
Large-scale Timer Hardware Analysis and Low-level API Design
Towards a Clean-slate Timer Subsystem for RIOT-OS

Niels Gandraß
Niels.Gandrass@haw-hamburg.de

Hamburg University of Applied Sciences
Hamburg, Germany

ABSTRACT
Hardware timers are peripherals found in every embedded sys-
tem. While being required by nearly all applications running on
MCUs, current timer drivers often leave potential for efficiency
optimizations, especially when used in low-power scenarios. With
the goal of developing an optimized timer-API for RIOT-OS, an
open-source embedded OS for resource constrained devices in the
Internet of Things, our contribution is threefold. First, we illustrate
various use cases of hardware timer as well as related research
in this field. Second, we conduct a multi-manufacturer and inter-
MCU-family analysis of timer peripherals and present our results
in a comparative fashion. We give detailed insight into similari-
ties and differences of various timer types that are supported by
RIOT-OS. Existing low-level timer peripheral drivers are further-
more analyzed and generic demands upon such are deduced. Third,
we propose a low-level timer-API design that is based on insights
from our conducted analysis, the timer driver comparison as well
as our review of related work. This contribution shall provide a
solid baseline to later derive requirements and deduce applicable
implementation techniques for a clean-slate timer-API from.

KEYWORDS
energy efficiency, hardware timers, Internet of Things (IoT), low-
power, operating systems, resource constrained devices

1 INTRODUCTION
Hardware timer peripherals are an essential component of all em-
bedded devices [12]. Manufacturers of microcontroller units (MCUs)
today offer a large variety of timer modules ranging from general-
purpose to highly specialized and application specific peripherals.
As the Internet of Things (IoT) emerges into our daily lives embedded
devices adapt to the new requirements; they become smaller and
more energy efficient. To support this rapid growth multipurpose
embedded operating systems (OSes) are becoming increasingly pop-
ular among developers. These OSes usually provide a high-level API
to timer functionalities, though, often only use simple multiplexing
of virtual software timers onto a single hardware timer. This leaves
potential for optimization. Furthermore, some implementations do
not make use of the advanced power saving features provided by
specialized low-power timer modules that manufacturers nowadays
include in most of their MCUs.

RIOT-OS1 is such an open-source operating system, explicitly
targeted at low-power and resource constrained embedded IoT de-
vices [3]. Its current timer subsystem, namely xtimer, multiplexes
all virtual software timers onto a single hardware module [2]. The

1RIOT-OS project website: https://riot-os.org/ (Accessed 01.12.2019)

long-term goal of our ongoing research is to develop a new clean-
slate timer-API for RIOT-OS. It shall be both able to utilize a wide
range of the available timer hardware and to make use of the vari-
ous power-saving features, including MCU-platform and -family
specific ones. This work shall provide a baseline from which re-
quirements for such a new high-level timer subsystem can later
be derived. It furthermore shall highlight different implementation
techniques and software concepts that are potentially relevant for
the aspired timer module.

The remainder of this report is structured as follows. First, we
present related work regarding both timer hardware peripherals
and software modules for interfacing such in Section 2. Findings
from both categories are then summarized and concepts that are
potentially relevant for our work are highlighted. Second, we con-
duct an in-depth analysis of various hardware timer peripherals,
described in Section 3. We give detailed insight into similarities and
differences of hardware timers currently supported by RIOT-OS,
taking all maintained manufacturers and a broad selection of their
respective MCU-families into account. Third, low-level timer pe-
ripheral driver modules are analyzed and compared in Section 4.
Based on insights gathered from both the conducted timer hard-
ware and driver analyses we then propose a low-level timer-API
design in Section 5. Last, an outlook on future work with respect
to the aspired long term goal of a new timer subsystem for RIOT-
OS is given in Section 6 before we finish with concluding words
in Section 7. Moreover, the entire results of our conducted timer
hardware analysis, including a detailed description of the applied
criteria, are provided in the appendix Section A.

2 RELATEDWORK
Scientific research highlighted in this section is split into two pri-
mary categories addressing a) characteristics of timer peripherals
from a hardware point-of-view (Section 2.1), and b) design aspects,
algorithms, and implementation techniques used in timer driver
software (Section 2.2). Publications were selected according to the
relevance for this work, as estimated to the best of our knowledge.

2.1 Timer Hardware
We start by taking a look at research that focuses on timer pe-
ripherals from a hardware point-of-view. We further split it into
two subcategories as follows. First, publications describing generic
concepts of timer peripherals as well as second, comparisons of dif-
ferent MCU-platforms, like we contribute and present in Section 3.

2.1.1 Description of Generic Timer Functions. Operation principles
of general-purpose timers as well as their basic set of generic fea-
tures and characteristics are described by Kamal [12, pp. 152-159].

1

https://riot-os.org/


N. Gandraß

The author elaborates on frequently available operation and count-
ing modes, different peripheral states, and various timer properties.
Possible applications as well as usage scenarios for general-purpose
timers are further depicted. Moreover, other types of timing hard-
ware, here namely real-time-clocks (RTCs) and watchdogs (WDGs),
are shortly discussed. For our conducted hardware analysis, com-
mon timer characteristics can be inferred from this work. These
include among others: counter register width, prescaler availability,
and auto-reload capability.

While less detailed than Kamal [12], Susnea and Mitescu [17,
pp. 67-68, pp. 87-89] also give insight into general-purpose timer
peripherals. The book extends the above publication by describing
functions and operation principles of timer hardware which is
capable of generating pulse-width-modulation (PWM) output, a
feature that is also part of our analysis scope.

2.1.2 Comparison of Embedded Timer Peripherals. A major focus
of this work lies on the comparison of different timer modules.
Our long-term goal implies utilization of advanced timer features,
hence solely superficial analyses of timer properties are insufficient
for our purpose. Unfortunately, we found only one documented
hardware analysis that elaborates on timer peripherals in-depth.

The timer hardware comparison that was conducted by Susnea
and Mitescu [17, pp. 67-91] covers the Motorola HC11, Atmel AVR,
and Intel 8051 MCU families. For each MCU platform, timer con-
figuration and usage is outlined and moreover accompanied by
detailed examples of different application scenarios. The authors
emphasize that each platform offers a distinct set of features, still
they all share many common operation principles. These include
generation of precise time intervals, measurement of duration, and
counting of events. Our aspired timer subsystem must in particular
be capable of the first two. The found common operation principles
furthermore entail that a timer-API can be platform independent
regarding basic timer functions. Nonetheless, it should also be able
to expose advanced platform specific features, even though porta-
bility might be degraded or lost completely whenever these specific
features are used by the application. A generic timer peripheral
block is further constructed from the outlined common operation
principles. Besides mandatory components such as a counter reg-
ister or a prescaler, the overall availability of capture channels is
hereby identified across all platforms.

Further comparisons between MCUs from different manufactur-
ers can be found in the literature, but they do not cover timer periph-
erals at the required level of detail. For example, Tsekoura et al. [23]
analyzed various MCU families sharing four manufacturers that
we also target. These chip manufacturers are STMicroelectronics,
Atmel/Microchip, Silicon Labs, and Texas Instruments. However,
the conducted research primarily focuses on general execution time
and power consumption, while not discussing the impact of timer
hardware properties in this context.

2.2 Software Modules
Software aspects that relate to timer drivers also need to be taken
into account when designing a clean-slate timer subsystem. Publi-
cations depict in this subsection therefore include generic concepts

and algorithms as well as application- or OS-specific driver imple-
mentations. Furthermore, techniques used in the context of real-
time scheduling are highlighted as they are strongly dependent on
efficient timer usage [14] and therefore also yield valuable insights.

