
Enabling a Permanent Revolution in Internet Architecture
James McCauley
UC Berkeley & ICSI

jmccauley@cs.berkeley.edu

Yotam Harchol
UC Berkeley

yotamhc@berkeley.edu

Aurojit Panda
New York University
apanda@cs.nyu.edu

Barath Raghavan
University of Southern California

barathra@usc.edu

Scott Shenker
UC Berkeley & ICSI

shenker@icsi.berkeley.edu

ABSTRACT
Recent Internet research has been driven by two facts and their
contradictory implications: the current Internet architecture is both
inherently flawed (so we should explore radically different alterna-
tive designs) and deeply entrenched (so we should restrict ourselves
to backwards-compatible and therefore incrementally deployable
improvements). In this paper, we try to reconcile these two perspec-
tives by proposing a backwards-compatible architectural framework
called Trotsky in which one can incrementally deploy radically new
designs. We show how this can lead to a permanent revolution in
Internet architecture by (i) easing the deployment of new architec-
tures and (ii) allowing multiple coexisting architectures to be used
simultaneously by applications. By enabling both architectural evo-
lution and architectural diversity, Trotsky would create a far more
extensible Internet whose functionality is not defined by a single
narrow waist, but by the union of many coexisting architectures. By
being incrementally deployable, Trotsky is not just an interesting
but unrealistic clean-slate design, but a step forward that is clearly
within our reach.

CCS CONCEPTS
• Networks → Network architectures; Public Internet;

KEYWORDS
Internet architecture, Internet evolution

ACM Reference Format:
James McCauley, Yotam Harchol, Aurojit Panda, Barath Raghavan, and Scott
Shenker. 2019. Enabling a Permanent Revolution in Internet Architecture.
In SIGCOMM ’19: 2019 Conference of the ACM Special Interest Group on
Data Communication, August 19–23, 2019, Beijing, China. ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/3341302.3342075

1 INTRODUCTION
1.1 Motivation
In discussions about changes to the Internet architecture, there is
widespread agreement on two points. The first is that the Internet

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCOMM ’19, August 19–23, 2019, Beijing, China
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5956-6/19/08. . . $15.00
https://doi.org/10.1145/3341302.3342075

architecture is seriously deficient along one or more dimensions.
The most frequently cited architectural flaw is the lack of a coher-
ent security design that has left the Internet vulnerable to various
attacks such as DDoS and route spoofing. In addition, many ques-
tion whether the basic service model of the Internet (point-to-point
packet delivery) is appropriate now that the current usage model
is so heavily dominated by content-oriented activities (where the
content, not the location, is what matters). These and many other
critiques reflect a broad agreement that despite the Internet’s great
success, it has significant architectural problems.

However, the second widely-accepted observation is that the cur-
rent Internet architecture is firmly entrenched, so attempts to sig-
nificantly change it are unlikely to succeed, no matter how well
motivated these changes are by the aforementioned architectural
flaws. More specifically, the IP protocol is deeply embedded in host
networking and application software, as well as in router hardware
and software. As a result, architectural changes face extremely high
deployment barriers (as evinced by the decades-long effort to move
from IPv4 to IPv6).1

These two beliefs have moved the research community in contra-
dictory directions. Spurred by the first – that the Internet architecture
is deeply flawed – projects like NewArch [8] and others began (in
the late ’90s) to look at what later became known as clean slate
redesigns of the Internet.2 In subsequent years, there were large NSF
research (FIND, FIA) and infrastructure (GENI) programs (along
with their numerous EU counterparts) devoted to this clean-slate
quest. Many good ideas emerged from these efforts, ranging from
new security approaches [2, 41] to mobility-oriented architectures
[33] to service-oriented architectures [26] to new interdomain de-
signs [13, 38] to information-centric networking (ICN) [18, 19] to
entirely new conceptions of the Internet [3, 9, 15, 24, 31, 37].

Despite their motivating needs and useful insights, and the long
history of sizable research funding, none of these clean-slate designs
had significant impact on the commercial Internet. This eventually
led to a backlash against clean-slate designs, with many in the field
viewing them as useless exercises that are hopelessly detached from
reality. As a result of this backlash, the second observation – that
the Internet architecture is, and will remain, difficult to change –
then became the dominant attitude, and there has been a marked
decrease in clean-slate research. The community’s emphasis is now

1Of course, there has been great progress in various network technologies, such as
novel transport protocols (e.g., QUIC), datacenter congestion control, reconfigurable
datacenter topologies, and host networking stacks (e.g., DPDK and RDMA); however,
as we will see later when we define the term “architecture”, these changes are not
architectural in nature.
2This term was first popularized by Stanford’s Clean Slate program.

1

https://doi.org/10.1145/3341302.3342075
https://doi.org/10.1145/3341302.3342075

SIGCOMM ’19, August 19–23, 2019, Beijing, China J. McCauley, Y. Harchol, A. Panda, B. Raghavan, and S. Shenker

on backwards-compatible designs that have been tested in large-scale
operational networks, or at least evaluated with data drawn from such
networks. In this paper, we try to reconcile these two perspectives by
proposing an architectural framework called Trotsky that provides a
backwards-compatible path to an extensible Internet. There are five
key words in our mission statement that we now clarify.

We delve deeper into this definition in the next section, but in
brief we define an Internet architecture to be the specification of the
hop-by-hop handling of packets as they travel between sender and
receiver(s). By architectural framework we mean a minimal set of
design components that enable the deployment and coexistence of
new architectures. Saying a new design is backwards-compatible
or incrementally deployable means that one can deploy it in a way
that does not prevent legacy applications or hosts from functioning,
and that one can reap some benefits while only partially deployed.
One may require that systems be upgraded to take advantage of the
new capabilities of this design, but legacy systems can continue to
function unchanged.

By extensible Internet we mean an Internet where new archi-
tectures can be deployed in a backwards-compatible manner, and
multiple of these architectures can exist side-by-side. This latter
property directly contradicts our current notion of IP as the Inter-
net’s narrow waist. We chose architectural extensibility as our central
goal because it: (i) allows us to easily deploy radical new architec-
tures without breaking legacy hosts or domains, (ii) allows these new
architectures to “evolve” over time (new versions are just another
architecture, and hosts/domains can smoothly transition from one to
another), and (iii) allows applications to avail themselves of multiple
architectures, so they can leverage the diversity of functionality to
achieve their communication goals.

This last point is crucial. The ability for an application to si-
multaneously use multiple architectures changes the nature of an
architecture from something that must try to meet all the needs of
all applications, to something that more fully meets some of the
needs of some applications. Thus, architectural extensibility would
hopefully lead to a broader and ever-evolving ecosystem of archi-
tectures which, in their union, can better meet all the needs of all
applications. Our hope is that by creating an extensible Internet, the
Trotsky architectural framework will be true to its name by enabling
a permanent revolution in architectural design.

1.2 Contribution
Trotsky has two key properties. The first is that the framework
itself is backwards-compatible; nothing breaks while it is being
deployed, and those adopting it accrue benefits even while it is only
partially deployed. Second, once deployed, Trotsky enables radical
new architectures to be deployed in a backwards-compatible fashion
and to coexist with other architectures. To our knowledge, Trotsky is
the first proposal that can simultaneously achieve both of these goals.
As such, it is the first proposal that provides a backwards-compatible
path to an extensible Internet.

This paper is unabashedly architectural, and thus our contribution
is conceptual rather than mechanistic. When designing systems to be
extensible, the key questions are typically about the modularity of
the design (i.e., are there aspects that break legacy systems, or limit
the scope of new extensions?), not about the novelty of algorithms

or protocols. The same is true here. The basic mechanisms we use
within Trotsky are extraordinarily simple; what is novel about Trot-
sky is the way in which these mechanisms are applied. Trotsky is
based on a better understanding of the modularity needed to achieve
architectural extensibility, not on a better design of the necessary
mechanisms. In fact, to the extent possible, we try to reuse current
mechanisms, and our resulting design strongly resembles the current
Internet in all but one important aspect: how the Internet handles
interdomain traffic.

After providing some background in the next section, we make
our conceptual case for Trotsky in three steps. First, we analyze why
architectural evolution is currently so hard. We find (in Section 3)
that rather than this difficulty being inherent, it is due to a missed
opportunity when ASes became a part of the Internet’s structure,
and argue that this mistake can be corrected by treating interdomain
delivery as an overlay on intradomain delivery. Trotsky (whose design
is presented in Section 4) is merely the set of infrastructural pieces
needed to support this overlay.

Second, we have implemented Trotsky (see Section 5), producing
a prototype of a Trotsky-Processor (Trotsky’s version of a router) that
supports Trotsky and some selected architectures using a mixture of
hardware and software forwarding.

Third, in Section 6 we use this prototype to demonstrate that with
Trotsky: (i) one can incrementally deploy a variety of new architec-
tures, and (ii) applications can use multiple of these architectures
simultaneously.

Note that our focus here is not on what future Internet architec-
tures should be, or what problems they should solve, but rather on
how we can change the Internet to the point where we can more
easily deploy such architectures. Of course, our paper rests on the
premise that architectural extensibility is an important goal. In claim-
ing this, we are not saying that there is a specific new architecture
that needs to be deployed immediately. Rather, our contention is
merely that the Internet would be far better if it could easily adopt
new architectures, and if applications could make use of multiple
architectures. Such a development would turn the Internet into a
more dynamic and diverse infrastructure.

The alternatives to architectural extensibility are (i) forever using
ad hoc architectural workarounds for security, resilience, and other
shortcomings of the current Internet, or (ii) eventually replacing the
Internet entirely. Given that architectural extensibility is reachable
in a backwards compatible manner, it seems preferable than either
of these two alternatives. And if we think we will need to eventually
evolve the Internet’s architecture, then we should start laying the
intellectual foundation now. This foundation, rather than immediate
adoption and deployment, is the goal of our paper.

1.3 Ethical Considerations
This work does not raise any ethical issues.

2 CLARIFICATIONS, ASSUMPTIONS, AND
A QUESTION

2.1 Two Clarifications
First, in what follows we typically refer to packets as the means of
communication, with the packet header containing crucial signalling
information (source, destination, QoS, etc.). Everything we describe

2

Enabling a Permanent Revolution in Internet Architecture SIGCOMM ’19, August 19–23, 2019, Beijing, China

can also be applied to connection-oriented designs where the sig-
nalling information is carried out-of-band. While we briefly explain
how this can be done within Trotsky in Section 6, for the sake of
clarity our basic presentation focuses only on packet-based designs.

