest is the message that

was signed by the AS from where the update came last. Both sender and receiver now have

the same message, which is the precondition for asymmetric signature validation.

For RTRlib to be able to calculate this message, all these information must be made available

to the library. Therefore, the routing suite must extract the information from the update

and store them in RTRlib data structures. Aligning the data as a byte stream beforehand is

inconvenient because this way the data is hard to distinguish on the side of RTRlib and would

have to be parsed again. As soon as all the data is extracted and stored in RTRlib structures, it

is passed to RTRlib. A proposal for these structures are presented in Listing 4.2.

Listing 4.2: Strucures for storing the BGPsec update data and the function for passing the

data.

22

4 BGPsec Implementation Concept for RTRlib and Software Routers

1 struct signature_seg {
2 uint8_t ski[];
3 uint16_t sig_len;
4 uint8_t signature[];
5 };
6

7 struct secure_path_seg {
8 uint8_t pcount;
9 uint8_t flags;

10 uint32_t asn;
11 };
12

13 struct bgpsec_data {
14 uint16_t target_as;
15 uint8_t alg_suite_id;
16 uint16_t afi;
17 uint8_t safi;
18 uint8_t nlri[];
19 uint16_t nlri_len;
20 };
21

22 int bgpsec_validate_as_path(...);

The structs in line 1 and 7 resemble the Signature Segment and the Secure_Path Segment

as speci�ed by the RFC (compare Figure 3.4). Storing the length of the SKI in the Signature

Segment is not necessary, since it has a static size of 20 bytes. The length of the signature

depends on the algorithm used to create it, hence the signature length �eld is mandatory to

support future algorithm suites. The struct in line 13 contains the rest of the information, such

as the AFI or the pre�x. All these information are later passed to the AS path validation function

of RTRlib. Line 22 shows the header of the function that receives the data. It is described in

more detail in the next section. Figure 4.3 summarizes the process of data preparation.

The validation process itself in covered in the next section.

4.4 Step 3: Validation

To perform AS path validation, BGPsec relies on two di�erent algorithms [28]. With the

current algorithm suite, the information from Section 4.3.2 must be hashed with the SHA-256

23

4 BGPsec Implementation Concept for RTRlib and Software Routers

Router

STORE DATA IN
RTRLIB STRUCTS

Peering
Router RTRlib

FORWARD
BGPSEC UPDATE

Prepare and Pass Data

PASS STRUCTS VIA
bgpsec_validate_as_path(...)

Figure 4.3: A peering router forwards a BGPsec update. The receiving router extracts

the data and stores them in RTRlib structures. These structures are then

passed to RTRlib.

algorithm [41]. The obtained digest is then signed using the Elliptic Curve Digital Signature

Algorithm (ECDSA) with the P-256 curve [42].

As soon as RTRlib receives the parameters, the validation process can begin. Algorithm 1

shows how the procedure could look like.

Algorithm 1 Validation Loop

1: procedure bgpsec_validate_as_path(bgpsec_data)
2: update_status
3: for i < SKI_count do
4: router_keys[i]← get_key(bgpsec_data.ski[i])

5: for i < AS_hops do
6: digest← calc_digest(bgpsec_data)
7: sig ← bgpsec_data.sig[i]
8: update_status← validate_signature(sig, digest, router_keys[i])
9: if update_status = false then

10: break

11: if update_status = true then
12: break

The update_status in line 2 is the current status of the update at all times during the

procedure. In line 3 and 4, an iteration over all SKIs takes place to get the appropriate router

keys, which are then stored in the router_keys array. The keys are acquired beforehand so

RTRlib can make sure that all router keys are present. In case a router key is missing, the AS

24

4 BGPsec Implementation Concept for RTRlib and Software Routers

path cannot be fully validated and thus, continuing the validation procedure would be a waste

of processing power. In line 6, the for-loop that handles AS path validation is started. The

loop is repeated for every AS hop, i.e., every time the BGPsec update was forwarded. Within

the loop, the digest for the currently processed signature gets calculated in line 7. Therefore,

the whole BGPsec update data is required. Next, in line 8, the signature that is about to be

validated is stored in sig. This variable is passed together with the digest and the appropriate

router key to the validate_signature function in line 9 and the result is returned. If the

result is false in line 10, the signature was not valid and the loop breaks. At this point, the

whole update is considered not valid. If the result is true, the for-loop continues. If the loop

�nishes and the result is true, the BGPsec update is considered valid. With this, the validation

procedure on side of RTRlib is �nished and the result is returned to the routing suite.