2.2.1 Generic Design Aspects. Varghese and Lauck [24] describe
several different approaches to implement a software timer mod-
ule. These range from simple list based to prioritized tree-based
implementation schemes. Each technique is discussed with respect
to its applicability to different usage scenarios. Furthermore, three
additional methods, which are based on the timing wheel mecha-
nism [20], are proposed by the authors. These deliver a constant
timer maintenance complexity through exploiting hashing and hi-
erarchical relations. We propose to take this fundamental work into
account when designing timer management software components.

The implementation proposed by Mincev and Milicev [14] also
organizes software timers in a hierarchical tree, placing longer
delays closer to the tree leaves. Here, minimizing the maintenance
overhead is achieved by distributing timer ticks according to that
structure while only propagating every 𝑛-th tick to the next layer
nodes. Therefore, less servicing for long-running timers is observed.

If an application does not require meeting hard real-time dead-
lines, Soft Timers [1] can be used. They mitigate maintenance over-
head during servicing of timer interrupts. More precisely, they
reduce the cost that is introduced by saving and restoring CPU
state during context switches upon timer interrupts. The key idea
of the proposed solution is to only maintain timers if invoking the
corresponding service routine is of low cost, as determined by the
current system execution state. This approach also allows supersed-
ing strict periodic timer interrupts (i.e., system ticks), as advocated
by Tsafrir et al. [22] and as in-depth analyzed in [21].

Lastly, Lindgren et al. [13] define a platform-independent timer-
API including the design decisions for its implementation. With this
approach, a set of virtual timers, each having an independent queue
of pending tasks, is multiplexed onto hardware timers. Addition-
ally, an evaluation with respect to computational complexity and
correctness under concurrency is performed. Requirements for the
underlying timer hardware are defined and evaluated for both the
STM32 F4 and NXP LPC1789 MCUs. During this step, the authors
identified generic characteristics of the analyzed timer hardware.
These are counter width, interrupt capability, prescaler availability,
auto-reload functionality, and compare channel count. The authors
further emphasize the positive impact on timer maintenance per-
formance from both a large counter width as well as a high number
of available compare channels. These properties are therefore also
incorporated into our hardware survey in Section 3.

2.2.2 Application-specific Timer Implementations. As the evolution
of the Linux timer subsystem is well described, many of its de-
sign decisions and documented pitfalls can be taken into account
when developing a clean-slate timer driver. Key design aspects of
the hrtimer module, which uses multiplexing on one-shot hard-
ware timers, are outlined by Gleixner and Niehaus [5]. Bellasi [4]
further discusses it in the broader context of power management
frameworks for Linux. Here, mainly power-saving optimization
techniques, such as deferrable timers [19], are addressed. Patel et al.
[15] moreover stress the timer interrupt inference problem, a spe-
cial form of the priority inversion problem [18]. It arises when the

2



Large-scale Timer Hardware Analysis and Low-level API Design
Towards a Clean-slate Timer Subsystem for RIOT-OS

processing of a high-priority timer expiry gets delayed by running
maintenance ISRs of low-priority timers. TimerShield is proposed,
which introduces priority awareness to the timer subsystem and
selectively delays low-priority timer maintenance tasks. We con-
tend that in particular the proposed low-power timer handling
techniques shall be considered when specifying a high-level timer
module.

Requirements for the timer subsystem of RIOT-OS are defined
by Baccelli et al. [2]. Furthermore, the hardware abstraction layers
(HALs) and the power-management module are described in de-
tail. For timekeeping tasks, a combination of platform-dependent
low-level timer peripheral drivers which then are unified through
a high-level timer API, is used to provide application developers
with target platform agnostic timers. At the time of writing, xtimer
implements such high-level functionalities through multiplexing
software timers onto a single statically mapped hardware timer. Un-
fortunately, the current implementation suffers from problems, es-
pecially with regard to power-saving in dynamic scenarios. It must
be noted that ztimer2, a replacement for the xtimer module, is cur-
rently developed. While it tackles multiple problems of the xtimer
module, we argue that it lacks analysis and utilization of many timer
features, again particularly with respect to power-saving optimiza-
tions. In order to support current efforts by providing insight into
the available timer peripherals we contribute our timer hardware
analysis and the comparative overview of available low-level timer
peripheral drivers, as found in Section 3 and Section 4.

Handziski et al. [7] propose another HAL design, separating the
hardware abstraction architecture into three layers, each allowing
a different granularity of peripheral access. Hardware-independent
APIs are available while at the same time optional access to platform-
specific features, at the cost of loosing application portability, is
preserved. The authors cover abstraction of a wide range of com-
mon MCU-peripherals including timers and moreover illustrate
power-saving techniques in the context of low-power wireless sen-
sor networks. The proposed HAL architecture was successfully
implemented for the TI MSP430 MCU-family in TinyOS3. For the
aspired timer-API, providing the ability to optionally utilize plat-
form specific features makes the development of highly optimized
and task specific applications feasible. It therefore is considered an
essential demand upon the API design proposed in Section 5.

A comparison between periodic and one-shot timers in the Em-
bedded Parallel Operating System4 (EPOS), running on an Atmel
AVR MCU, was conducted by Gracioli et al. [6]. Results show that
through using one-shot timers, context switches and ISR executions
can be drastically reduced at the cost of an increased memory foot-
print. However, the authors outline that incorporating advanced
techniques, such as the above described Soft Timers, can reduce
some of the negative impacts introduced by one-shot timers.

In addition to the previously described generic timer-API, Lind-
gren et al. [13] also provide an implementation of the proposed
interface for the ARM Cortex-M MCU-family. The authors utilize
Real Time For the Masses5 (RTFM), a concurrency framework for

2RIOT-OS ztimer pull-request and discussion on GitHub: https://github.com/RIOT-
OS/RIOT/pull/11874 (Accessed 03.12.2019)
3TinyOS project website: http://tinyos.net/ (Accessed 30.01.2020)
4EPOS project website: https://epos.lisha.ufsc.br/ (Accessed 30.01.2020)
5RTFM code repository: https://github.com/rtfm-rs/cortex-m-rtfm (Accessed 30.01.2020)

building real-time systems. Here, the Cortex-M SysTick- and debug-
timers are used as base timers for multiplexing and counting of
clock cycles. Maintenance complexity, dispatch latency, and hard-
ware setup time are characterized by the authors.

2.2.3 Real-time Scheduling Based Approaches. Even though RIOT-
OS only offers soft real-time capabilities [2] and scheduling algo-
rithms are not within our primary focus, there still are lessons that
can be learned from the following real-time-scheduling solutions.

Jupyung Lee and Kyu-Ho Park [11] utilize interrupt prediction
while also distinguishing between urgent and non-urgent timer
interrupts. When no interrupt from an urgent timer is expected, the
system tick period is reduced, hence fewer wake-ups occur. This
dynamic adjustment of wake-ups allows to meet real-time require-
ments, unlike the previously mentioned Soft Timers [1]. Dividing
available timers into multiple classes, each suitable for specific
application states, can in particular prove highly beneficial when
developing a timer subsystem.