Second, there are several other works on architectural evolution.
We postpone a detailed comparison of our approach with these
until after we have more fully explained our design (see Section 7),
but here we merely note that we have borrowed heavily from the
insights in [12, 20, 28] but extended them to provide an incrementally
deployable evolutionary process, which is the central contribution
of this work.

2.2 Three Key Assumptions
First, while we wish to enable architectural innovation, one aspect of
the Internet we do not expect to change any time soon is its domain
structure (i.e., being organized around ASes). This structure is not a
technical design decision but rather a manifestation of infrastructure
ownership and the need for autonomous administrative control –
factors that we do not see changing in the foreseeable future. Thus,
we assume that future architectures involve the cooperative behavior
of multiple autonomous domains.

Second, given the momentum behind Network Function Virtu-
alization (NFV) and Edge Computing (as in [6, 17]), our designs
assume that domains have software packet processing capabilities
at their edges (typically in the form of racks of commodity servers).
This assumption has not yet been fully realized, but it is where NFV
and Edge Computing are rapidly moving, so it seems a reasonable
assumption when considering a future Internet.

Third, we assume that support for IPv4 (or IPv6) remains in place
indefinitely (perhaps eventually replaced by a similar successor) so
that hosts and applications that are Trotsky-unaware can continue
to function without change. We will refer to this as the default
architecture.

2.3 What Is An Architecture?
In a paper about architectural extensibility, we should clearly define
the term “architecture”. Informally, people often say an Internet
architecture is what entities must agree on in order to interoperate,
but what does this really mean? While there are multiple L1, L2,
and L4 designs, the crucial aspect of today’s Internet is that it has
a single design for L3. This “narrow waist” is the component that
different networks must agree on in order to interoperate, and the
necessity of such a narrow waist is one of the central dogmas of the
Internet. Thus, when we talk about the current Internet architecture
we usually mean its L3 design, IP, which dictates the dataplane
behavior at both hosts and routers. In addition, in order for different
domains to interoperate, they must also agree on the interdomain
routing protocol (currently BGP).

The literature about new architectures is then mostly about al-
ternative designs for L3 (along with interdomain routing). When
looking only at L3 in the current architecture, a packet’s trajectory
starts at the sending host, then traverses some number of routers
(perhaps zero), and then arrives at the destination host (or hosts).

Generalizing this to not focus solely on L3 (for reasons that will
soon be clear), we will define an Internet architecture to be a design
for handling packets that travel from an originating host, through a

Host1 Sw1 Sw2 Rtr Host2

IPv4L3

L1 UTP Coax Coax SMF

L2 Ethernet FDDI

Figure 1: Simplified hybrid layer diagram of a modern network
with two L2 switches and one L3 router. L1 depicts the physical
media (the lowest sublayer of L1 in the OSI model). L2 depicts
the media access layer (the lowest sublayer of L2). L3 is the
Internet layer (described in RFC 1122).

series of intermediate network nodes that process them according to
the architecture’s dataplane (which, in turn, is guided by its control
plane), to eventually arrive at one or more receiving hosts anywhere
else in the Internet (i.e., to be an architecture, these designs cannot be
limited to local networks or particular domains, but must be capable
of spanning the entire Internet).

As noted earlier, Trotsky is not an architecture but an architec-
tural framework. This is because Trotsky does not encompass all
the features needed to handle packets end-to-end; instead, it defines
only those features necessary to create an extensible Internet capable
of deploying new architectures in a backwards-compatible manner.
While this distinction between architecture and framework is new
to the networking community, the operating systems community
has long understood that these concepts can be quite different; mi-
crokernels taught us that, rather than having a rigid monolithic OS,
one can enable innovation by standardizing only a small subset of
OS functionality and allowing the rest of the functionality to be
supplied at user-level. While the microkernel is not enough, by itself,
to support applications, it represents the key portion that enables
extensibility. Similarly, Trotsky is not enough, by itself, to handle
packets end-to-end, but it represents the key components that enable
architectural extensibility.

3 MOTIVATING TROTSKY’S DESIGN
We noted earlier, without explanation, that the key to achieving exten-
sibility is to treat interdomain delivery as an overlay on intradomain
delivery. Here we provide the motivation for this statement.

3.1 The Internet Is A Series of Intrinsic Overlays
Today when we hear the term “overlay” we typically think of an
ad hoc approach for deploying one protocol on top of another (as
in IPv6 over IPv4), or a virtual infrastructure over a physical one
(as in RON [1]). However, the Internet’s layering is essentially the
inherent and recursive use of overlays [36]. In these overlays, which
are built into the architecture, nodes in each layer logically connect
directly with their peers, but physically are communicating using
technologies from the layer below (which are, recursively, built out
of technologies below them). For instance, as shown in Figure 1:
neighboring L2 endpoints directly communicate with each other at a
logical level, but are connected via physical L1 links; neighboring
L3 endpoints directly communicate with each other at a logical
level, but are physically connected via “logical links” provided by
L2 networks. This extends to L4, where two L4 endpoints directly
communicate at the logical level with L3 providing “logical pipes”

3

SIGCOMM ’19, August 19–23, 2019, Beijing, China J. McCauley, Y. Harchol, A. Panda, B. Raghavan, and S. Shenker

connecting the two endpoints. Thus, L2 is an inherent overlay on
L1, L3 is an inherent overlay on L2, and L4 is an inherent overlay
on L3.3

The intrinsic use of overlays allowed the Internet to accommodate
heterogeneity – and thereby spurred innovation at L1, L2 and L4 –
through the presence of three factors. First, these layers provided
relatively clean interfaces so, for instance, an L2 network could use
multiple L1 technologies, as long as each supported the required L2
interface. Second, there was a unifying point of control to manage
the heterogeneity. Each L2 network provided the unifying point
for multiple L1 technologies, and L3 provided the unifying point
for multiple L2 technologies. Applications were the unifying point
for L4, as each application typically uses a default L4 protocol (so
the two ends of an application would automatically use the same
transport protocol). Third, the underlying layers L2 and L3 provide
the equivalent of a next-header field, so that the packet could be
handed to the appropriate next-layer protocol during processing.

If we consider the Internet before the advent of Autonomous
Systems (or domains), then the one layer where there was no way of
managing heterogeneity was L3. If there were multiple L3 protocols
then (i) two L2 networks that only supported disjoint subsets of these
L3 protocols could not interconnect and (ii) even if all adjacent L2
networks shared a common L3 design, there would be no way to
guarantee end-to-end connectivity for any particular L3 design. Thus,
because there was no way to manage heterogeneity at L3 before
domains, we assumed that there could only be one L3 protocol
(the “narrow waist” of the architecture). In short, in the absence of
domains, a narrow waist at L3 was needed to enable arbitrary sets
of networks to easily connect and provide end-to-end connectivity,
while at the other layers the overlay approach could support diversity.

This made architectural evolution extremely difficult because,
when there is a single L3 protocol that must be deployed everywhere,
converting to a new L3 design requires (eventually) changing the
L3 implementation in all routers. Moreover, if the new L3 design
is not compatible with current router hardware, then this is not just
a configuration or firmware change in routers, but a hardware one
as well. In the case of the IPv4 to IPv6 transition, we have had
decades to prepare all routers to support IPv6, and yet the transition
still requires many ad hoc measures such as building temporary
overlays (so that IPv6 traffic could be carried over IPv4 networks)
and deploying special-purpose translators (to translate between IPv4
and IPv6 packets). These techniques have been effective, but it
required decades of preparatory work; this is not an example we can
follow for more general architectural change.

When domains arose, they presented a unique opportunity to
manage the heterogeneity at L3. A domain could ensure internal
connectivity (by carefully managing which L3 designs their internal
networks supported) and also manage external connections to ensure
global end-to-end delivery (using remote peering, which we describe
later in this section). Managing internal and external heterogene-
ity independently – i.e., decoupling the internal choices from the
external ones – requires making a clean architectural distinction
between interdomain and intradomain dataplanes (just as we make
a distinction between L1, L2, and L3 dataplanes). The natural way

3The discussion here and what follows is not a summary of what the original Internet
designers thought at the time, but is a description of how we might think about the
Internet’s design in hindsight.

to do this, following what had been successfully done at each of
the other layers, would have been to make interdomain connectivity
an intrinsic overlay on intradomain connectivity. But this path was
not chosen, and the opportunity to support heterogeneity at L3 was
squandered.

Instead, it was decided to connect domains by using the same
dataplane L3 protocol as used within domains, and to devise a new
control plane protocol to handle interdomain routing. This allowed
domains to choose their own intradomain routing protocols, but there
was still a single universal L3 dataplane. It is this L3 universality
in today’s architecture – an architecture which in so many other
ways is designed to support heterogeneity – that makes the current
architecture so hard to change.

3.2 Two Design Decisions
Our goal for Trotsky is to make the mechanisms needed to incre-
mentally deploy new architectures a fundamental part of the infras-
tructure, rather than something deployed for a specific architectural
transition (such as IPv4 to IPv6). This involves two major decisions.

First, to use domains as a way of managing heterogeneity at the
L3 layer, we reverse the decision to use the same dataplane for
both intradomain and interdomain delivery. Instead, we decouple the
distinct tasks of interconnecting networks within a domain (which
we leave to L3) and interconnecting different domains, for which
we introduce a new layer (which we will call L3.5) which is an
intrinsic overlay on L3. This overlay approach – which allows the
Internet to (as we argue later) support multiple L3.5 designs and rely
on domains to manage the resulting heterogeneity – is the key to
creating an architecturally extensible Internet. The role of Trotsky is
little more than providing the intrinsic support for this overlay.

Second, we initially deploy any new L3.5 design only at domain
edges4 (in entities we will call “Trotsky-Processors” or TPs) and
at hosts. This decision has two implications: (i) it greatly limits the
required scope of deployment for any new L3.5 design, and (ii) the
aforementioned presence of software packet processing at the edge
(due to NFV and Edge Computing) means that the required deploy-
ments can be in software rather than hardware (and we later show in
Section 6 that this is feasible). Thus, this second decision means that
supporting a new L3.5 protocol requires only a software modifica-
tion at domain edges, rather than (as today) hardware modifications
in all routers.

How can we limit these changes only to the edge? Just as L3
abstracts L2 connectivity using logical links, L3.5 abstracts L3 con-
nectivity as “logical pipes”. That is, when looking only at L3.5, TPs
are connected (to each other and to hosts) by logical pipes which use
technologies from the layers below to deliver packets from one end
of the logical pipe to the other (see Figure 2). Thus, even when only
deployed at the edge, packets still travel from a host through a series
of L3.5-supporting boxes to the destination host(s), all connected by
logical pipes.5

4Edge here means all ingress/egress points in a domain, which includes peering points
(bilateral and IXPs) and customer attachment points.
5One might ask whether putting functionality only at the edge gives adequate perfor-
mance for content-oriented architectures (which rely on caching). This has been studied
in [11] where it was shown that supporting ICN designs only at the edge provided a
very high fraction of the performance benefit.

