w Hardware Analysis and Low-level API Design
R Towards a Timer Subsystem for RIOT-0OS J) 07
\

HA
HA

/@ Niels Gandralf3

INET <Niels.Gandrass@haw-hamburg.de>

Hamburg University of Applied Sciences

- TIMER-HARDWARE ANALYSIS —— 2

Gaining detailed insight into target hardware, underpinning the API design.

Determination of all MCU device families currently
AHATIAOAL supported by RIOT-OS. Acquisition of datasheets,
SELECTION .
reference manuals, application notes and others.
ANALYSIS Definition of criteria gnd pr_opertles_ to at least be
extracted from available information sources.
CRITERIA . :
Based on literature analysis and extended by us.

Extraction of timer data into mind-map structure.
If documentation was unclear at some point,
additional data sources (e.g. SDKs) were used.

1

Consolidation of results into Timer Comparison
Matrices (TCMs) for every analyzed platform.

. Generation of inter-MCU-platform insights
INTER-FLATFORM based on all TCMs. Includes basic properties
FINDINGS e
as well as availability of advanced features.

- RIOT-OS TIMER MODULE REVIEW — i 3

Review of existing low-level timer implementations and their limitations.

LL-Modules ¢ Reduced to minimal common functions
periph/ e Functionality often overlaps between modules
-timer () * Neither exposing all hardware timers nor all their
-rtc (), ret (O) basic features (e.g. compare channels)
-pwm (atll) e Support of advanced features is solely left to the
-wdt (‘a’) application developer (e.g. low-power modes)

— LOW-LEVEL TIMER API DESIGN —— A& 5

Timers shall be usable transparently interchangeable via the same unified API.

periph timer

_[Fmer]| purpose

— 0 . \
s T4y 7;
S - .~ Driver A "g
> |8 fimer = > O Low-power
= |- Tlrger """ DriverB |
N\
High-level Timer Module / / 4 > O RTC
User Application |
‘a+ User-facing API o 34
‘s> User-facing o Hardware Interface
Timer type abstracted functions Compact and reusable timer
exposed to user or high-level drivers, directly interfacing the
timer module. various hardware peripherals.

- EVALUATION —MM8M8M8 7 6

Prototypical implementation of the proposed API for STM32 MCUS.

> Integration of currently unsupported timer types, all usable through a unified
and MCU-independent APL.

E ul ":;_ E > Exposure of advanced features commonly found on mid- to high-end MCUs.

> Providing (runtime-) information on timer capabilities and properties.

. _: :It:# _l':' -) Introducing flexibility through driver based design. Timers are modeled as
o =" =L L Il:.ll uniform objects in the form of standardized timer instance structs.
' = ey, 2N

Scan to download poster and - - 0) Widening of runtime configuration possibilities (e.g. clock selection).

get additional information. E I ryL- > Combining various hardware timers into a virtual instance (e.g. for chaining).

https://haw-hamburg.de/
https://gandrass.de/

	– TIMER-HARDWARE ANALYSIS —— [height=0.68em]images/heading-eye 2
	– RIOT-OS TIMER MODULE REVIEW — [height=0.7em]images/heading-modules 3
	– LOW-LEVEL TIMER API DESIGN —— [height=0.7em]images/heading-flask 5
	– EVALUATION ——————————— [height=0.75em]images/heading-molecule 6