A different approach to real-time task scheduling optimizations
is SLOTH [8], including its derivatives SLEEPY SLOTH [10] and
SLOTH ON TIME [9]. Whereas the first two target event-driven
real-time systems, the last is designed for time-triggered OSes. All
the SLOTH -based approaches feature techniques which can also
partly be applied to generic timer drivers. The key idea behind
the event-driven solutions is to move scheduling completely into
the interrupt service routine (ISR) context, thereby reducing task
latencies. The time-driven concept instead targets timer peripheral
management. Here, the common multiplexing of timeouts onto
a single hardware timer (e.g., periodic system tick timer) is en-
hanced by utilizing additional timer devices. This dispersion of
software timers across multiple peripherals reduces both mainte-
nance overhead and scheduling latency. We expect especially the
latter technique to prove important for a high-level timer-API.

2.3 Summary
Most of the above presented research is not directly related to the
hardware analysis we contribute with this work. However, the
outlined techniques, key aspects, and common pitfalls, e.g., the
usage of a single periodic timer tick [2, 5, 6], are of great value and
will later be taken into account when designing the aspired timer
subsystem. Still, commonly addressed peripheral characteristics
can be derived from the above publications. They yield a multitude
of criteria we therefore incorporated into the scope of our broad
MCU-platform analysis. These include basic properties of timer
peripherals [12, 17] such as timer type, counter register width,
and prescaler availability. Further features, seen as mandatory by
e.g., Lindgren et al. [13], like interrupt capability and auto-reload
functionality were also incorporated into the scope of our analysis.

In addition, many software modules utilize the concept of multi-
plexing. Here, multiple software timers are mapped onto a small
set of hardware timers and their respective compare channels. It
allows maintaining more virtual timers than compare channels are
available, as well as the separation of short and long delays [14].
This yields further analysis criteria such as the number of available
compare channels or maximum resolution. Showcased timer sub-
systems that are designed with respect to power-saving [1, 4, 7]

3

https://github.com/RIOT-OS/RIOT/pull/11874
https://github.com/RIOT-OS/RIOT/pull/11874
http://tinyos.net/
https://epos.lisha.ufsc.br/
https://github.com/rtfm-rs/cortex-m-rtfm


N. Gandraß

moreover demand the analysis of features like low-power clock
support or the concepts of how interrupts are handled by the MCU.

With a view on high-level timer driver design, many of the
concepts highlighted above can be applied to our use-case. We
expect promising results especially from the usage of more than one
hardware timer for multiplexing [9] combined with dividing timers
into classes, based on their suitability in different usage scenarios
[11]. Hierarchical timer chaining [14, 24] as well as a multi-layer
timer-API architecture [7], keeping platform-independence while
allowing to use platform-specific features, are further takeaways.
We conclude that a low-level timer interface, as we propose it in
Section 5, therefore must be capable of exposing available timer
features appropriately to both the high-level driver module and the
user application directly. This includes both basic features that are
commonly found across all MCUs as well as advanced platform
specific features.

3 HARDWARE-PLATFORM ANALYSIS
A major contribution of our work is the analysis of different timer
peripherals, which are found in MCUs that are currently supported
by RIOT-OS. In this section, we start by describing the scope of
the analysis as well as the methodology we apply conducting it.
Then, results, both specific to device families and also across all
analyzed platforms, are presented and discussed with an outlook
on the aspired timer subsystem. Furthermore, outstanding tasks
and possible improvements are identified.

3.1 Scope
The following analysis covers all chip manufacturers that offer at
least one microcontroller, supported by RIOT-OS at the time of writ-
ing. For each of those, all MCU families with RIOT-OS support were
examined. This yields a total of 43 analyzedMCU families, produced
by 8 different manufacturers. Some MCU families were combined
during our analysis as they were found to share timer peripherals,
such as with the STM32 device family. A detailed description of the
analyzed criteria and properties as well as the applied methodology
can be found in Section 3.2.

We analyzed the following MCU families:
• STMicroelectronics (ST)
– STM32F0 / F1 / F2 / F3 / F4 / F7
– STM32L0 / L1 / L2

• Microchip / Atmel
– ATmega AVR
– PIC32MX / PIC32MZ
– SAMD21
– SAM3A / N / S / U / X

• Espressif
– ESP8266
– ESP32

• Silicon Labs
– EFM32 / EFR32
– EZR32

• Texas Instruments (TI)
– CC13x2 / CC26x2
– CC2538
– CC430

– LM4F120
– MSP430x1xx / MSP430x2xx

• NXP Semiconductors
– Kinetis E / EA / K / L / M / V / W
– LPC176x / LPC175x
– LPC2387

• Nordic Semiconductor
– nRF51x / nRF52x

• SiFive
– FE310-Gx

3.2 Methodology
Each step of our hardware analysis is conceptually depicted in this
section and appears in the order of execution.

3.2.1 Platform Selection and Information Acquisition. As a starting
point, all CPUs that are currently supported by RIOT-OS, as listed in
/cpu6, were determined. Chip manufacturers and their respective
MCU families were then prioritized and processed according to their
estimated diversity in timer hardware. This prioritized approach
was chosen to be able to compile a comprehensive list of analysis
criteria early on. For each MCU family, documentation in the form
of datasheets, reference manuals, application notes, and others were
obtained from the respective manufacturers.

3.2.2 Definition of Analysis Criteria. After obtaining an initial
overview, a first set of criteria and properties was defined. It in-
cludes all aspects we identified as mandatory and therefore are
to be extracted from the gathered documents for every analyzed
MCU platform. Selected characteristics derive from our review of
related work, as summarized in Section 2.3, and were further ex-
tended according to their significance, as expected by us. They
include basic properties of timer peripherals such as counter regis-
ter width, prescaler configuration, compare match capabilities and
auto-reload functionality. Furthermore, advanced aspects such as
interrupt generation, timer chaining and low-power features were
examined. A full list and the detailed definition of each criterion
can be found in Section A.1.

3.2.3 Extraction of Timer Peripheral Details. All timer peripher-
als of each platform were analyzed and information found in the
acquired documentation was transformed into a mind-map struc-
ture. Properties and implications beyond our defined criteria were
recorded nonetheless in order to be used in future work (see Sec-
tion 6). If the MCU documentation was unclear at some point, addi-
tional information sources were used. These included peripheral
register descriptions as well as SDKs provided by the respective
manufacturers. However, if a concrete property could not be deter-
mined with confidence, it was marked as currently unknown.

3.2.4 Consolidation of Results. Since our data acquisition was not
limited to the defined criteria, it yielded more information than the
initially selected properties. We therefore adopted and extended our
set of analysis criteria once more before consolidating final results.
For each MCU platform a Timer Comparison Matrix (TCM) was
created. A TCM lists all available timer types and their respective
properties. It allows to quickly determine various characteristics
6See: https://github.com/RIOT-OS/RIOT/tree/master/cpu (Accessed 01.12.2019)

4

https://github.com/RIOT-OS/RIOT/tree/master/cpu


Large-scale Timer Hardware Analysis and Low-level API Design
Towards a Clean-slate Timer Subsystem for RIOT-OS

and features of each of the available timers and allows comparison
across different MCU families and manufacturers. The TCMs were
subsequently used as a foundation for our inter-MCU-platform
findings. All created TCMs can be found in the appendix Section A.

3.2.5 Inter-MCU-platform Findings. To obtain general insights we
evaluated various properties across all platforms and timer types.
These properties could either be found directly within the TCMs
or could indirectly be derived from them. If one timer type is avail-
able in multiple versions (e.g., 16-bit and 32-bit general-purpose
timers) each version was evaluated and counted separately as an
independent timer type. Platforms were counted whenever any of
their available timer types matched the respective property and cri-
terion. Unresolved or unclear timer properties were excluded from
the respective results. Exclusion of specific peripherals, such as
watchdog timers, is furthermore possible and accordingly denoted
in the criterion description if applied.