4

Enabling a Permanent Revolution in Internet Architecture SIGCOMM ’19, August 19–23, 2019, Beijing, China

Match Action

 Domain A

 Domain B

TP

TP

TP

TP

TP

Host
1

Host
2

Eth
MPLS
IPv8

Eth
IPv4
GRE
IPv8

Eth
VLAN
IPv8

FDDI
MPLS
IPv8

TP

 (-∞, L2] (Logical) Link
 (L2, L3.5) Logical Pipe
 [L3.5, ∞) Architecture

Key to Packet Layers
Forwarding Table

From=A GRE.proto=IPv8
From=A GRE.proto=NDN
From=B MPLS.tag=IPv8
From=B MPLS.tag=NDN

PopGRE GotoTable(IPv8Table)
PopGRE PushVLAN(IngressPipeID) Output(NDNAgentPort)
PopMPLS GotoTable(IPv8Table)
PopMPLS PushVLAN(IngressPipeID) Output(NDNAgentPort)

→
→
→
→

 -
 -
 -

Figure 2: Illustration of a possible deployment, with headers for a hypothetical IPv8 L3.5 packet traveling between two hosts. Different
logical pipes are implemented differently (using GRE+IPv4, MPLS, and VLANs). A partial and abstract forwarding table for one TP’s
Pipe Terminus (see Section 5.1) describes how different packets are handled: IPv8 packets are sent to a hardware IPv8 forwarding
table, and NDN packets (another L3.5 supported by the domain) are handled by a software NDN agent attached to a physical port
(the ingress pipe ID being encoded in a VLAN tag so the agent is aware of it).

3.3 Making Interdomain An Inherent Overlay
For L3.5 designs to be overlaid on L3 (and layers below), L3 must
provide logical pipes to connect pairs of L3.5-aware nodes (i.e., TPs
and hosts). These pipes must support, at the very least, best-effort
packet delivery (below we describe optional enhancements to the
pipe model) and also provide the equivalent of a next-header field
(as Ethernet does at L2, and IP does at L3), so that a receiving TP
knows what L3.5 protocol should be applied to an arriving packet.
Note that a logical pipe is nothing more than an intradomain packet
delivery service (like IP) that delivers packets from one location
to another, and need not entail establishing n2 tunnels. As shown
in Figure 2, logical pipes can be constructed in various ways, and
encapsulate packets as they travel between TPs.

An L3.5 design defines the dataplane behavior (e.g., packet format,
forwarding rules, etc.) executed in the TPs, along with whatever
interdomain control plane protocol is needed to support the L3.5
design.6 This is no different than what a new L3 design would
define in the current Internet; thus, the Trotsky approach imposes no
additional architectural restrictions.

6For convenience, we will assume the familiar model in which this interdomain control
plane protocol is executed by one or more TPs within each domain, but it could be
implemented anywhere.

An L3.5 design’s data and control plane determines an end-to-end
service model. This service model applies even when the communi-
cating nodes are in the same domain: just as IP determines (via host
L3 code) the service model when two hosts in the same subnet (L2
network) communicate, the host L3.5 implementation determines
the service model even when two hosts in the same domain connect.
Thus, one should not think of an L3.5 design as only an interdo-
main dataplane, but as the only dataplane that can span domains and
which therefore determines the nature of the end-to-end service. In
contrast, in our approach L3 protocols only provide logical pipes
within domains, and do not determine the Internet’s service model.

The service model defined by an L3.5 design is not restricted to
basic best-effort packet delivery; instead, it could be service-oriented,
or information-centric, or mobility-oriented, or something entirely
different. In addition, these L3.5 designs need not support all appli-
cations, but instead could focus on more specific use cases (such
as supporting in-network aggregation for IoT, or providing a par-
ticular security model). Because of such restricted use cases, L3.5
designs can impose restrictions on the underlying logical pipes. For
instance, an L3.5 design could require the underlying technologies
to be all-optical, or provide end-to-end encryption, or various mul-
tipoint delivery functions (such as broadcast or multicast). While
these restrictions would limit the applicability of such designs, this is
appropriate for L3.5 designs that are intended for specific use cases.

5

SIGCOMM ’19, August 19–23, 2019, Beijing, China J. McCauley, Y. Harchol, A. Panda, B. Raghavan, and S. Shenker

Thus, we expect that L3.5 designs might support a wide variety
of service models, and therefore hosts must have a network program-
ming API (or NetAPI) that can support a range of communication
semantics. Fortunately, this is already provided by existing mecha-
nisms for adding support for new protocols to the socket API (e.g.,
protocol families and the flexible sendmsg() function), which is
supported by virtually all current operating systems. Applications
need to be aware of the new NetAPI semantics in order to use the
associated L3.5 designs (e.g., the service model of ICN designs is
different from that of IP, and this must be reflected in the NetAPI;
an application must be aware of these different semantics in order to
invoke them).

3.4 Implications for Extensibility
Before delving into the design of Trotsky in the next section, we
should clarify why inserting a new interdomain layer (L3.5) ad-
dresses the issues of extensibility. There are three factors here: inde-
pendence, deployment, and coexistence. First, by decoupling inter-
domain (L3.5) from intradomain (L3) designs via a clean “logical
pipes” interface, one can evolve one without changing the other.
Second, the deployment of new L3.5 designs is made easier by our
only requiring that they be deployed at domain edges, and initially
in software. Third, multiple L3.5 designs can coexist, and this is
made possible by the existence of an extensible NetAPI (which is
already in use) and the fact that the L3 logical pipes must support
a next-header field that identifies which L3.5 design should handle
the packet. Because of these three factors, one can deploy a new
L3.5 design without changing any L3 designs, this deployment can
initially be limited to only software at domain edges, and these L3.5
designs can operate in parallel. But three questions remain:

How general is the Trotsky approach? The definition of L3.5
involves the forwarding and receiving behavior of hosts and TPs
(all connected by logical pipes), along with an interdomain control
plane. Note that this picture is directly analogous to the current
picture of L3 except with TPs replacing routers, and with logical
pipes replacing logical links (we use different terms – pipes vs. links
– because the pipe abstraction is global as in L3, whereas the link
abstraction is local as in L2). Thus, any design that could be seen
as a candidate for an L3 architecture in today’s Internet could also
be seen as a candidate for L3.5 in our approach. The reverse is
not true, because (as mentioned above) we allow L3.5 designs to
put restrictions on the nature of the logical pipes. However, one
could imagine designs that required specifying more than a per-hop
dataplane and a control plane (e.g., designs requiring some large-
scale physical-layer coordination) that would not be implementable
within Trotsky.

How does Trotsky handle partial deployment of an L3.5 design?
When a new L3.5 design arises, it obviously won’t be deployed by
all domains simultaneously. Trotsky deals with partial deployment
by the well-known technique of remote peering. Two domains that
are not directly physically connected but wish to use the new L3.5
can peer by (i) building a tunnel between them (using, for example,
the default L3.5 design) and then (ii) establishing a logical pipe over
this tunnel (which treats the tunnel like a logical link). In this way,
L3.5 designs can be initially deployed by a subset of domains which
connect via remote peering.

How does Trotsky handle partial deployment of Trotsky itself?
In terms of functionality, domains that are not Trotsky-aware are
roughly equivalent to Trotsky-aware domains that support only IP at
L3.5.7 To peer with a domain that has not adopted Trotsky, Trotsky-
aware domains use special logical pipes that strip off all but the IP
headers.

4 TROTSKY DESIGN
We now turn to the design of Trotsky. This is anticlimactic, as the
design is minimal and straightforward. However, since Trotsky is the
framework that remains constant, while various L3.5 architectures
come and go, it is important that we properly identify the crucial
functionality and leave everything else to other (more dynamic)
components in the ecosystem. Thus, in this section, we start by
describing the necessary pieces of Trotsky (whose implementation
we describe in the next section), and then discuss issues that are left
to either L3.5 designs or to the domains. We then end this section
with a walk-through of what happens when a laptop arrives in a
domain to illustrate how the various pieces fit together.

4.1 Design Overview
Trotsky must provide intrinsic support for overlaying L3.5 designs
on L3, which involves two key components.

Logical Pipes. The lower layers must provide logical pipes (i.e.,
connectivity) between every two L3.5 nodes. Constructing these
pipes requires datapath mechanisms (to support basic delivery and a
next-header field) and control path mechanisms (to support functions
such as MTU negotiation).

Host Bootstrapping. We need a mechanism – a service managed
by a domain and accessed by a host, akin to today’s DHCP – for
providing a host with basic bootstrapping information. This includes
the set of L3.5 protocols supported by the domain and the specific
protocols it uses for logical pipes.8

Trotsky is nothing more than the union of these two functions,
with everything else left to L3.5 designs and the domains. We now
list some of those other functions.

4.2 Functions Left to L3.5 Designs
Naming and Addressing. In the simplest case, all L3.5 designs

would have their own set of names, name resolution services, and
addresses. However, we expect that names and name resolution sys-
tems might be shared between L3.5 designs; similarly, addressing
schemes might be used by more than one L3.5 design (e.g., IPv4
addresses might be used for an end-to-end optical design). To accom-
modate this, we assume that each L3.5 design identifies the naming
and addressing schemes it is compatible with, and the host OS and
domain bootstrapping mechanisms can direct resolution requests to
the appropriate infrastructure. We assume that the responsibility for

7Note that in Trotsky, IP can be used both at the L3 layer (to support logical pipes) and
at the L3.5 layer (to provide end-to-end connectivity); the address spaces for these two
uses are separate.
8The question of what functions were built into Trotsky and which were left to L3.5
designs is a subtle one, and we could imagine alternative designs that arrived at slightly
different conclusions. For instance, some bootstrapping information could be left for
hosts to discover on their own, rather than be supplied via a single query, but we prefer
the cleaner approach where the information is more explicit.

6

Enabling a Permanent Revolution in Internet Architecture SIGCOMM ’19, August 19–23, 2019, Beijing, China

establishing a new name resolution infrastructure does not lie with
individual domains, but with third-parties (such as ICAAN).