As for route origin validation, RTRlib aims to provide a single function that has to be called

by the routing suite in order to receive the validation result of the AS path. The header of the

function is listed in Listing 4.3.

25

4 BGPsec Implementation Concept for RTRlib and Software Routers

Listing 4.3: The function header of the AS path validation function.

1 int bgpsec_validate_as_path(struct bgpsec_data *data,
2 struct signature_seg *sig_segs,
3 struct secure_path_seg *sec_paths,
4 const unsigned int as_hops);

The Signature Segments and Secure_Path Segments are stored at memory locations that

are accessible through pointers, one segment for each AS hop, therefore the hop count must

be passed as well. The segments must be ordered from last to �rst segment. This means that

the signature that is appended last to the update is at the �rst position of the memory. The

signature that was created by the origin AS is at the last position. This ordering also applies to

the Secure_Path segments. If desired in the future, operators may be able specify the sorting

order by passing a �ag to the function. To prevent breaking the API with this, a wrapper

function that contains a default sorting option might be used for the validation function. To

determine the outcome of the function, it returns an integer with a status code. Positive values

signal a completed validation (0 = update is valid, 1 = update is not valid). Negative values

indicate that an error occurred and there is no validation result. Depending on the error, a

di�erent negative value is returned.

Figure 4.4 shows a schematic diagram of validating an AS path.

The next step describes signing process and the creation of a BGPsec update.

4.5 Step 4: Generating the Signature

As soon as the routing suite receives the result of the AS path validation, it needs to decide

how to proceed from there on:

The AS path is valid: the routing suite begins to initiate the signing procedure. After that,

the router is ready to append itself to the BGPsec_PATH and forward the update to a BGPsec

speaking peer.

The AS path is not valid: the routing suite should ignore the update because at least one

signature was not correctly validated. This indicates that the update has been tempered with.

Accepting or forwarding it would bear the risk of falling for AS path manipulation.

Signing the AS path is similar to validating it. The routing suite invokes an RTRlib function

and passes all required information to it, including the routers private key. The digest that is

signed is calculated the same way as it is for validation, except this time, the information of

26

4 BGPsec Implementation Concept for RTRlib and Software Routers

RTRlib

VALIDATE
AS PATH

Router RPKI

AS Path Validation

FETCH ROUTER KEYS

ROUTER KEYS
PASS DATA VIA

bgpsec_validate_as_path(data)

RETURN RESULT

Figure 4.4: At �rst, RTRlib fetches all router keys from the RPKI since they are later

required for the validation. When the software router passes the validation

data to RTRlib, the library triggers the validation process and returns the

result back to the router.

the signing AS are included. Signing is done using the routers private key. RTRlib obtains a

signature and passes it back to the routing suite.

To make matters intuitive for the operator, the signing function call is similar to the call for

validating a signature, as shown in Listing 4.4.

Listing 4.4: The function header of the signing function.

1 int bgpsec_create_signature(struct bgpsec_data *data,
2 struct signature_seg *sig_segs,
3 struct secure_path_seg *sec_paths,
4 const unsigned int as_hops,
5 char *priv_key,
6 char *new_signature);

For this function, the contents of sig_segs and as_hops are left unchanged while data

and sec_paths need to be adjusted. The target AS �eld of the data structure must now

hold the ASN of the AS where the update is forwarded to. Further, an additional Secure_Path

Segment must be added to sec_paths. This segment contains the pCount, �ags and ASN of

the current AS, since they are required for hashing.