Each analyzed property features a unique identifier used for
referencing, a short title, and a description asserting the respective
property. Moreover, a criterion can be specified, allowing to split the
property into multiple cases (e.g., separating counters by available
register width). All evaluated inter-platform properties are depicted
in Table 1 and discussed in Section 3.3.

3.3 Results
Cross-platform findings from our MCU timer hardware analysis are
listed in Table 1 and discussed in the following. It should be noted
that the total number of platforms and timer types may vary be-
tween properties. This can either be due to the respectively applied
selection criterion or due to timer type exclusions, as stated in the
property description. To cope with this we give the exact matched
amounts as well as percentages for each depict result. A detailed
description of our data collection and evaluation methodology can
be found in Sections 3.2.4 and 3.2.5.

3.3.1 Counter Range. A common property of timer peripherals is
the width of their internal counter register. It dictates the maxi-
mum number of cycles a timer is able to count before an over- or
underflow happens. The less frequent such events happen, the less
timer maintenance and wake-ups are required. Therefore, a large
counter width is desirable. It was found that the available counter
register size among all platforms is at least 16 bit. A total of 90 %
even provide 32-bit timers while only 21 % offer timers featuring
a width of at least 64 bit (see R-01). MCUs that solely offer small
timers particularly benefit from the possibility of extending counter
range via timer chaining. Otherwise, frequent timer maintenance
is mandatory when working with long timeouts. We found that
71 % of all platforms that offer one or more 16-bit timers allow
extending these small timers to a range of at least 32 bit (see R-04).
As less wake-ups and reduced maintenance overhead are desired,
we conclude that timer chaining shall be utilized, especially when
exclusively working with small range timers. It however must be
noted that the usage of timer chaining comes at the expense of
sacrificing one additional timer module for every range extension.
For some applications this can be undesirable and therefore usage
of timer chaining must remain optional.

Prescalers dynamically reduce the clock frequency that is fed
into a timer, thereby counting only every𝑛-th pulse of its base clock.
They hereby allow to achieve longer timeouts without requiring
intermediate maintenance wake-ups. This advantage comes at the
cost of a lowered timer resolution, due to the reduced base clock
frequency. Prescalers are nonetheless useful, especially when deal-
ing with small counter widths (≤ 16 bit) and long timeout periods.
This trade-off indicates that a separation of short high-precision
delays and long-lasting timeouts is desirable for an optimized timer
driver in order to perform well in diverse application scenarios.

Prescalers are available on all platforms in general as well as on
75 % of all analyzed individual timer peripherals (see R-03). The
only platform that has non-prescalable general-purpose timers is
the SiFive FE310-Gx (see Table 22), which instead features a 64-bit
counter register and thereby eliminates the need for an additional
prescaler.

3.3.2 Auto-reload. Timers often need to produce either periodic
events or timeouts that are longer than the maximum time before
a counter over- or underflow happens. Hence, restarting the timer
is required. To prevent the missing of clock pulses and to reduce
maintenance overhead, reloading is handled directly by the timer
hardware via the auto-reload feature. Hereby the counter register
is set to either a fixed or configurable value once a designated
event happens. All applicable timers support a form of auto-reload,
as indicated by R-08. It was further found that 17 % of all timer
modules only allow auto-reloading at over- or underflow events
while others allow to specify an arbitrary value at which the counter
reloads. The latter is either achieved by sacrificing one compare
channel (32 % of all timers) or through the usage of a designated
auto-reload register (51 % of all timers). Using a separate auto-reload
register benefits a timer subsystem by keeping all compare channels
available for timeouts (see Section 3.3.3). We therefore argue that
using a separate register is the preferred approach.

3.3.3 Compare Channels. Timers can trigger events at specific
counter values based on the configuration of their compare chan-
nels. Each compare channel can be armed to a specific value that
gets continuously compared to the current value of the counter
register. This operation is performed directly by the timer hard-
ware, thus no polling or active waiting is required. A match event is
generated once the counter value reaches the configured threshold.
Compare channels are used by timer subsystems to signal expiring
timeouts. The more compare channels a hardware timer offers, the
more freely different pending timeouts can be split across channels
(e.g., separating short from long-running timers). This flexibility
benefits the mapping of virtual timers to hardware peripherals,
hereby reducing the overall timer maintenance overhead.

At a bare minimum, a hardware timer is required to provide at
least one compare channel to be suitable for usage by an optimized
timing subsystem. Otherwise, active polling of the current counter
value would be required, thereby effectively occupying the CPU
with timer maintenance tasks. Our analysis showed that all timer
modules provide at least one compare channel, while most offer
at least two (64 %) or even four (24 %) channels (see R-02). We
therefore conclude that all MCUs within our scope meet this base
requirement for the aspired timer subsystem.

5



N. Gandraß

ID Title Description Criterion Pla
tfo
rm
s [
#]

Tim
er
Ty
pes

[#]

Pla
tfo
rm
s [
%]

Tim
er
Ty
pes

[%
]

R-01 Counter width Usable size of the counter register in bits
(Excluding watchdog timers)

≥ 16 19 83 100 % 87 %
≥ 32 17 32 90 % 34 %
≥ 64 4 4 21 % 4 %

R-02 Compare channels Number of available compare channels
(Excluding timers w/o compare channels)

≥ 1 19 80 100 % 100 %
≥ 2 14 51 74 % 64 %
≥ 4 10 19 53 % 24 %

R-03 Prescaler Support for prescaling the timer clock yes 19 87 100 % 74 %

R-04 Timer chaining Support for timer module combination
(Excluding watchdogs and RTCs)

R-01 ≤ 16† 10 15 71 % 38 %
R-01 > 16‡ 4 5 27 % 16 %

R-05 Compare interrupts Unique INTs for each compare channel yes 11 28 58 % 31 %

R-06 Overflow interrupts Unique INTs for counter over-/underflow
(Excluding watchdogs)

yes 8 13 42 % 19 %

R-07 Event flags Availability of status bits for timer events yes 16∗ 100 100 % 100 %

R-08 Auto-reload

Auto-reload at over/-underflow (OVF),
at compare-channel match (CCM),
or via auto-reload register (ARR)

(Excluding watchdogs and RTCs)

OVF 3 14 16 % 17 %
CCM 6 25 32 % 32 %
ARR 10 40 53 % 51 %
any 19 79 100 % 100 %

R-09 Clock sources Number of available clock sources
(Distinct external and internal clocks)

≥ 1 19 117 100 % 100 %
≥ 2 16 59 84 % 50 %
≥ 4 6 20 32 % 17 %

R-10
Internal

clock sources Number of available internal clock sources
≥ 1 18 110 95 % 92 %
≥ 2 15 40 79 % 33 %
≥ 4 1 2 5 % 2 %

R-11
External

clock sources Number of available external clock sources
≥ 1 19 114 100 % 95 %
≥ 2 13 46 68 % 38 %
≥ 4 3 7 16 % 6 %

R-12 Low-power clock Low-power oscillator can be used by timer yes 19 84 100 % 71 %
R-13 Deep-sleep active Timer operational in lowest MCU power states yes 19 68 100 % 57 %

R-14 GP-timers Number of available general-purpose timers = 1 1 - 5 % -
≥ 1 18 - 95 % -

R-15 WDT interrupts Watchdog generates interrupt prior to reset yes 13 14 68 % 67 %
R-16 Unknown items Timer has unresolved/unknown properties yes 6 17 32 % 14 %
∗ Three platforms excluded due to unknown properties. See Section 3.3.4 for details.
† i.e.: Only counting timers that are chainable and have a maximum width of 16 bit. See Section 3.3.1 for details.
‡ i.e.: Only counting timers that are chainable and have a width greater than 16 bit. See Section 3.3.1 for details.