Interlayer Mapping. In the current Internet, ARP is commonly
used to map between L3 addresses and L2 addresses. Similarly, in
Trotsky, L3.5 designs must provide a mechanism to map between
L3.5 addresses (which determine end-to-end-delivery, but are not
necessarily traditional host locators and could instead refer to content
or a service) and the pipe addresses (addresses used by logical
pipes to deliver packets within a domain). This can be done by the
L3.5 packet itself (by having a field in the packet to carry the pipe
address) or with some ARP-like mechanism defined by the L3.5
design. One might question why this is being left to L3.5 designs
rather than via a generic Trotsky functionality. In fact, early versions
of Trotsky included a generic ARP-like mechanism that could be
used by all L3.5 protocols. This approach shared a weakness with
ARP: the required state scales with the number of endpoints (e.g.,
host addresses). Unfortunately, this is potentially more problematic
in Trotsky than with ARP because the required state for a domain
is much larger than a single L2 network. While we believe the state
requirements are currently feasible, we think it unwise to assume
this remains true in a design that should underlie the Internet for the
foreseeable future. Accordingly, we moved the responsibility for this
task from the Trotsky framework to the individual L3.5 protocols.
This allows for L3.5s to perform optimizations that are specific to
their designs and even allows building solutions to the mapping
problem into their design from the outset (for example, designing
addresses to allow for the mappings to operate on aggregations,
assigning addresses to facilitate a programmatic rather than state-
based mapping, or embedding L3 addresses within their own L3.5
protocol).

Reachability. With multiple L3.5 designs coexisting, and with
not all domains supporting all L3.5 designs, how does a host de-
cide which to use to reach a particular destination or content or
service? There are several answers to this. First, if the name of the
destination/object/service is tied to a specific L3.5, then the send-
ing/requesting host knows which L3.5 to use (assuming that L3.5
is supported by its own domain). Second, L3.5 designs could (but
need not) support an interface that allows hosts to query reacha-
bility (a negative result returning something like the ICMP Host
Unreachable message). Third, names and/or the name resolution
service might contain hints about which L3.5 designs are supported.
Ultimately, however, applications can simply attempt using the name
with multiple L3.5 designs.

Congestion Control Support. Congestion control will still be
implemented in L4, but there are various proposals (e.g., RCP [7]
and FQ [10]) where routers provide support for congestion control.
L3.5 designs can specify what congestion control mechanisms TPs
and logical pipes must provide.

Security. In discussing security, it is important to make two dis-
tinctions. First, we must distinguish between the broad concerns of
operating systems and applications, and the more narrow responsi-
bilities of the network itself. Second, for those concerns that are the
responsibility of the network, we must distinguish between those
which must be addressed within the Trotsky framework itself, and
those which can be left to L3.5 designs.

Turning to the first question, as has been observed by many (see
[5, 20]), the goal of network security, very narrowly construed, is
to provide communicating parties with availability (ensuring that
they can reach each other), identity (knowing whom they are com-
municating with), provenance (knowing the source of data they have
received), authenticity (knowing that this data has not been tam-
pered with), and privacy (ensuring that data is accessible only to
the desired parties). All but availability can be handled by crypto-
graphic means at the endpoints (which may be made easier by the
choice of naming system and other aspects of an L3.5 design). But
availability – in particular the ability to withstand DDoS attacks –
requires a network-level solution. In addition, there are a broader set
of network security concerns such as anonymity and accountability,
as discussed in [2, 20, 22, 25] among other places, and these too
require network-level solutions.

The question, then, is whether issues not handled solely by end-
points should be left to individual L3.5 designs, or incorporated into
Trotsky itself. Here we firmly believe that these security concerns
should be addressed within individual L3.5 designs for the simple
reason that, as security threats change and security approaches im-
prove, we should allow these security solutions to evolve over time.
For instance, for DDoS, there are a range of approaches, ranging
from capabilities [39] to filters [4] to shut-up-messages [2, 20], and
we think it presumptuous to bake a single approach into Trotsky it-
self. Moreover, it is not even clear how effectively Trotsky could lay
out a security framework sufficient to address the needs of all poten-
tial L3.5 designs (with their own potentially idiosyncratic principals,
communication patterns, and so on).

All the above said, the protocols of Trotsky itself (e.g., the boot-
strapping protocol) must be designed to ensure that they do not create
additional security vulnerabilities. To that end, we have designed
Trotsky so that it can be implemented in a secure fashion.

4.3 Functions Left to Domains
Resource Sharing. When multiple L3.5 designs are supported

by a domain, the domain can control how its internal bandwidth is
shared between these designs using standard methods available in
current routers.

Internal L3.5 Deployment. While we envision that initially L3.5
designs are deployed only at the edge, domains can decide to provide
additional internal support later if desired (e.g., to provide closer-by
caches if the L3.5 design involves content caching). This can be
done by adding additional TPs, and whatever internal control plane
mechanisms are needed. This decision can be taken on a domain-by-
domain basis.

4.4 How Does This All Fit Together?
Consider a Trotsky-aware laptop that arrives in a domain, and pro-
ceeds to start a game application. The laptop connects, as it does
today, to an L2 technology (e.g., plugging into an Ethernet port,
or attaching wirelessly) and uses the Trotsky bootstrap mechanism
to determine which L3.5 designs are available, as well as what
protocols are used for logical pipes. It then uses the bootstrapping
mechanisms relevant to the internal domain protocols (e.g., DHCP if
IP is being used for logical pipes), and whatever L3.5-specific boot-
strapping mechanisms are available for the L3.5 designs it wants to

7

SIGCOMM ’19, August 19–23, 2019, Beijing, China J. McCauley, Y. Harchol, A. Panda, B. Raghavan, and S. Shenker

leverage. The game invokes the NetAPI for content-oriented retrieval
(to download graphical and other game assets) and also invokes the
NetAPI for a special-purpose multiagent-consistency L3.5 design
ideal for multiplayer gaming.

Each packet leaves the host in a logical pipe that uses its next-
header field to identify which L3.5 the packet is associated with.
If the destination for the packet is within the origin domain, then
the L3.5 design describes how to reach it using an internal logical
pipe without having to send packets to an intermediate TP. If the
destination for the packet is in a different domain, the initial logical
pipe takes the packet to a TP on the edge of the origin domain, where
it is processed by the appropriate L3.5 design and then sent over
a logical pipe to a TP running in a peer domain. The peer domain
sends the packet through an appropriate logical pipe either to the
destination (if the destination is in that domain), or to another peer
domain (if the destination is elsewhere).

Note that if the user starts a legacy application (e.g., an application
that is not Trotsky-aware), the OS automatically invokes the default
L3.5 design (e.g., IPv4) and the application proceeds as today. Simi-
larly, when a host arrives in a domain and does not use the Trotsky
bootstrap mechanisms, the domain automatically assumes all of its
traffic is using the default L3.5 design. Thus, Trotsky is incremen-
tally deployable since it does not break hosts or applications that are
not Trotsky-aware.

5 IMPLEMENTATION
In the previous section we identified Trotsky’s two key technical
tasks: providing logical pipes and host bootstrapping. Here, we de-
scribe how these tasks are accomplished in the two entities where
Trotsky is implemented: Trotsky-Processors (TPs) and Trotsky-
capable hosts. We do so by first describing the implementation
challenges in general, and then how they are met in our prototype im-
plementation. Before starting, however, recall that logical pipes (just
like L2’s logical links do for L3) essentially encapsulate L3.5 packets
as they traverse between two L3.5-aware nodes, with each endpoint
serving as a terminus for these logical pipes. These logical pipes,
which must support best-effort packet delivery and the equivalent of
a next-header field, can be constructed in many ways using protocols
at or below L3 (such as using IP at the L3 level for intradomain
connectivity, and VLAN IDs as the next-header field). In addition,
different domains can use different pipe constructions, and a single
domain can use different pipe constructions for different contexts
(i.e., logical pipes connecting two TPs in neighboring domains might
be constructed differently than those connecting internal hosts to
edge TPs).

5.1 Trotsky-Processors
The essential functional units of a Trotsky-Processor are illustrated
in Figure 3. We now discuss them in turn.

Pipe Terminus. Packets carried by logical pipes arrive at physi-
cal interfaces of a TP, enter the pipe terminus (which removes the
logical pipe encapsulation), and are then handed to the appropriate
L3.5 implementation based on the next-header field. Essentially the
opposite operations are performed for packets exiting the TP. In
addition, the TP has a unique ID for each logical pipe it terminates,
and the pipe terminus provides a mechanism to map each packet

L3.5 A
Dataplane

L3.5 B
Dataplane

L3.5 Z
Dataplane

Support
Protocols TP Manager

...

Pipe
Terminus

L3.5
Implementations

Packet I/O

Trotsky
Control Plane

L3.5 A
Control Plane

L3.5 B
Control Plane

L3.5 Z
Control Plane

...

Figure 3: Trotsky Processor System Diagram, supporting mul-
tiple L3.5 designs.

with the logical pipe ID, which can be implemented by either storing
this ID in the packet header or through other means.

L3.5 Implementations. Every TP supports the default L3.5 de-
sign along with possibly several other L3.5 designs. Such support
includes an L3.5 dataplane and any associated control plane proto-
cols. While control protocols are typically implemented in software,
dataplanes for new protocols are likely to begin in software but can
eventually transition to hardware for better performance and power
usage. As we discuss further in Section 6.1, in addition to a default
IPv4 L3.5 implementation, we integrated existing software code-
bases for two different L3.5 designs into our prototype TP, wrote
code for a third, and investigated how one might support several
other L3.5 designs. Should hardware support for any of these de-
signs eventually arise, it would be simple to migrate to it. Moreover,
existing hardware for the efficient handling of IP already exists, and
– as we describe later in this section – it can be directly used in
support of interdomain (L3.5) IP. Thus, Trotsky can accommodate
both hardware and software dataplane implementations.

The Trotsky Control Plane. TPs also contain control/manage-
ment infrastructure that primarily consists of an extensible store of
configuration information which is used for internal purposes (e.g.,
information about the logical pipes – how many there are, what pro-
tocols they use, whether they are intradomain or peering, etc.), and
can also be used by L3.5 implementations via an API. Configuration
data can be marked for sharing with other TPs via the Trotsky Neigh-
bor Protocol. This protocol also allows for sanity-checking (e.g., that
logical pipes are connected to their intended peers), and can probe
logical pipes to maintain an accurate view of the pipe bottleneck
MTU. This last aspect becomes necessary when logical pipes span
multiple logical links with different MTUs, so the bottleneck may
not be directly observable from the pipe endpoints.