27

4 BGPsec Implementation Concept for RTRlib and Software Routers

Two new parameters to this function are priv_key in line 5 and new_signature in line

6. priv_key holds the private key of the router that is used to sign the digest. If the function

successfully creates a signature, it stores that signature in new_signature and returns its

length. A negative return value indicates that an error occurred during the process.

Since forwarding an existing update is only one of two cases, there also needs to exist

a way for generating a signature upon originating a BGPsec update. Since the process of

�rst creating a BGPsec update and forwarding an existing one is very similar, an alternative

function to bgpsec_create_signature in Listing 4.4 is not necessary. It is possible to

pass NULL for sig_segs and have sec_paths only contain the segment for the own AS.

Setting as_hops to 0 indicates that there was no prior forwarding and the data alignment is

adjusted accordingly.

The routing suite may now (re)assemble the BGPsec update and send or forward it to the

AS that was speci�ed by the target_as �eld within the data struct. Note that a signature

has to be created for each AS the router wants to forward it to. This is because the target AS is

part of the hashing. Changing this value leads to a di�erent digest.

At this point, the router has �nished the BGPsec routine. Figure 4.5 summarizes the process

of signing.

RouterPeering
Router RTRlib

CREATE
SIGNATURE

SEND / FORWARD
BGPSEC UPDATE

PASS DATA VIA
bgpsec_create_signature(data)

Signing Process

PREPARE
SIGNATURE DATA

SIGNATURE

CREATE BGPSEC
UPDATE

Figure 4.5: The router prepares the data that is necessary for the generation of a

signature and passes it to RTRlib. The library creates and returns the

signature. The process for originating a BGPsec update and forwarding

an existing one is identical in this diagram.

28

4 BGPsec Implementation Concept for RTRlib and Software Routers

4.6 Workflow

To give an overview of the whole procedure of processing a BGPsec update, i.e., going through

all four steps, the graphics from the previous chapters are combined in Figure 4.6.

The graphic shows that the single responsibility principle is achieved. Any cryptographic

operations, i.e., validating and signing, are handled by RTRlib. The router is responsible for

everything that resolves around the validation process, i.e., communication with peering

routers and (dis)assembling the BGPsec update. There also is no communication between

router and RPKI directly, as RPKI features are encapsulated by RTRlib.

29

4 BGPsec Implementation Concept for RTRlib and Software Routers

Router

PARSE
CAPABILITIES

STORE DATA IN
RTRLIB STRUCTS

Peering
Router A RTRlib

CREATE
SIGNATURE

SEND CAPABILITIES

SEND CAPABILITIES

FORWARD BGPSEC UPDATE

RPKI

fetch_router_keys()

return router keys

bgpsec_validate_as_path(data)

return result

VALIDATE
AS PATH

SEND / FORWARD
BGPSEC UPDATE

bgpsec_create_signature(data)

PREPARE
SIGNATURE DATA

return signature

CREATE BGPSEC
UPDATE Peering

Router B

PARSE
CAPABILITIES

SEND CAPABILITIES

SEND CAPABILITIES

bgpsec_check_algorithm_suite(id)

return result

Figure 4.6: The whole work�ow of processing a BGPsec update from receiving it from

peer A, to forwarding it to peer B.

30

5 Conclusion

O�ering BGPsec support to routing suites like FRR via the RTRlib will be a step by step process.

The next step is implementing the core validation features for BGPsec AS path validation. This

is done on side of RTRlib as shown in the previous section. One goal of the implementation

is to be easily adaptable to new features and additions. Since the BGPsec RFC was released

not long ago, changes in the next years might occur, especially concerning cryptographic

validation suites.

The step after the implementation will be setting up a testing environment, to ensure the

correctness of the implementation. The validation results of the RTRlib should be compared to

other BGPsec implementations such as the BGP-SRx, developed by NIST [5], or the BGPsec

implementation of BIRD. Additionally, the performance of RTRlib AS path validation should

be measured and compared to other implementations. Performance of the validation is crucial,

since it has high priority for operators [38].

This work tries to push forward the BGPsec availability, as securing Internet routing is as

relevant as always and long overdue. Although deployment will take a long time, as RPKI

has shown, it will eventually happen. The earlier implementations like this one can be tested

throughout, the better it is for operators, who aim for smooth transitions from BGP to BGPsec.