Table 1: Selected results across all 19 analyzed MCU platforms. Each result is evaluated for timer types as well as associated
MCU platforms. It is characterized by the result description and may be split into multiple cases, as denoted by the specified
criterion. If specific timer types were excluded it is indicated in the result description. See Sections 3.2.5 and 3.3 for details.

3.3.4 Interrupt Handling and Event Flags. Timer events such as
over- or underflow and compare matches may generate interrupts
upon occurrence. Corresponding interrupt service routines (ISRs)
can then be used by timer drivers to detect expired timeouts and to
execute maintenance tasks. Interrupt handling strongly depends

on the actual MCU-platform, though we found it to be typically
implemented uniform among chip families from the same manufac-
turer. For a timer subsystem it is important, whether an exclusive
interrupt for every single event exists or if multiple events share
one common interrupt vector. The former is the preferred method

6



Large-scale Timer Hardware Analysis and Low-level API Design
Towards a Clean-slate Timer Subsystem for RIOT-OS

as it does not require manually resolving the interrupt cause upon
occurrence.

Our analysis revealed that out of all timers only 19 % provide
fully independent overflow and only 31 % offer fully independent
compare match interrupts (see R-05 and R-06). Additional periph-
eral status register reads are required in order to determine the
exact cause of the fired interrupt if an interrupt vector is mapped to
multiple events. This introduces a layer of indirection and therefore
increases timer latency. Flags that indicate event occurrence are
available throughout all platforms, as shown by R-07. Though, it
is noteworthy that three platforms, namely Espressif ESP8266 (see
Table 9), Espressif ESP32 (see Table 10), and Nordic Semiconductor
nRF51x/52x (see Table 21), do not state the availability of event
status bits in their documentation (see Section 3.4). These MCU
families were therefore excluded from the total platform count.
Nonetheless, we highly doubt that there is no way to extract such
information but were not able to reliably confirm it either.

3.3.5 Clock sources. The selected clock source not only affects the
frequency and resolution of a timer. It can also have an effect on
specific timer features or limit the available operation modes. Clock
sources can be categorized into internal and external clocks. The
first are generated solely within the MCU and therefore are always
available. The latter are either supplied via an external signal that
is applied to a specific input pin or generated internally with the
help of some external hardware that needs to be connected to the
MCU, such as a crystal oscillator.

We observed that 95 % of all timers can be driven by at least one
internal and 92 % of all timers by at least one external clock (see R-10
and R-11). It was furthermore found that on 84 % of all platforms
multiple timer clock sources are configurable, as indicated by R-09.
This yields numerous clock configuration options and therefore in-
dicates that clock configuration should be considered an important
aspect when designing a timer-API. Power-constrained devices ben-
efit particularly from the run-time reconfiguration of timer clock
sources since it supports dynamic power mode transitions and al-
lows the utilization of special purpose low-power oscillators. As this
applications entail a large set of specific requirements, implications
for low-power operation and further energy saving considerations
are discussed separately in Section 3.3.6.

3.3.6 Low-power Operation and Energy Saving. As with power-
constrained devices low-power operation is crucial, the ability to
operate timers of a low-power oscillator is highly important. As
R-12 shows, 71 % of all analyzed timer types are able to run on
such a low-power clock. This enables timer drivers to make use
of the available MCU power-saving modes, for example power-
ing down the CPU and main peripheral clock while keeping the
required timers operational. Properly utilizing this feature is of
utmost importance when designing a timer subsystem for OSes like
RIOT-OS.

We found that all platforms provide at least one timer type that
can run of a low-power clock. The analysis furthermore confirmed
that all platforms offer at least one timer that is capable of both
operating in even the lowest possible power states and waking the
CPU upon event occurrences (see R-13). We refer to timers that
meet these criteria as always-on peripherals. Among these, real-
time-counters and -clocks aremost commonly found. Five platforms

also provide designated ultra low-power timer peripherals (see
Tables 5, 6, 11, 14, and 18), as for example the Cryotimer on the
Silicon Labs EFM32/EFR32 platform (see Table 11). Especially when
dealing with long timeouts and deep-sleep periods, these timer
types allow significant energy-saving optimizations and therefore
must be made available via a well-designed timer subsystem.

3.3.7 Suitability of Timer Types. Even though we covered all types
of timer peripherals within our analysis, we are convinced that
not every type is applicable for the use in a generic timing system.
We contend that especially watchdog timers fall into this category.
Watchdogs are primarily designed to recover a system from a mal-
function or error state. They achieve this through performing a full
system reset if not periodically serviced by the application. Our
analysis showed that 67 % of the analyzed watchdogs offer the abil-
ity to generate an interrupt before or even instead of performing
a reset (see R-15), hereby making them theoretically capable of
generating generic timeouts. These special purpose timers however
usually are limited to a very basic feature set and often behave
different across MCU platforms. They also are commonly already
occupied by other components of the application. We therefore
suggest to not repurpose them for the usage in a timer subsystem.

3.3.8 Peripheral Availability. Having a manifold range of timer pe-
ripherals to chose from opens up a wide spectrum of optimization
opportunities. We found the feature sets of general-purpose timers
to be largely uniform across all platforms, whereas special pur-
pose timers differed greatly with respect to their offered functions
and modes of operation. Taking a look at the first, there is only a
single platform that guarantees the availability of just one general-
purpose timer, namely the SiFive FE310-Gx (see Table 22). All other
platforms provide more than one generic timer (see R-14). However,
the availability of other timer types varies greatly between manu-
facturers and even among MCU families of the same manufacturer.
We conclude that both, properly utilizing multiple available timer
modules and the incorporation of platform specific peripherals, is
a necessity for a well-designed generic timer subsystem.

We also encountered MCUs that only leave the possibility of
multiplexing all virtual software timers onto one single general-
purpose hardware timer (see R-14 and R-02). These namely are
the SiFive FE310-Gx (see Table 22), with only a single general-
purpose timer, and the Espressif ESP8266 (see Table 9), with only
one compare channel while leaving the alarm functionality of the
RTC undocumented. We therefore argue that a timer subsystem
must be flexible enough to cope with situations in which only a
single hardware timer is available.

3.3.9 Missing Information. Not always could every property of
the analyzed timer types be determined with sufficient confidence,
based on the available documentation or alternative information
sources, as described in Section 3.2.1. A total of six platforms still
suffers such unresolved properties, as indicated by R-16. Five of
these platforms can more precisely be grouped into the two Espres-
sif MCUs (see Table 9 and 10) and three of the Cortex-M based
platforms, namely the Microchip / Atmel SAMD21 (see Table 8) and
the Silicon Labs MCUs (see Table 11 and 12). The documentation
of Espressif devices, especially the ESP8266, remains unclear about
many of our analysis criteria, of which only some could be resolved

7



N. Gandraß

by inspecting the manufacturer provided SDKs. In contrast, the
mentioned Cortex-M based MCUs only leave the SysTick timer,
commonly found across Cortex-M devices, mostly or completely
undocumented. We suspect them to be very similar to those found
on other Cortex-M based devices but are unable to confirm it at the
time of writing. Lastly the documentation of the Nordic Semicon-
ductor nRF51x/52x MCUs (see Table 21) remains unclear about the
availability of event flags.