Our Implementation. We have implemented the pipe terminus
in hardware by using an OpenFlow switch. Arriving packets are
de-encapsulated (using any encapsulation formats supported by the
switch), and a next-header field extracted to determine the appropri-
ate L3.5 protocol. In the case of the default L3.5 (IPv4), OpenFlow
also performs IP prefix matching. For other L3.5s, the packet is

8

Enabling a Permanent Revolution in Internet Architecture SIGCOMM ’19, August 19–23, 2019, Beijing, China

forwarded to an attached server where the software implementa-
tion of the L3.5 protocol is running, but first, an OpenFlow action
encodes the input pipe ID into the packet as a VLAN tag so that
the L3.5 implementation knows which pipe the packet arrived on.
Packets arriving from an attached server have the VLAN tag set (by
the server) to the desired output pipe ID; OpenFlow rules match
on the pipe ID, perform the appropriate logical pipe encapsulation,
and forward the packet out the appropriate physical port. All of our
control code – which controls the OpenFlow switch, implements
the Trotsky Neighbor Protocol, and automates configuration of the
integrated L3.5 protocols – is written in Python and runs in user
mode on a server attached to the switch.

5.2 Trotsky-Capable Hosts
Our prototype host code converts a standard Linux distribution into a
Trotsky-capable one. This is done almost entirely via user mode code,
some of which (re)configures standard Linux networking features
(such as tap interfaces). Host support for Trotsky includes a pipe
terminus and implementations of L3.5 protocols, which we do not
describe because they are so conceptually similar to the case for TPs.
Unlike TPs, hosts incorporate bootstrapping and a NetAPI, which
we now discuss.

Bootstrapping. When a new host arrives on a domain, it needs
answers to the following three questions: (i) Is this domain Trotsky-
capable? (ii) What type of logical pipes does this domain support
and what configuration parameters (if any) are required to use them?
and (iii) What L3.5 protocols does this domain support? The Trotsky
Bootstrap Protocol provides answers to these questions. The server
side is implemented with a small, stateless server that must run on
each L2 segment and responds to requests sent by hosts to a multicast
Ethernet address. If the server answers with empty responses (i.e., no
pipe types and no L3.5 protocols supported), or if repeated requests
produce no response, the host can conclude that the domain does not
support Trotsky and can fall back on legacy IP bootstrapping (e.g.,
DHCP). Otherwise, two things occur. First, the local pipe terminus
is configured. In our prototype, the terminus is a userspace process
that implements two types of logical pipe based on IP encapsulation
as well as a VLAN-based one, and pipes show up as tap interfaces.
Secondly, the supported L3.5s are configured, i.e., DHCP is run over
the logical pipe to acquire an L3.5 IP address, and the userspace
L3.5 daemons are (re)started attached to the logical pipes.

As running a new bootstrap server on every L2 network may be
impractical in the short term, a simplified version of the bootstrap
protocol can be encapsulated in a DHCP option. On some DHCP
servers, this can be implemented with only a configuration change;
if the server code must be changed, the change is minimal. A mod-
ified DHCP client on the host can then send a DHCP request and
use legacy IP or Trotsky configuration depending on whether the
response contains the Trotsky bootstrap option.

The NetAPI. Within hosts, an API is needed to allow applica-
tions to utilize L3.5 protocols. Rather than design a new API, our
prototype uses the standard Berkeley sockets interface for this. This
choice is based on two factors.

First, several existing prototypes for new architectures (i.e., L3.5
protocols, from a Trotsky perspective) already use APIs closely

modeled on the sockets API. Second, as we imagine an ecosystem
of L3.5 protocols, it makes sense to – as much as practical – share an
API between them, such that software can be written that is agnostic
to which L3.5 it is run on as long as it shares common semantics.
This is, in fact, already an idea embraced by the sockets API; for
example, much code can be written to be agnostic to whether it is run
on a unix socket or an IP socket as long as it properly implements the
semantics appropriate to its type (e.g., SOCK_STREAM). Moreover,
architectures with different primitives can often be usefully mapped
to common semantics (in Section 6.1, we briefly discuss how we
mapped a common content-centric networking pattern – where a
sequence of named chunks constitute a larger unit of data – as a
streaming socket).9

To achieve this in our prototype, we undertook a FUSE-like [30]
approach, by developing a kernel module which can redirect API
calls on sockets of specified protocol families to a userspace backend.
The backend then performs the actual operation. As mentioned
above, it is typical for existing interdomain protocol prototypes to
already offer a sockets-like API (e.g., XIA’s Xsocket interface), so
the backend in such cases is straightforward glue code. This approach
has a performance hit relative to kernel-based networking, but we
use it only for protocols that do not have a kernel implementation
(e.g., there is no performance hit for IP).

6 EVALUATION
In this section we substantiate our architectural claims by: (i) de-
scribing how we were able to deploy a variety of architectures within
Trotsky, (ii) how within Trotsky, applications can seamlessly use
more than one architecture, and (iii) illustrating how a domain can
deploy a new L3.5 design. We then provide performance numbers
that show that (iv) Trotsky itself does not introduce significant per-
formance overheads and (v) software forwarding is sufficient for
simple L3.5s.

6.1 Implementing L3.5 Designs within Trotsky
In addition to the IPv4 L3.5 implemented using hardware via Open-
Flow as described in Section 5.1, we also integrated two existing
software implementations of new architectures, prototyped a third
L3.5 from scratch, and investigated the implementability of several
others. We discuss these here.

NDN. As discussed in Section 5.1, integrating an existing code-
base as an L3.5 protocol is largely a matter of installing the existing
NDN codebase adjacent to the pipe terminus, and directing the pipe
terminus to forward packets to the NDN forwarding daemon when
the next-header field corresponds to NDN. Additional “glue code”
translates from the TP configuration to an NDN configuration file
(crucially, this configures an NDN “face” for each logical pipe).

NDN usually provides its own unique API to applications. As
discussed in Section 5.2, we favor the reuse of the sockets API when
possible. To demonstrate this, we used our FUSE-like mechanism
to map requests for an NDN stream socket to the NDN chunks
protocol as implemented by the ndncatchunks and ndnputchunks

9While we focus on the sockets API in this paper, we admit that some L3.5s may well
benefit from more than trivial additions to it. We have no objection to this if done with
a focus on general semantics rather than low-level details, and we note that the IETF
TAPS Working Group is already working along these lines (e.g., in [35]).

9

SIGCOMM ’19, August 19–23, 2019, Beijing, China J. McCauley, Y. Harchol, A. Panda, B. Raghavan, and S. Shenker

tools maintained by the NDN project. The chunks protocol already
functions much like a stream transport, providing a mechanism to
download more data than fits in a single named packet while adding
reliability and congestion control. This allows applications to simply
open an NDN streaming socket, connect it to an address which is
just the root name of some NDN chunks, and read data from the
socket.

XIA. XIA is a flexible architecture that we discuss in Section 7.
Much like the NDN use case, we incorporated XIA as an L3.5 design
in Trotsky with minimal modification to the public XIA source code.
XIA packets arriving at the TP pipe terminus are forwarded to the
XIA daemons and from the XIA daemons back through the terminus
to pipes. We made minor changes to the XIA code to account for
running on logical pipes rather than directly on Ethernet (essentially
disabling the XARP protocol). The “glue code” for our XIA L3.5
implementation leverages the Trotsky neighbor protocol to propagate
configuration information between TPs.

Trotsky Optical Protocol. To illustrate how Trotsky can support
non-packet L3.5 designs, we devised the Trotsky Optical Protocol
(TOP) which supports the establishment and management of end-
to-end (interdomain) optical paths. We assume that each domain
participating in TOP has at least one optical controller (OC) that
manages the optical switches of the domain. In addition, we assume
there is a global path computation engine (PCE) that keeps track of
all optical links, their wavelength (lambda) usage, etc., and computes
paths in response to requests.

The TOP L3.5 implementation in TPs is simple. When a host
requests the establishment of an optical path to a host in another
domain, the host sends a TOP request, which reaches the TOP L3.5
implemention in a TP of the originating domain. The TOP L3.5
code contacts the domain’s OC, which requests a path from the
PCE. When the OC receives the path, it communicates the relevant
portions to the domain’s optical network, and also sends the path
information to the TP that handles the peering relationship with the
next hop domain. The TOP L3.5 implementation in that TP hands
the path to the peer’s TP, which requests a path from the OC in its
domain. The process recurses until the entire path is established.

Other potential L3.5 Designs. For the aforementioned L3.5 de-
signs, we either used existing codebases or (for TOP) wrote our own
L3.5 design. To broaden our perspective, we also looked carefully at
several other potential L3.5 designs, including IPv6, AIP [2], SCION
[41], and Pathlets [13]. In each case, the porting of the design to
Trotsky appeared to be straightforward. We did not actually do the
porting because in some cases little was to be learned (IPv6), or
codebases were not available (Pathlets and AIP), or lower layers in
the current codebase were tightly coupled such that porting the code
to use pipes would have been overly time-consuming (SCION).

6.2 Diversity
We modified the GNOME Web (aka Epiphany) browser to allow
it to use both IP and NDN L3.5 designs simultaneously. This re-
quired adding an ndnchunks: URL scheme, which involved 156
lines of code, and which allows HTML documents to contain URLs
of the form ndnchunks:<ndn name> (in addition to the usual
http:// and https:// URLs). Such URLs can read NDN

chunks published via the ndnputchunks tool (see Section 6.1). One
immediate benefit of this is the ability to leverage NDN’s caching
benefits when retrieving static objects that today are often served via
CDNs. Thus, a single application can utilize multiple L3.5 designs,
leveraging the entire suite of available L3.5 functionality rather than
being restricted to a single design.

6.3 Deploying a New L3.5
We performed functional testing using a software networking tool
roughly similar to the well-known Mininet [21]. With this tool, we
could create virtual networking environments composed of Linux
network namespaces and Docker/LXC containers ([14, 23]) con-
nected in arbitrary topologies by virtual network links. Within the
nodes (i.e., namespaces/containers), we can run software TPs, routers,
the XIA and NDN protocol stacks, and so on, or simply emulate
hosts. While the tool has low performance fidelity, it provided a
flexible way to experiment with our prototype and its administration.

For example, by treating a group of nodes as a domain and con-
figuring things accordingly (e.g., choosing a common L3 protocol,
configuring the TP nodes within the domain appropriately), we could
role-play as the administrators of two domains deploying a new L3.5
design. Consider two peering domains AS1 and AS2 that both sup-
port the IPv4 L3.5 design, but AS2 is also running the NDN L3.5
design. AS1 wants to add support for NDN and add this to its peering
with AS2. Here are the steps we take in our test environment to
instantiate this support, which mirrors reality.

