
Hardware Analysis and Low-level API Design
Towards a Timer Subsystem for RIOT-OS

Niels Gandraß
<Niels.Gandrass@haw-hamburg.de>

Hamburg University of Applied Sciences

LITERATURE 

REVIEW

1 

2

3

4

5

(a) timer hardware 

(b) implementation techniques 

(c) software modules

TIMER-HARDWARE 

ANALYSIS

RIOT-OS TIMER 

MODULE REVIEW

DERIVING API 

REQUIREMENTS 

LOW-LEVEL TIMER 

API DESIGN 

Assessment of related work on:

43 MCU families from 

           8 different manufacturers

Base properties, channels, CLKs, 

low-power modes, chaining, ... 

Common design aspects and 

potential enhancements.

Demands on generic a low-level 

timer-API for RIOT-OS.

Technical draft of aspired API.

6

7

EVALUATION & 

BENCHMARKING 

IMPLEMENTATION &

VERIFICATION

Prototypical implementation on 

STM32 platform.

Provide support for various 

RIOT-OS compatible MCUs.

feature exposure, portability, 

HW capabilities, state, config 

management, resources, ...

Platform-independent as long 

as possible. Separation of HW- 

and user-facing APIs.

Micro-benchmarking of different 

design decisions.

Backed by extensive HiL tests.

Scan to download poster and
get additional information.

– TIMER-HARDWARE ANALYSIS —— 2
Gaining detailed insight into target hardware, underpinning the API design.

PLATFORM 
SELECTION

ANALYSIS 
CRITERIA

INFORMATION 
EXTRACTION

PLATFORM 
RESULTS

INTER-PLATFORM 
FINDINGS

Determination of all MCU device families currently
supported by RIOT-OS. Acquisition of datasheets,
reference manuals, application notes and others.

Definition of criteria and properties to at least be
extracted from available information sources. 

Based on literature analysis and extended by us. 

Extraction of timer data into mind-map structure. 
If documentation was unclear at some point,

additional data sources (e.g. SDKs) were used.

Consolidation of results into Timer Comparison 
Matrices (TCMs) for every analyzed platform.

Generation of inter-MCU-platform insights
based on all TCMs. Includes basic properties
as well as availability of advanced features.

– RIOT-OS TIMER MODULE REVIEW — 3
Review of existing low-level timer implementations and their limitations.

LL-Modules
periph/

-timer (ï)
-rtc (¿), rtt (¹)
-pwm (Ú)
-wdt (`)

• Reduced to minimal common functions

• Functionality often overlaps between modules

• Neither exposing all hardware timers nor all their
basic features (e.g. compare channels)

• Support of advanced features is solely left to the
application developer (e.g. low-power modes)

– LOW-LEVEL TIMER API DESIGN —— 5
Timers shall be usable transparently interchangeable via the same unified API.

General-
purpose

High-level Timer Module /
User Application

Low-power

RTC

U
se

r-f
ac

in
g 

AP
I

H
W

 In
te

rfa
ce

Driver A

Driver B

periph_timer

Timer
0

Timer
1

Timer
2

� User-facing API
Timer type abstracted functions

exposed to user or high-level
timer module.

Ñ Hardware Interface
Compact and reusable timer

drivers, directly interfacing the
various hardware peripherals.

– EVALUATION ——————————— 6
Prototypical implementation of the proposed API for STM32 MCUs.

´ Integration of currently unsupported timer types, all usable through a unified
and MCU-independent API.

´ Exposure of advanced features commonly found on mid- to high-end MCUs.

´ Providing (runtime-) information on timer capabilities and properties.

´ Introducing flexibility through driver based design. Timers are modeled as
uniform objects in the form of standardized timer instance structs.

´ Widening of runtime configuration possibilities (e.g. clock selection).

´ Combining various hardware timers into a virtual instance (e.g. for chaining).

| haw-hamburg.de 2021-02-04 — LMU (CC BY-SA 4.0) gandrass.de �

https://haw-hamburg.de/
https://gandrass.de/

	– TIMER-HARDWARE ANALYSIS —— [height=0.68em]images/heading-eye  2
	– RIOT-OS TIMER MODULE REVIEW — [height=0.7em]images/heading-modules  3
	– LOW-LEVEL TIMER API DESIGN —— [height=0.7em]images/heading-flask  5
	– EVALUATION ——————————— [height=0.75em]images/heading-molecule  6