3.4 Outstanding Tasks & Open Issues
Even though our timer hardware analysis already yielded insight
into a broad range of properties and features, various outstanding
tasks as well as some issues remain. These are, to the best of our
knowledge, highlighted below.

3.4.1 Unresolved Properties. During our analysis we were able to
gather information regarding the defined criteria for nearly all timer
types within our scope, though some properties remained unknown,
as described in Section 3.3.9. When resolving these properties the
required effort must, however, be justifiable when compared to the
estimated information gain and impact on the overall results.

3.4.2 Timer Resolution and Clock Tree Properties. A timers resolu-
tion, i.e., the shortest possible timeout, and the maximum timeout
length it can achieve without requiring intermediate maintanance
wake-ups both are base characteristics of every hardware timer. A
timer subsystem can use these information to allocate requested
timeouts to the most appropriate peripherals available. Determin-
ing these properties generically for a whole class of timers however
is not feasible due to their strong linkage to MCU oscillator fre-
quencies. As the system clocks depend on both the microcontroller
and its configuration, their actual operation frequencies can vary
largely, therefore preventing the calculation of a single appropriate
value that can be used for comparisons across platforms.

Another aspect we do not have full insight into yet are the
clocks each timer peripheral is able to run of. Since each MCU-
platform provides different oscillators and methods of routing the
generated clock signals to peripherals, a unified and comparable
way of analyzing these has to be defined. As this clock tree analysis
is an entire complex topic on its own, it was excluded from this
hardware analysis for now.We nonetheless expect promising results
from it, especially with respect to power-saving optimizations, and
therefore suggest to conduct an in-depth analysis of the clock-trees
for future work.

3.4.3 Peripheral Interconnect and Event Systems. Some MCUs are
capable of routing various internal signals directly between com-
ponents via a designated peripheral interconnect bus. Others allow
to execute special hardware tasks based on specific events, gener-
ated by other peripherals. Both methods benefit the overall system
performance by removing the need to execute a designated ISR on
the CPU upon occurrence. Such peripheral interconnect and event
systems might prove valuable for some applications (e.g., timer
chaining). Furthermore, a reduction of maintenance tasks could
be possible by exploiting event systems in order to execute simple
maintenance tasks autonomously on the respective peripherals.

3.4.4 Configuration and Maintenance Costs. Every read, update,
or reconfiguration requires resources, such as CPU time or battery
power. Information about the resource needs of such operations,
however, are only rarely available. Timer operations might also
cause side effects that need to be taken into account. For example,
it can be required to enable a high-power clock in order to read or
write registers of a timer which is running of a low-power clock.
As a result, frequent maintenance tasks drastically increase power-
consumption as the high-power oscillator is started during every
maintenance period. We therefore consider information on such
costs beneficial to the timer peripheral selection process.

4 RIOT-OS LOW-LEVEL TIMER MODULES
In this section, low-level timer modules, as currently found in RIOT-
OS, are depicted. Common design aspects are then outlined and
potential API enhancements are identified.

4.1 Overview
Currently, several low-level timer abstractions exist in RIOT-OS,
each aimed at a specific class of hardware timers. We looked into
these modules and compared their respective properties. At the
time of writing a total of five such modules exist, out of which
the first three are designed to handle common timekeeping appli-
cations, while the latter two are used for more specialized tasks.
Properties and use-cases of each module are outlined in this section
and summarized in Table 2.

4.1.1 General-purpose Timer Module. The periph_timer module
drives the various general-purpose timers of an MCU. It is pri-
marily used as a generic interface to provide short timeouts with
a high resolution. Multiple general-purpose timers, each coming
with multiple compare channels, can be used via this module. The
counter values are exposed as raw counter ticks and specification
of a desired counting frequency is supported during initialization.

Basic common timer features are made available via the uni-
form function interface. These range from reading and writing
the counter register value to arming timer channels in order to
generate events at specific counter values. A user-defined ISR that
is executed upon any compare match event can furthermore be
attached during timer initialization. More advanced configurations
such as counting mode, auto-reload, and, clock selection, however,
are highly platform dependent and compile-time static.

4.1.2 Real-time Clock Driver. Real-time clock peripherals can be
accessed by the periph_rtc module. Time is represented as both a
wall-clock time struct (seconds, minutes, hours, days, . . . ) and an ad-
ditional sub-second counter withmicrosecond resolution. Functions
for convenient time conversion and comparison are furthermore
part of the module.

Reading and writing the RTC time registers as well as explicitly
powering up or down the hardware module is supported by the API.
The chosen RTC peripheral is hard-coded, hereby eliminating the
need to specify a peripheral identifier during API calls. At the same
time this sacrifices the option to address multiple RTC modules,
as available on some MCUs. This restriction also applies to alarm
channels, out of which only one is exposed to the user and allows
attachment of a callback function.

8



Large-scale Timer Hardware Analysis and Low-level API Design
Towards a Clean-slate Timer Subsystem for RIOT-OS

periph_timer periph_rtc periph_rtt periph_pwm periph_wdt

Timer types General-purpose RTC, (RTT) RTT, low-power Various Watchdog timers
Time unit Counter ticks Wall-clock time

struct
Counter ticks,

relative time struct
N/A Counter ticks

Timeouts short-running,
high resolution

long-running, low
resolution

long-running, low
resolution

N/A short-running,
high resolution

Multiple timers
usable (I)

✓ × × ✓ ×

Multiple channels /
alarms usable (II)

✓ × × ✓ ×

INTs / Callbacks One combined
callback per timer
for all compare
match INTs. No
overflow callback.

One alarm,
additional left
unusable. No

overflow callback.

One alarm,
additional left

unusable. Overflow
callback attachable.

× WDT warning INT
callback attachable

if supported.

Low-power
operation (III)

× ✓ ✓ × ✓

Power up/down
support (IV)

× ✓ ✓ ✓ ×

Timer capabilities
indicated (V)

× × × × ✓

Peripheral allocation
conflicts (VI)

✓ ✓ ✓ ✓ ×

Timer types
heterogeneous (VII)

× ✓ ✓ × ×

(I) Module is able to interface multiple timer instances, distinguished by an appropriate timer instance identifier.
(II) Module is able to interface multiple compare channels or RTC alarms per timer instance, distinguished by an appropriate channel identifier.
(III) Module is primarily used to drive timer types that offer low-power operation modes and features.
(IV) Explicitly powering up or down a timer instance is supported by the module. This is different from initialization and start or stop operations.
(V) Static properties and capabilities of the timer hardware (e.g., feature support, number of compare channels, . . . ) are made available via the module.
(VI) Driven timer types are also used by other low-level modules, hereby creating a resource allocation conflict between involved modules. For example: Using TIM1 for

PWM generation via periph_pwm must result in removal of TIM1 from the set of timers driven by periph_timer.
(VII) Module is used to drive other timer types than initially intended (e.g., on STM32: using a ”Low-power Timer” instead of an ”Real-time Timer” with periph_rtt).