First, acting as the administrators of AS2, we alter the configura-
tion of the AS2 TP adjacent to the peering logical pipe to allow NDN
on it; this is the only action that must be taken for AS2. Acting as ad-
ministrators for AS1, we then enable NDN for its end of the peering
pipe as well as for other logical pipes internal to AS1. Following this,
we install the NDN software on theAS1 TPs and reconfigure the pipe
terminus to send NDN packets to it (in our prototype, software L3.5
code runs in containers, and we envision a standard container-based
“package format” for L3.5 processing code in the future).

The final step is to update AS1’s bootstrap daemons to advertise
NDN as an available L3.5. After this, Trotsky-capable hosts attaching
to AS1 see NDN as available and are able to make use of it (provided
they also have NDN installed).

This is all it takes to deploy new L3.5s. In a large domain, chang-
ing configurations obviously poses additional challenges (e.g., test-
ing, training, etc.), but our point is that Trotsky removes all the
architectural barriers to extensibility.

6.4 Overhead Microbenchmarks
We evaluated the performance overhead of the TP design presented
in Section 5 for two different L3.5 designs: IPv4 (in hardware), and
NDN (in software). We used another server as a traffic generator
and compared two setups for each L3.5 design: with and without
Trotsky. For Trotsky, we encoded the logical pipe next-header field
using a VLAN tag.

Our experiments show no measurable difference in the throughput
and latency with and without Trotsky for both L3.5 designs. For
IPv4, in hardware, the roundtrip latency is 2µs in both cases and the
link gets saturated (10Gbps throughput). Using the NDN software,
roundtrip latency is around 1.2 − 1.8ms and the median goodput is

10

Enabling a Permanent Revolution in Internet Architecture SIGCOMM ’19, August 19–23, 2019, Beijing, China

49Mbps in both cases. Thus, the presence of Trotsky does not impose
significant performance overheads.

6.5 Viability of Software L3.5 Implementations
One might worry that software L3.5 implementations will always
be too slow. To provide some context for this issue, we ran some
software packet forwarding experiments using BESS [16] on an
Intel® Xeon® E5-2690 v4 (Broadwell) CPU running at 2.60GHz.
We achieved roughly 35Mpps for IP forwarding on a single core;
roughly 18Gbps for minimal-sized packets.10 The server, which costs
roughly $10,000, has 28 cores, so this is roughly 50Gbps per $1,000.
While this is clearly less than one can achieve with a networking
ASIC, the question is whether it is fast enough to be viable.

In terms of handling the load at a single interdomain connection
point, the measurements above show that it would only take six cores
to provide 100Gbps IP connectivity for min-sized packets. This is
clearly feasible, but is the overall cost of provisioning cores at the
edge too much? While there is little public data on the load entering
a domain, the best information we can collect results in an estimate
on the order of 10Tbps. To handle this load with minimum-sized
packets, we would need to spend roughly $200,000 on servers to
handle the entire load entering the domain. This number contains
many approximations (moving from min-sized packets to average
sized packets would reduce the cost by an order of magnitude, con-
sidering more complicated L3.5 designs could add two or three
orders of magnitude, etc.). But with the capital budgets of large
carriers running into the billions of dollars (up to tens of billions),
this number will likely be a tiny fraction of their overall costs. Thus,
it is clearly viable for a domain to use software packet processing
to handle their incoming load. Moreover, we envision that it is only
the initial deployment of an architecture that is in software; once it
becomes widely and intensely used, we assume hardware support
will become available if needed.

7 RELATED WORK
While our work refers to the Internet architecture as having cleanly
defined layers, the actual usage patterns of the Internet are far more
complicated. A recent paper [40] notes that domains can use multi-
ple levels of tunneling (e.g., one can have multiple IP headers and
multiple MPLS headers in a packet), and observes that it might be
best to think of the Internet as an exercise in composing networks
rather than being a simple set of four layers. We agree with this
sentiment, but think that making the distinction between L3 and
L3.5 remains crucially important in enabling an extensible Internet.
Domains will presumably continue to use complicated sets of over-
lays to, for instance, carry wireless traffic over the public Internet,
but this does not change our basic observation that separating L3
from L3.5 will allow new L3.5 designs to be incrementally deployed
and for multiple of them to coexist.

There have been several other approaches to architectural inno-
vation. The earliest, and most incrementally deployable, is that of
overlay networks. However, in most overlay approaches the process
of constructing the overlay network (and eventually transitioning
10We used IP forwarding because it is well-known and fairly simple. Obviously the
performance numbers would be significantly worse for designs that required extensive
cryptography or other computation. However, even for IPsec, one can achieve roughly
20Gbps per core with MTU-sized packets.

from overlay to “native”) is typically ad hoc. By contrast, in Trot-
sky the overlay is fully intrinsic. More precisely, of course one can
use a purpose-built overlay to deploy a new clean-slate architecture.
Trotsky is a framework in which the interdomain delivery is an in-
trinsic overlay that allows all such clean-slate designs to be deployed
straightforwardly and simultaneously.

MPLS can be considered an underlay, which for some domains
handles most intradomain delivery but leaves interdomain delivery
to IP. However, in contrast to Trotsky, MPLS is strictly a mechanistic
separation, with IP remaining as the universal L3 design.

Beyond overlays and underlays there are several interesting clean-
slate proposals for architectural change. Active networking [34]
innovated on the datapath, but did not address the issue of the Ne-
tAPI or interdomain interactions. Nebula [3] offers a great deal of
extensibility in network paths and services, which is an important
dimension. However, the core of the architecture (i.e., the datapath)
is universal within and across domains and therefore hard to change.

Plutarch [9] represents an entirely different approach to evolution,
stitching together architectural contexts, which are sets of network
elements that share the same architecture in terms of naming, ad-
dressing, packet formats and transport protocols. These contexts
communicate through interstitial functions that translate different ar-
chitectures. It is interesting to contrast this with the current Internet,
which was founded on two principles. The first is that there should
be a universal connectivity layer, so that in order to support n differ-
ent internal network designs (what we call L2 today) we would not
need n2 translators. The second is the end-to-end principle, which
pushes (to the extent possible) intelligence to the edge. We feel that
Plutarch runs counter to these two principles, requiring architectural
translations within the network to achieve evolvability.

XIA [15, 24] enables the introduction of new service models by
defining principals, and XIA itself defines a number of broadly-
useful classes of identifiers. To cope with partial deployment, XIA
relies on a directed acyclic graph in the packet header that allows
the packet to “fall back” to other services that will (when composed)
provide the same service. For instance, a DAG can have paths for
CCN [18] and a source route via IP, with edges permitting inter-
mediate routers to select either. Thus, XIA’s approach to partial
deployment (which is a key step in enabling evolution), much like
Plutarch before it, is to require translations between architectures at
network elements that understand both. In this respect, both Plutarch
and XIA deploy new architectures “in series”, and any heterogeneity
along the path is dealt with by having the network explicitly translate
between architectures. In contrast, in Trotsky, one simply uses any
of the L3.5 designs mutually supported by both endhosts and their
domains, which is an end-to-end approach. Naming systems can
provide hints about how hosts and objects can be reached (e.g., a
name might be tied to one or more L3.5 designs), but the network
does not try to translate between designs.

In terms of the many proposed architectures arising from Clean
Slate research (such as NDN or SCION), none are incrementally-
deployable general frameworks for deploying arbitrary architectures,
so our goals are different from theirs. However, Trotsky could serve
as a general deployment vehicle for all of them, so they need not
explore deployment mechanisms on a design-by-design basis.

Sambasivan et al. observe that were it possible to make two clean-
slate changes to BGP, it would then be possible to evolve routing

11

SIGCOMM ’19, August 19–23, 2019, Beijing, China J. McCauley, Y. Harchol, A. Panda, B. Raghavan, and S. Shenker

thereafter [32]. Their work highlights the value of enabling architec-
tural evolution, and presents an alternative path to achieving it in the
context of interdomain routing. ChoiceNet [31, 37] aims to improve
the Internet’s architecture by fostering a “network services econ-
omy”, focusing on service offerings in a competitive marketplace;
this could be complementary to Trotsky. The FII [20] proposal is
also concerned with architectural evolution, though through a non-
backwards-compatible clean-slate approach. In addition, it focuses
largely on specific solutions to routing (specifically Pathlet rout-
ing [13]) and security, rather than general interdomain services. A
similar but more general approach was taken in [12, 28].

Thus, to our knowledge, Trotsky is the first attempt to make a
backwards-compatible change in the current architecture which then
enables incremental deployment of radically different architectures
(which need not be backwards compatible with any current archi-
tecture). Whatever one thinks about clean-slate design, the ability
to make a single backwards-compatible change in the infrastructure
(migrating to Trotsky) – one that is conceptually simple and mecha-
nistically mundane – that then unleashes our ability to incrementally
deploy new architectures is a significant step forward.

8 CONCLUSION
Our research was guided by six axioms, which we now review.

First: Trotsky’s basic goal of architectural extensibility is desir-
able. This derives from (i) our belief that despite rapid innovation at
higher layers (such as QUIC, SPDY, and the like) there are more fun-
damental architectural improvements that we would like to deploy –
ranging from security mechanisms [2, 41] to ICN designs [18, 19] to
mobility enhancements [33] to service-centric architectures [26] to
more readily available Edge Computing [27] – and (ii) that there are
currently high barriers to the deployment of these new architectures.

Second: Trotsky’s approach is novel. In particular, we are the first
to observe that making the interdomain datapath an inherent overlay
over the intradomain datapath L3 would both (i) be incrementally
deployable and (ii) enable the incremental deployment of radical new
architectures. As such, Trotsky is not just a typical ad hoc overlay,
but a structural rearranging of the Internet architecture to create an
intrinsic overlay.

Third: Trotsky is effective. We have shown via implementation
how Trotsky can seamlessly deploy a wide range of architectures and
demonstrated that applications can leverage the resulting architec-
tural diversity. Moreover, Trotsky can support any L3.5 design that
could have been deployed as a clean-slate L3 design on routers, so
there is no significant limit to its generality. While we cannot elimi-
nate all operational barriers, Trotsky does eliminate the architectural
barriers to extensibility.

Fourth: software packet processing, as currently being deployed
in NFV and Edge Computing, is a key enabler for easy initial de-
ployment. There is no question that software processing is far slower
than hardware forwarding, but there is also no question that software
packet processing is sufficient to handle the load at the edge for
simple L3.5 designs, particularly when they are first deployed.

Fifth: enabling architectural extensibility could greatly change
the nature of the Internet. Trotsky can transform the Internet not
just because it can deploy multiple coexisting architectures, but also
because it allows applications to use a diversity of architectures.