31

Bibliography

[1] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4 (BGP-4),” IETF, RFC 4271,

January 2006.

[2] M. Lepinski and S. Kent, “An Infrastructure to Support Secure Internet Routing,” IETF,

RFC 6480, February 2012.

[3] M. Wählisch, F. Holler, T. C. Schmidt, and J. H. Schiller, “RTRlib: An

Open-Source Library in C for RPKI-based Pre�x Origin Validation,” in

Proc. of USENIX Security Workshop CSET’13. Berkeley, CA, USA: USENIX

Assoc., 2013. [Online]. Available: https://www.usenix.org/conference/cset13/

rtrlib-open-source-library-c-rpki-based-pre�x-origin-validation

[4] M. Lepinski and K. Sriram, “BGPsec Protocol Speci�cation,” IETF, RFC 8205, September

2017.

[5] NIST, “BGP Secure Routing Extension (BGP-SRx) Prototype,” 9

2017. [Online]. Available: https://www.nist.gov/services-resources/software/

bgp-secure-routing-extension-bgp-srx-prototype (Accessed 16-05-2018).

[6] IANA, “Number Resources.” [Online]. Available: https://www.iana.org/numbers (Accessed

02-01-2018).

[7] IANA, “Autonomous System (AS) Numbers.” [Online]. Available: https://www.iana.org/

assignments/as-numbers/as-numbers.xhtml (Accessed 20-02-2018).

[8] G. Huston, “Autonomous System (AS) Number Reservation for Documentation Use,” IETF,

RFC 5398, December 2008.

[9] L. Gao, “On Inferring Autonomous System Relationships in the Internet,” IEEE/ACM

Trans. Netw., vol. 9, no. 6, pp. 733–745, 2001.

[10] L. Gao and J. Rexford, “Stable internet routing without global coordination,” IEEE/ACM

Transactions on Networking, vol. 9, no. 6, pp. 681–692, Dec 2001.

32

https://www.usenix.org/conference/cset13/rtrlib-open-source-library-c-rpki-based-prefix-origin-validation
https://www.usenix.org/conference/cset13/rtrlib-open-source-library-c-rpki-based-prefix-origin-validation
https://www.nist.gov/services-resources/software/bgp-secure-routing-extension-bgp-srx-prototype
https://www.nist.gov/services-resources/software/bgp-secure-routing-extension-bgp-srx-prototype
https://www.iana.org/numbers
https://www.iana.org/assignments/as-numbers/as-numbers.xhtml
https://www.iana.org/assignments/as-numbers/as-numbers.xhtml

Bibliography

[11] E. Chen and T. Bates, “An Application of the BGP Community Attribute in Multi-home

Routing,” IETF, RFC 1998, August 1996.

[12] I. van Beijnum, "BGP". O’Reilly Media, Inc., 2002.

[13] J. Karlin, S. Forrest, and J. Rexford, “Autonomous Security for Autonomous Systems,”

Computer Networks, vol. 52, no. 15, pp. 2908–2923, 2008.

[14] K. Butler, T. Farley, P. McDaniel, and J. Rexford, “A Survey of BGP Security Issues and

Solutions,” Proc. of the IEEE, vol. 98, no. 1, pp. 100–122, January 2010.

[15] G. Huston, M. Rossi, and G. Armitage, “Securing BGP - A literature survey,” IEEE Com-

munications Surveys & Tutorials, vol. 13, no. 2, pp. 199–222, 2011.

[16] M. Wählisch, O. Maennel, and T. C. Schmidt, “Towards Detecting BGP Route Hijacking

using the RPKI,” in Proc. of ACM SIGCOMM, Poster Session. New York: ACM, August

2012, pp. 103–104. [Online]. Available: http://conferences.sigcomm.org/sigcomm/2012/

paper/sigcomm/p103.pdf

[17] C. Zheng, L. Ji, D. Pei, J. Wang, and P. Francis, “A Light-Weight Distributed Scheme for

Detecting IP Pre�x Hijacks in Real-Time,” in Proc. of SIGCOMM ’07. New York, NY, USA:

ACM, 2007, pp. 277–288.