Table 2: Comparison of current low-level timer modules in RIOT-OS

4.1.3 Real-time Timer Driver. The real-time timer driver periph_-
rtt is a mixture of the general-purpose and RTC modules. It typi-
cally is used to drive real-time timer peripherals but sometimes it is
repurposed to expose low-power timers that provide long-running
timeouts with a low resolution. Elapsed time can be represented
as raw counter ticks or as relative time structs (conversion macros
provided) and can be read and written. Instead of providing func-
tions to start and stop the hardware counter, functions powering
the whole timer module up and down are given.

Similar to the RTC driver, the RTT driver does not distinguish
between timers. It likewise only supports a single hard-coded RTC
peripheral. Equally, only a single alarm channel is exposed but an
exclusive overflow callback can be attached during run-time.

4.1.4 PWM Driver. Generation of pulse-width modulation (PWM)
signals often is closely linked to timer peripherals. For this task

the periph_pwm module can both utilize hardware timers that fea-
ture PWM capabilities as well as designated PWM modules. Since
this module is focused on output signal generation instead of sole
counting tasks, raw values of the internal counter register are left
unexposed. It therefore is not possible to determine the current
position within the period of the generated signal.

Both the frequency and resolution of the generated waveform
can be specified via the API, hereby impacting the pursued duty
cycles. Multiple PWM channels, each featuring its own duty cycle,
are supported and distinguished by a unique identifier. Powering up
and down single PWM channels is not supported. Once the module
is enabled, all channels are always active.

4.1.5 Watchdog Timer Driver. Watchdog timers are exposed via
the periph_wdt module. As with PWM peripherals, these can nei-
ther be used for simple counting tasks nor to generate application
timeouts. Nonetheless, they still are seen as timer peripherals on

9



N. Gandraß

most MCUs but provide only a very limited set of features that is
fully exposed by the periph_wdt module.

Support for both normal and window operation mode is pro-
vided and a user-defined callback function can be executed upon
a watchdog timeout. Availability of these features is indicated by
respective preprocessor defines for each MCU platform. It is not
possible to distinguish between multiple available watchdogs, as
the peripheral mapping is hard-coded within the implementation.

4.2 Analysis
Examining the presented low-level timer modules, common design
aspects can be identified. These are outlined in the following section
and additionally depicted in Table 2.

With the current solution to peripheral handling in RIOT-OS,
multiple drivers for timer hardware exist, each targeted at a specific
set of timer types. These modules differ in the way counter values
are represented and accessed, which events allow to attach a user-
defined ISR, and how timer instances or channels are addressed.
Handling of low-power specific tasks like switching the power state
of a whole timer module is supported by some of the drivers, namely
periph_rtc and periph_rtt. Provided functions are limited to the
minimal set of features that is common to all timer peripherals of
the respective class. Implementation of advanced features is hereby
left to the individual application developer.

Although we found that the offered APIs differ in their usage,
their functionality often overlaps. Having multiple low-level timer
drivers allows to tailor the functional interfaces to specific timer
types but comes at the cost of loosing interoperability between
these. Another challenge with this approach is that either not all
available timer types can be exposed due to missing driver modules
or developers need to expose different timer types via the same,
potentially unfavorable, API. This leads to features or even whole
timer types being left unusable, as for example the ”Basic Timers”
and the ”SysTick Timer” on the STM32 platform.

The ability to distinguish between timer instances was also found
to differ between modules. Whereas periph_timer does support it,
periph_rtc and periph_rtt do not, hereby leaving many timer
instances unusable, as for example additional low-power timers on
the STM32 platform. This problem also extends to the compare and
alarm channels, hereby effectively limiting the number of usable
timeouts to one per driver module.

Last we found that the management of timer configuration is
highly platform dependent and differs largely across implemen-
tations. This includes, but is not limited to, the configuration of
available peripherals and clock sources as well as module specific
configurations like countingmode, auto-reload values, and counting
directions. Programmatic determination of available timer features
and capabilities is furthermore only supported by the periph_wdt
driver. It is noteworthy that with RIOT-OS’s current approach this
is not yet problematic, due to the fact that only the minimal set of
common timer features is exposed anyway.

5 LOW-LEVEL TIMER-API DESIGN
A primary objective of this work is to design and implement a
clean-slate low-level timer-API for RIOT-OS. Within this section,
we start by outlining generic demands on such a low-level timer

subsystem. Subsequently, the design of an API that fulfills these
demands is proposed and discussed in detail.

The contributed API design is based on insights from our timer
hardware analysis (see Section 3), related work (see Section 2), as
well as common pitfalls and problems that are present with current
solutions (see Section 4). Our goal is not to fully replace existing
modules but to provide a possibility to access timer hardware in a
uniform and platform-independent way. The proposed design there-
fore exposes advanced timer features that might not be available on
every single MCU, but are still frequently required by applications.
Access to such features is kept lightweight and straightforward
while preserving platform-independence whenever possible.

5.1 Generic API Requirements
RIOT-OS positions itself as a general purpose IoT operating system
that features a wide-ranging hardware support while maintaining
program portability whenever possible. Use-cases and application
scenarios are vast and often bring their individual set of require-
ments.When it comes to timekeeping on resource restricted devices,
however, ease of use, a small ROM and RAM footprint, as well as
optimized low-power operation are essential for most use case sce-
narios. A low-level timer-API should therefore address these aspects
and support the application developer. In this section, demands on
such an API are outlined. They are presented contextually grouped,
as indicated by the chapter titles.

5.1.1 Scope and Usability. Providing a simple but comprehensive
feature set is quintessential. A low-level timer-API should therefore

(1) be intuitively and straightforwardly usable by the application
developer.

(2) allow various different timer types such as general-purpose,
low-power, RTT, or RTC to be used interchangeably via the
same unified API.

(3) provide well-designed driver code for timer features, hereby
relieving the application developer from the errorprone task
of writing low-level driver code. This includes
a) exposure of basic timer features to both the application

developer and high-level RIOT-OS modules (e.g., xtimer).
b) exposure of special timer features to meet advanced re-

quirements such as optimized low-power operation. If
available, such features should be implemented by the dri-
ver developer whenever possible with reasonable effort.

(4) expose identical features in a standardized way among all
timers that support it. This allows interchangeably using
timers independent of their exact type, as long as they offer
the required functionality.

(5) provide access to multiple hardware timer instances to
a) allow developers and applications themselves to dynami-

cally choose from the full set of available peripherals.
b) allow using them inside other drivers and modules, such

as MAC layers, external peripherals, or signal generation.
c) optionally allow managing peripheral allocation by some

form of resource allocator, providing mutually exclusive
timer usage or defining more complex application require-
ments like ”requiring at least 𝑛 low-level timers”.

(6) allow representation of multiple hardware timers as a single
timer instance. Specifically allowing the representation of

10



Large-scale Timer Hardware Analysis and Low-level API Design
Towards a Clean-slate Timer Subsystem for RIOT-OS

chained smaller timers as a single large timer that is usable
as any other timer instance.

(7) encourage the driver developer to follow a common pattern
for platform dependent code in order to obtain maintain-
ability and guide integration of future MCUs. Similar func-
tionality therefore should be implemented in the same code
segments across drivers for different MCUs.

5.1.2 State and Capabilities. As applications require a variety of
timer related information, a low-level timer-API should

(1) differentiate between the following types of information and
properties:
a) static properties of the underlying timer hardware, such as

counter register width or available channels.
b) compile-time static properties that can only be changed

prior to compilation and therefore remain fixed during
run-time, such as available timer drivers and modules.

c) dynamic run-time properties that may change during run-
time, such as counting mode or pending interrupts.