This means that individual L3.5 designs need not meet the needs
of all applications, only that the union of L3.5 designs can meet
those needs in a way that is superior to today’s Internet. This greatly
lowers the bar on what new architectures must do in order to be a
valuable part of the overall ecosystem.

Sixth: Trotsky may change the incentives surrounding architec-
tural change. Our motivation in designing Trotsky is to show that
some long-held beliefs about Internet architecture, such as the ne-
cessity of a narrow waist and the inherent difficulty of architectural
evolution, are wrong. But Trotsky will remain merely an academic
exercise if there are no incentives to deploy it, or to adopt new
L3.5 designs once Trotsky itself is deployed. While the long history
of architectural stagnation and lack of carrier innovation dampens
our optimism, we do believe that now the incentives may be more
favorable than in the past. The ISP business is rapidly becoming com-
modity, and carriers are desperate to offer new revenue-generating
services. However, such services are of limited value if they can only
be offered by a single carrier. Because L3.5 designs can initially be
deployed in software running in the TPs, Trotsky provides a way for
carriers to offer new services – in the form of new L3.5 designs –
without endless standards battles and long hardware replacement cy-
cles, and to easily peer with other carriers supporting those services.
Only if such a design attracts significant traffic does the carrier need
to contemplate more extensive support (in the form of hardware or
internal deployment). Thus, Trotsky may play a crucial role creating
the incentives for deploying new cross-domain services (in the form
of L3.5 designs). In so doing, Trotsky will have created a permanent
revolution in Internet architecture.

ACKNOWLEDGEMENTS
This work owes a debt to a great many people. First off, we wish
to thank our shepherd Marco Canini, our anonymous referees, and
three undergraduates at UC Berkeley who helped bring this paper to
fruition: Ian Rodney, Brian Kim, and Michael Dong. More funda-
mentally, this paper is a culmination of almost a decade’s worth of
research and reflection. Many other people have shaped the ideas pre-
sented here, through either their participation in related joint papers
[12, 20, 28, 29] or in-depth discussions. While we take sole credit
for any of the bad ideas in this paper, we gratefully acknowledge the
following for contributing to whatever good ideas it contains: Hari
Balakrishnan, Vjekoslav Brajkovic, Martin Casado, Nick Feamster,
Igor Ganichev, Ali Ghodsi, P. Brighten Godfrey, Dirk Hasselbalch,
Teemu Koponen, Nick McKeown, Sylvia Ratnasamy, Jennifer Rex-
ford, Ankit Singla, Amin Tootoonchian, James Wilcox, and others.
We also wish to acknowledge financial support from Intel, VMware,
Ericsson, and Huawei, as well as NSF grant 1817115.

REFERENCES
[1] David Andersen, Hari Balakrishnan, Frans Kaashoek, and Robert Morris. 2001.

Resilient Overlay Networks. In Proceedings of the Eighteenth ACM Symposium on
Operating Systems Principles (SOSP ’01). ACM, New York, NY, USA, 131–145.
https://doi.org/10.1145/502034.502048

[2] David G. Andersen, Hari Balakrishnan, Nick Feamster, Teemu Koponen,
Daekyeong Moon, and Scott Shenker. 2008. Accountable Internet Protocol
(AIP). In Proceedings of the ACM SIGCOMM 2008 Conference on Data Com-
munication (SIGCOMM ’08). ACM, New York, NY, USA, 339–350. https:
//doi.org/10.1145/1402958.1402997

[3] Tom Anderson, Ken Birman, Robert M. Broberg, Matthew Caesar, Douglas Comer,
Chase Cotton, Michael J. Freedman, Andreas Haeberlen, Zachary G. Ives, Arvind

12

https://doi.org/10.1145/502034.502048
https://doi.org/10.1145/1402958.1402997
https://doi.org/10.1145/1402958.1402997

Enabling a Permanent Revolution in Internet Architecture SIGCOMM ’19, August 19–23, 2019, Beijing, China

Krishnamurthy, William Lehr, Boon Thau Loo, David Mazières, Antonio Nicolosi,
Jonathan M. Smith, Ion Stoica, Robbert van Renesse, Michael Walfish, Hakim
Weatherspoon, and Christopher S. Yoo. 2013. The NEBULA Future Internet
Architecture. In The Future Internet - Future Internet Assembly 2013: Validated
Results and New Horizons. Springer, Berlin, Heidelberg, 16–26. https://doi.org/
10.1007/978-3-642-38082-2_2

[4] Katerina Argyraki and David R. Cheriton. 2005. Active Internet Traffic Filtering:
Real-time Response to Denial-of-service Attacks. In Proceedings of the USENIX
Annual Technical Conference (ATC ’05). USENIX Association, Berkeley, CA,
USA, 135–148.

[5] Steven M. Bellovin, David D. Clark, Adrian Perrig, and Dawn Song. 2005. A
Clean-Slate Design for the Next-Generation Secure Internet. GENI Design Docu-
ment 05-05. (July 2005). Report on NSF workshop.

[6] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. 2012. Fog
Computing and Its Role in the Internet of Things. In Proceedings of the First
Edition of the MCC Workshop on Mobile Cloud Computing (MCC ’12). ACM,
New York, NY, USA, 13–16. https://doi.org/10.1145/2342509.2342513

[7] Matthew Caesar, Donald Caldwell, Nick Feamster, Jennifer Rexford, Aman
Shaikh, and Jacobus van der Merwe. 2005. Design and Implementation of a
Routing Control Platform. In Proceedings of the 2nd Conference on Symposium
on Networked Systems Design & Implementation - Volume 2 (NSDI’05). USENIX
Association, Berkeley, CA, USA, 15–28.

[8] David Clark, Karen R. Sollins, John Wroclawski, Dina Katabi, Joanna Kulik, Xi-
aowei Yang, Robert Braden, Ted Faber, Aaron Falk, Venkata K. Pingali, Mark Han-
dley, and Noel Chiappa. 2003. New Arch: Future Generation Internet Architecture.
Technical Report. ISI. https://www.isi.edu/newarch/iDOCS/final.finalreport.pdf

[9] Jon Crowcroft, Steven Hand, Richard Mortier, Timothy Roscoe, and Andrew
Warfield. 2003. Plutarch: An Argument for Network Pluralism. SIGCOMM
Comput. Commun. Rev. 33, 4 (Aug. 2003), 258–266. https://doi.org/10.1145/
972426.944763

[10] Alan Demers, Srinivasan Keshav, and Scott Shenker. 1989. Analysis and Simula-
tion of a Fair Queueing Algorithm. In Symposium Proceedings on Communications
Architectures & Protocols (SIGCOMM ’89). ACM, New York, NY, USA, 1–12.
https://doi.org/10.1145/75246.75248

[11] Seyed Kaveh Fayazbakhsh, Yin Lin, Amin Tootoonchian, Ali Ghodsi, Teemu
Koponen, Bruce Maggs, K.C. Ng, Vyas Sekar, and Scott Shenker. 2013. Less
Pain, Most of the Gain: Incrementally Deployable ICN. In Proceedings of the
ACM SIGCOMM 2013 Conference on SIGCOMM (SIGCOMM ’13). ACM, New
York, NY, USA, 147–158. https://doi.org/10.1145/2486001.2486023

[12] Ali Ghodsi, Scott Shenker, Teemu Koponen, Ankit Singla, Barath Raghavan,
and James Wilcox. 2011. Intelligent Design Enables Architectural Evolution. In
Proceedings of the 10th ACM Workshop on Hot Topics in Networks (HotNets-X).
ACM, New York, NY, USA, Article 3, 6 pages. https://doi.org/10.1145/2070562.
2070565

[13] P. Brighten Godfrey, Igor Ganichev, Scott Shenker, and Ion Stoica. 2009. Path-
let Routing. In Proceedings of the ACM SIGCOMM 2009 Conference on Data
Communication (SIGCOMM ’09). ACM, New York, NY, USA, 111–122. https:
//doi.org/10.1145/1592568.1592583

[14] Serge Hallyn, Stéphane Graber, Dwight Engen, Christian Brauner, and Wolfgang
Bumiller. 2019. Linux Containers. https://linuxcontainers.org/. (2019).

[15] Dongsu Han, Ashok Anand, Fahad Dogar, Boyan Li, Hyeontaek Lim, Michel
Machado, Arvind Mukundan, Wenfei Wu, Aditya Akella, David G. Andersen,
John W. Byers, Srinivasan Seshan, and Peter Steenkiste. 2012. XIA: Efficient
Support for Evolvable Internetworking. In Proceedings of the 9th USENIX Con-
ference on Networked Systems Design and Implementation (NSDI’12). USENIX
Association, Berkeley, CA, USA, 309–322.

[16] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar, Dongsu Han, and Sylvia
Ratnasamy. 2015. SoftNIC: A Software NIC to Augment Hardware. Technical
Report UCB/EECS-2015-155. University of California at Berkeley.

[17] Yun Chao Hu, Milan Patel, Dario Sabella, Nurit Sprecher, and Valerie Young.
2015. Mobile edge computing – A key technology towards 5G. White paper 11.
ETSI.

[18] Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F. Plass,
Nicholas H. Briggs, and Rebecca L. Braynard. 2009. Networking Named Content.
In Proceedings of the 5th International Conference on Emerging Networking
Experiments and Technologies (CoNEXT ’09). ACM, New York, NY, USA, 1–12.
https://doi.org/10.1145/1658939.1658941

[19] Teemu Koponen, Mohit Chawla, Byung-Gon Chun, Andrey Ermolinskiy,
Kye Hyun Kim, Scott Shenker, and Ion Stoica. 2007. A Data-oriented (and
Beyond) Network Architecture. In Proceedings of the 2007 Conference on
Applications, Technologies, Architectures, and Protocols for Computer Com-
munications (SIGCOMM ’07). ACM, New York, NY, USA, 181–192. https:
//doi.org/10.1145/1282380.1282402

[20] Teemu Koponen, Scott Shenker, Hari Balakrishnan, Nick Feamster, Igor Ganichev,
Ali Ghodsi, P. Brighten Godfrey, Nick McKeown, Guru Parulkar, Barath Raghavan,
Jennifer Rexford, Somaya Arianfar, and Dmitriy Kuptsov. 2011. Architecting
for Innovation. SIGCOMM Comput. Commun. Rev. 41, 3 (July 2011), 24–36.
https://doi.org/10.1145/2002250.2002256

[21] Bob Lantz, Brandon Heller, and Nick McKeown. 2010. A Network in a Laptop:
Rapid Prototyping for Software-defined Networks. In Proceedings of the 9th ACM
SIGCOMM Workshop on Hot Topics in Networks (Hotnets-IX). ACM, New York,
NY, USA, Article 19, 6 pages. https://doi.org/10.1145/1868447.1868466

[22] Taeho Lee, Christos Pappas, David Barrera, Pawel Szalachowski, and Adrian
Perrig. 2016. Source Accountability with Domain-brokered Privacy. In Proceed-
ings of the 12th International on Conference on Emerging Networking EXperi-
ments and Technologies (CoNEXT ’16). ACM, New York, NY, USA, 345–358.
https://doi.org/10.1145/2999572.2999581

[23] Dirk Merkel. 2014. Docker: Lightweight Linux Containers for Consistent Devel-
opment and Deployment. Linux J. 2014, 239 (March 2014), 2.