[18] M. Handley and E. Rescorla, “Internet Denial-of-Service Considerations,” IETF, RFC 4732,

December 2006.

[19] J. Klensin, “Simple Mail Transfer Protocol,” IETF, RFC 5321, October 2008.

[20] BGPmon, “Chinese ISP hijacks the Internet.” [Online]. Available: https://bgpmon.net/

chinese-isp-hijacked-10-of-the-internet/ (Accessed 12-03-2018).

[21] “YouTube Hijacking: A RIPE NCC RIS case study,” http://

www.ripe.net/internet-coordination/news/industry-developments/

youtube-hijacking-a-ripe-ncc-ris-case-study, March 2008, retrieved 2013-08-16.

[22] A. Toonk, “BGPstream and The Curious Case of AS12388,” 4 2017. [Online]. Available:

https://bgpmon.net/bgpstream-and-the-curious-case-of-as12389 (Accessed 07-01-2018).

[23] A. Chadd, “The "AS7007 Incident",” 8 2006. [Online]. Available: http://lists.ucc.gu.uwa.

edu.au/pipermail/lore/2006-August/000040.html (Accessed 06-01-2018).

33

http://conferences.sigcomm.org/sigcomm/2012/paper/sigcomm/p103.pdf
http://conferences.sigcomm.org/sigcomm/2012/paper/sigcomm/p103.pdf
https://bgpmon.net/chinese-isp-hijacked-10-of-the-internet/
https://bgpmon.net/chinese-isp-hijacked-10-of-the-internet/
http://www.ripe.net/internet-coordination/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study
http://www.ripe.net/internet-coordination/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study
http://www.ripe.net/internet-coordination/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study
https://bgpmon.net/bgpstream-and-the-curious-case-of-as12389
http://lists.ucc.gu.uwa.edu.au/pipermail/lore/2006-August/000040.html
http://lists.ucc.gu.uwa.edu.au/pipermail/lore/2006-August/000040.html

Bibliography

[24] T. Wan and P. C. Van Oorschot, “Analysis of BGP pre�x origins during Google’s May

2005 outage,” in Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th

International. IEEE, 2006, pp. 8–pp.

[25] M. Lepinski, S. Kent, and D. Kong, “A Pro�le for Route Origin Authorizations (ROAs),”

IETF, RFC 6482, February 2012.

[26] R. Bush and R. Austein, “The Resource Public Key Infrastructure (RPKI) to Router Protocol,”

IETF, RFC 6810, January 2013.

[27] R. NCC, “BGP Origin Validation,” 9 2016. [Online]. Available: http://www.ripe.

net/manage-ips-and-asns/resource-management/certi�cation/bgp-origin-validation (Ac-

cessed 12-01-2018).

[28] S. Turner and O. Borchert, “BGPsec Algorithms, Key Formats, and Signature Formats,”

IETF, RFC 8208, September 2017.

[29] M. Reynolds, S. Turner, and S. Kent, “A Pro�le for BGPsec Router Certi�cates, Certi�cate

Revocation Lists, and Certi�cation Requests,” IETF, RFC 8209, September 2017.

[30] IEEE, “IEEE Standard Speci�cations for Public-Key Cryptography,” IEEE Std 1363-2000,

pp. 1–228, Aug 2000.

[31] R. Bush and R. Austein, “The Resource Public Key Infrastructure (RPKI) to Router Protocol,

Version 1,” IETF, RFC 8210, September 2017.

[32] M. Wählisch and T. C. Schmidt, “See How ISPs Care: An RPKI Validation Extension for

Web Browsers,” SIGCOMM Comput. Commun. Rev., vol. 45, no. 5, pp. 115–116, 2015.

[33] D. Iamartino, C. Pelsser, and R. Bush, “Measuring BGP route origin registration validation,”

in Proc. of PAM, ser. LNCS. Berlin: Springer, 2015, pp. 28–40.