[24] David Naylor, Matthew K. Mukerjee, Patrick Agyapong, Robert Grandl, Ruogu
Kang, Michel Machado, Stephanie Brown, Cody Doucette, Hsu-Chun Hsiao,
Dongsu Han, Tiffany Hyun-Jin Kim, Hyeontaek Lim, Carol Ovon, Dong Zhou,
Soo Bum Lee, Yue-Hsun Lin, Colleen Stuart, Daniel Barrett, Aditya Akella, David
Andersen, John Byers, Laura Dabbish, Michael Kaminsky, Sara Kiesler, Jon Peha,
Adrian Perrig, Srinivasan Seshan, Marvin Sirbu, and Peter Steenkiste. 2014. XIA:
Architecting a More Trustworthy and Evolvable Internet. SIGCOMM Comput.
Commun. Rev. 44, 3 (July 2014), 50–57. https://doi.org/10.1145/2656877.2656885

[25] David Naylor, Matthew K. Mukerjee, and Peter Steenkiste. 2014. Balancing
Accountability and Privacy in the Network. In Proceedings of the 2014 ACM
Conference on SIGCOMM (SIGCOMM ’14). ACM, New York, NY, USA, 75–86.
https://doi.org/10.1145/2619239.2626306

[26] Erik Nordström, David Shue, Prem Gopalan, Robert Kiefer, Matvey Arye,
Steven Y. Ko, Jennifer Rexford, and Michael J. Freedman. 2012. Serval: An End-
host Stack for Service-centric Networking. In Proceedings of the 9th USENIX Con-
ference on Networked Systems Design and Implementation (NSDI’12). USENIX
Association, Berkeley, CA, USA, 85–98.

[27] Aurojit Panda, James Murphy McCauley, Amin Tootoonchian, Justine Sherry,
Teemu Koponen, Syliva Ratnasamy, and Scott Shenker. 2016. Open Network
Interfaces for Carrier Networks. SIGCOMM Comput. Commun. Rev. 46, 1 (Jan.
2016), 5–11. https://doi.org/10.1145/2875951.2875953

[28] Barath Raghavan, Martín Casado, Teemu Koponen, Sylvia Ratnasamy, Ali Ghodsi,
and Scott Shenker. 2012. Software-defined Internet Architecture: Decoupling
Architecture from Infrastructure. In Proceedings of the 11th ACM Workshop
on Hot Topics in Networks (HotNets-XI). ACM, New York, NY, USA, 43–48.
https://doi.org/10.1145/2390231.2390239

[29] Barath Raghavan, Teemu Koponen, Ali Ghodsi, Vjeko Brajkovic, and Scott
Shenker. 2012. Making the Internet More Evolvable. Technical Report. Interna-
tional Computer Science Institute. http://www.icsi.berkeley.edu/pubs/techreports/
ICSI_TR-12-011.pdf

[30] Nikolaus Rath. 2019. libfuse: Filesystem in UserSpace. https://github.com/libfuse/
libfuse. (2019).

[31] George N Rouskas, Ilia Baldine, Ken Calvert, Rudra Dutta, Jim Griffioen, Anna
Nagurney, and Tilman Wolf. 2013. ChoiceNet: Network Innovation through
Choice. In 2013 17th International Conference on Optical Networking Design
and Modeling (ONDM). IEEE, Piscataway, NJ, USA, 1–6.

[32] Raja R. Sambasivan, David Tran-Lam, Aditya Akella, and Peter Steenkiste. 2017.
Bootstrapping Evolvability for Inter-domain Routing with D-BGP. In Proceedings
of the Conference of the ACM Special Interest Group on Data Communication
(SIGCOMM ’17). ACM, New York, NY, USA, 474–487. https://doi.org/10.1145/
3098822.3098857

[33] Ivan Seskar, Kiran Nagaraja, Sam Nelson, and Dipankar Raychaudhuri. 2011.
MobilityFirst Future Internet Architecture Project. In Proceedings of the 7th Asian
Internet Engineering Conference (AINTEC ’11). ACM, New York, NY, USA, 1–3.
https://doi.org/10.1145/2089016.2089017

[34] David L. Tennenhouse and David J. Wetherall. 1996. Towards an Active Network
Architecture. SIGCOMM Comput. Commun. Rev. 26, 2 (April 1996), 5–17.
https://doi.org/10.1145/231699.231701

[35] Brian Trammell, Michael Welzl, Theresa Enghardt, Gorry Fairhurst, Mirja Küh-
lewind, Colin Perkins, Philipp S. Tiesel, and Christopher A. Wood. 2019. An
Abstract Application Layer Interface to Transport Services. Internet-Draft draft-
ietf-taps-interface-03. Internet Engineering Task Force. https://datatracker.ietf.org/
doc/html/draft-ietf-taps-interface-03 Work in Progress.

[36] Yuefeng Wang, Ibrahim Matta, Flavio Esposito, and John Day. 2014. Intro-
ducing ProtoRINA: A Prototype for Programming Recursive-networking Poli-
cies. SIGCOMM Comput. Commun. Rev. 44, 3 (July 2014), 129–131. https:
//doi.org/10.1145/2656877.2656897

[37] Tilman Wolf, James Griffioen, Kenneth L. Calvert, Rudra Dutta, George N.
Rouskas, Ilya Baldin, and Anna Nagurney. 2014. ChoiceNet: Toward an Economy
Plane for the Internet. SIGCOMM Comput. Commun. Rev. 44, 3 (July 2014),
58–65. https://doi.org/10.1145/2656877.2656886

[38] Xiaowei Yang, David Clark, and Arthur W. Berger. 2007. NIRA: A New Inter-
domain Routing Architecture. IEEE/ACM Trans. Netw. 15, 4 (Aug. 2007), 775–
788. https://doi.org/10.1109/TNET.2007.893888

[39] Xiaowei Yang, David Wetherall, and Thomas Anderson. 2008. TVA: A DoS-
limiting Network Architecture. IEEE/ACM Trans. Netw. 16, 6 (Dec. 2008), 1267–
1280. https://doi.org/10.1109/TNET.2007.914506

13

https://doi.org/10.1007/978-3-642-38082-2_2
https://doi.org/10.1007/978-3-642-38082-2_2
https://doi.org/10.1145/2342509.2342513
https://www.isi.edu/newarch/iDOCS/final.finalreport.pdf
https://doi.org/10.1145/972426.944763
https://doi.org/10.1145/972426.944763
https://doi.org/10.1145/75246.75248
https://doi.org/10.1145/2486001.2486023
https://doi.org/10.1145/2070562.2070565
https://doi.org/10.1145/2070562.2070565
https://doi.org/10.1145/1592568.1592583
https://doi.org/10.1145/1592568.1592583
https://linuxcontainers.org/
https://doi.org/10.1145/1658939.1658941
https://doi.org/10.1145/1282380.1282402
https://doi.org/10.1145/1282380.1282402
https://doi.org/10.1145/2002250.2002256
https://doi.org/10.1145/1868447.1868466
https://doi.org/10.1145/2999572.2999581
https://doi.org/10.1145/2656877.2656885
https://doi.org/10.1145/2619239.2626306
https://doi.org/10.1145/2875951.2875953
https://doi.org/10.1145/2390231.2390239
http://www.icsi.berkeley.edu/pubs/techreports/ICSI_TR-12-011.pdf
http://www.icsi.berkeley.edu/pubs/techreports/ICSI_TR-12-011.pdf
https://github.com/libfuse/libfuse
https://github.com/libfuse/libfuse
https://doi.org/10.1145/3098822.3098857
https://doi.org/10.1145/3098822.3098857
https://doi.org/10.1145/2089016.2089017
https://doi.org/10.1145/231699.231701
https://datatracker.ietf.org/doc/html/draft-ietf-taps-interface-03
https://datatracker.ietf.org/doc/html/draft-ietf-taps-interface-03
https://doi.org/10.1145/2656877.2656897
https://doi.org/10.1145/2656877.2656897
https://doi.org/10.1145/2656877.2656886
https://doi.org/10.1109/TNET.2007.893888
https://doi.org/10.1109/TNET.2007.914506

SIGCOMM ’19, August 19–23, 2019, Beijing, China J. McCauley, Y. Harchol, A. Panda, B. Raghavan, and S. Shenker

[40] Pamela Zave and Jennifer Rexford. 2019. The Compositional Architecture of
the Internet. Commun. ACM 62, 3 (Feb. 2019), 78–87. https://doi.org/10.1145/
3226588

[41] Xin Zhang, Hsu-Chun Hsiao, Geoffrey Hasker, Haowen Chan, Adrian Perrig, and
David G. Andersen. 2011. SCION: Scalability, Control, and Isolation on Next-
Generation Networks. In Proceedings of the 2011 IEEE Symposium on Security
and Privacy (SP ’11). IEEE Computer Society, Washington, DC, USA, 212–227.
https://doi.org/10.1109/SP.2011.45

14

https://doi.org/10.1145/3226588
https://doi.org/10.1145/3226588
https://doi.org/10.1109/SP.2011.45

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Ethical Considerations

	2 Clarifications, Assumptions, and a Question
	2.1 Two Clarifications
	2.2 Three Key Assumptions
	2.3 What Is An Architecture?

	3 Motivating Trotsky's Design
	3.1 The Internet Is A Series of Intrinsic Overlays
	3.2 Two Design Decisions
	3.3 Making Interdomain An Inherent Overlay
	3.4 Implications for Extensibility

	4 Trotsky Design
	4.1 Design Overview
	4.2 Functions Left to L3.5 Designs
	4.3 Functions Left to Domains
	4.4 How Does This All Fit Together?

	5 Implementation
	5.1 Trotsky-Processors
	5.2 Trotsky-Capable Hosts

	6 Evaluation
	6.1 Implementing L3.5 Designs within Trotsky
	6.2 Diversity
	6.3 Deploying a New L3.5
	6.4 Overhead Microbenchmarks
	6.5 Viability of Software L3.5 Implementations

	7 Related Work
	8 Conclusion
	References