[34] M. Wählisch, R. Schmidt, T. C. Schmidt, O. Maennel, S. Uhlig, and G. Tyson, “RiPKI: The

Tragic Story of RPKI Deployment in the Web Ecosystem,” in Proc. of 14th ACM Workshop

on Hot Topics in Networks (HotNets). New York: ACM, Nov. 2015, pp. 11:1–11:7. [Online].

Available: http://dx.doi.org/10.1145/2834050.2834102

[35] NIST, “Global Pre�x/Origin Validation using RPKI.” [Online]. Available: https:

//rpki-monitor.antd.nist.gov/ (Accessed 20-03-2018).

34

http://www.ripe.net/manage-ips-and-asns/resource-management/certification/bgp-origin-validation
http://www.ripe.net/manage-ips-and-asns/resource-management/certification/bgp-origin-validation
http://dx.doi.org/10.1145/2834050.2834102
https://rpki-monitor.antd.nist.gov/
https://rpki-monitor.antd.nist.gov/

Bibliography

[36] R. READ, “RPKI READ Realtime Dashboard.” [Online]. Available: https://rpki-read.

realmv6.org/ (Accessed 02-05-2018).

[37] A. Reuter, R. Bush, I. Cunha, E. Katz-Bassett, T. C. Schmidt, and M. Wäh-

lisch, “Towards a Rigorous Methodology for Measuring Adoption of RPKI

Route Validation and Filtering,” ACM Sigcomm Computer Communication

Review, vol. 48, no. 1, pp. 19–27, January 2018, selected Best of CCR

for SIGCOMM 2018. [Online]. Available: https://ccronline.sigcomm.org/2018/

towards-a-rigorous-methodology-for-measuring-adoption-of-rpki-route-validation-and-�ltering/

[38] S. Goldberg, “Why is It Taking So Long to Secure Internet Routing?” Commun. ACM,

vol. 57, no. 10, pp. 56–63, Sep. 2014.

[39] R. Bush, “BGPsec Operational Considerations,” IETF, RFC 8207, September 2017.

[40] IANA, “Address Family Numbers.” [Online]. Available: https://www.iana.org/assignments/

address-family-numbers/address-family-numbers.xhtml (Accessed 26-02-2018).

[41] National Institute of Standards and Technology, “FIPS 180–3, Secure Hash Standard,

Federal Information Processing Standard (FIPS), Publication 180-3,” http://csrc.nist.gov/

publications/�ps/�ps180-3/�ps180-3_�nal.pdf, Department of Commerce, Gaithersburg,

MD, US, Tech. Rep., October 2008.

[42] NIST, “Digital Signature Standard,” Federal Information Processing Standards 186–4, July

2013.

35

https://rpki-read.realmv6.org/
https://rpki-read.realmv6.org/
https://ccronline.sigcomm.org/2018/towards-a-rigorous-methodology-for-measuring-adoption-of-rpki-route-validation-and-filtering/
https://ccronline.sigcomm.org/2018/towards-a-rigorous-methodology-for-measuring-adoption-of-rpki-route-validation-and-filtering/
https://www.iana.org/assignments/address-family-numbers/address-family-numbers.xhtml
https://www.iana.org/assignments/address-family-numbers/address-family-numbers.xhtml
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf

	1 Introduction
	2 The Border Gateway Protocol
	2.1 Protocol Description
	2.2 BGP Attack Surface
	2.2.1 BGP Update Manipulation
	2.2.2 Traffic Abuse
	2.2.3 Real world examples

	3 Protection Methods for BGP
	3.1 Route Origin Protection using RPKI
	3.2 BGPsec
	3.3 Existing Implementations
	3.4 Deployment

	4 BGPsec Implementation Concept for RTRlib and Software Routers
	4.1 Conceptual Considerations
	4.2 Step 1: Negotiation
	4.3 Step 2: Data Preparation
	4.3.1 Algorithm Suite Identification
	4.3.2 Required Parameters

	4.4 Step 3: Validation
	4.5 Step 4: Generating the Signature
	4.6 Workflow

	5 Conclusion