(2) provide static information about the capabilities of hardware
timers, hereby allowing high-level modules to make platform
independent use of advanced timer features.

(3) expose dynamic timer status information during run-time,
such as the current mode of operation and pending inter-
rupts. This eases timer operation in different contexts like
an ISR, a normal thread, or any other context where inter-
rupts are disabled. High-level modules that depend on this
information are thereby relieved from using workarounds
such as manually detecting counter register overflows.

(4) provide the ability to attach a callback function to both com-
pare match and overflow interrupts, whenever available. The
exact interrupt cause should be easily identifiable.

5.1.3 Platform Portability. To maintain cross-platform application
portability a low-level timer-API should

(1) address timer peripherals in a standardized way across all
platforms, i.e., a generic type for timer instances is defined. A
timer instance on one platform shall therefore be presented
the same way as a timer instance on another platform.

(2) maintain platform independence as far as possible and only
be platform specific whenever inevitable. It should therefore
aim tomaintain cross-platform portability as long as required
timer features are available on all targeted MCU platforms.

(3) give the application developer the ability to consciously sac-
rifice cross-platform portability whenever highly platform
specific features are required for the application. In other
words: Portability should never sacrifice features.

5.1.4 Configuration Management. Timer peripherals are managed
by the timer subsystem. A low-level timer-API should therefore

(1) allow to select timer instances during compile-time that are
then exposed to the application at run-time.

(2) allow dynamic run-time re-configuration of hardware timers
whenever feasible. In particular run-time clock configura-
tion to complement the usage of advanced low-power MCU
operation modes is desirable.

(3) support cross-platform parameter configuration, similar to
other OS and driver settings. If one timer hardware param-
eter applies to a relevant number of platforms, it should be
configurable globally for all affected platforms.

(4) encourage a common pattern for peripheral configuration
management. It should guide developers on where to store
information and what should be configured on which layer.

5.1.5 System Impact and Resources. As timers are always embed-
ded within a broader application context, efficient use of system
resources is crucial. A low-level timer-API should therefore

(1) be modular in a way that functions and code not required
for the current application can be excluded from the built
binary, thereby reducing the overall memory footprint.

(2) not interfere with other system modules nor introduce side
effects, whenever avoidable.

(3) use system resources efficiently by being both run-time and
memory efficient (ROM and RAM). Maintenance overhead
should be kept as low as possible.

5.2 Architectural Overview
While timer types differ in their specific set of features, many MCU
platforms provide timers that are similar with respect to their basic
operating principles. Even though implementations of their fea-
tures might differ slightly, their underlying logic and semantics are
alike. The following unified API design fosters a transparent and
interchangeable usage of ”all” timer peripherals, at least regarding
their common timer operations.

The proposed low-level timer API is split into two: The hardware-
facing API (hAPI), see Section 5.4, and the user-facing API (uAPI),
see Section 5.5. The hAPI is made up of minimal function sets (i.e.,
drivers) for each timer type that are used to interact with the actual
hardware peripherals. The hAPI is used by the uAPI, which pro-
vides convenient timer access to user applications and high-level
modules. It consists of convenience and compound functions that
are independent of the underlying timer type. The described sepa-
ration of hardware-specific driver code and hardware-independent
user functions is depict in Figure 1.

Each individual timer is represented by an associated struct. It
identifies the exact hardware peripheral, specifies the timer type
driver and provides static information about the timer instance (e.g.,
width and channel count). A detailed description can be found in
the following sections.

5.3 Timer Types and Instances
One single hardware timer is represented by an instance of the
tim_periph_t struct. For every exposed timer, as configured during
compile-time, an instance of this struct needs to be created. A tim_ ⌋
periph_t struct (see Listing 1) consists of the following data:

• Hardware peripheral identifier tim_t
• Associated timer type driver tim_driver_t
• Static timer properties, such as counter width and number
of available channels

Type specific sets of timer functions tim_driver_t are assigned
to each tim_periph_t, depending on the respective timer type (e.g.,

11



N. Gandraß

General-
purpose

High-level Timer Module /
User Application

Low-power

RTC

U
se

r-f
ac

in
g 

AP
I

H
W

 In
te

rfa
ce

Driver A

Driver B

periph_timer

Timer
0

Timer
1

Timer
2

Figure 1: Overview of the proposed low-level timer-API design

typedef struct {
const tim_t dev;
const tim_driver_t *const driver;

const uint16_t width :8;
const uint16_t channels :4;
// ...

} tim_periph_t;

Listing 1: Definition of the tim_periph_t struct. It maps dri-
vers to exposed hardware timers and provides information
about static timer properties.

general-purpose, RTC, low-power, . . . ). Contents of the tim_driver_ ⌋
t struct are described in the following hAPI section. This flexible
design allows the usage of different timer types through a unified
user-facing API. Each type may be operated by (partly) individual
driver code.

5.4 Hardware-facing API
The hardware-facing API (hAPI) is responsible for directly interact-
ing with the registers of a hardware timer. It consists of minimal
function sets, each represented as a group of function pointers
within a designated tim_driver_t struct (see Listing 2).

typedef struct {
int (*init)(/* ... */);
tim_propval_t (*get_property)(/* ... */);
int (*set_property)(/* ... */);
int (*enable)(/* ... */);
tim_cnt_t (*read)(/* ... */);
void (*write)(/* ... */);
int (*set_channel)(/* ... */);
// ...

} tim_driver_t;

Listing 2: Definition of the tim_driver_t struct. One such
struct exists for every timer type and contains pointers to
its respectively implemented hAPI functions.

For every exposed timer type exactly one such driver is created
and later mapped onto tim_periph_t instances of the corresponding
peripheral type. Different driver code can hereby be provided for
all timer types by assigning the desired function pointers within
the driver struct.

5.4.1 Driver Code Reusability. MCUs commonly provide multiple
instances of a single hardware timer type. Interfacing all timers
of one class with the same generic driver not only reduces the
memory footprint but also benefits code quality and maintainability.
We refer to using one driver for multiple timer instances as driver
granular code reusability. An example of this is shown in Figure 2a.
Here, Timer 0 and Timer 1 are interfaced using Driver A while
Timer 2 uses a different Driver B. This behavior can be achieved
by simply referencing the desired driver tim_driver_t within each
timer instance tim_periph_t.

Our hardware analysis further revealed, that some timer types
are available in two versions, e.g., a basic and an advanced general-
purpose timer module. If these versions only differ slightly, it is
worthwhile to reuse functions from one driver within another dri-
ver. We refer to using the exact same function within multiple
drivers as function granular code reusability. The scenario depict in
Figure 2b illustrates such a case. Here, Driver A and Driver B each
possess exclusive functions (fn_A and fn_B) while also sharing com-
mon functions (fn_1 and fn_2). To efficiently handle such scenarios
function granular reusability of driver code is made possible. It can
easily be achieved by assigning the same function pointer in both
driver instances.

5.4.2 Timer Feature and Property Access. Every hardware timer
offers a distinct set of properties. Each property can be put into
either of the following groups:

(a) Static attributes such as the counter register width and the
number of available channels.

(b) Dynamic properties such as the counting mode or pending
events, e.g., compare match and overflow.

These properties are made available to the user application and
high-level modules. Common static attributes, which apply to all
timer types, are encoded into appropriate bit fields within the tim_ ⌋
periph_t timer instance structs (see Listing 1). This allows for easy
determination of such static attributes as, e.g., the number of avail-
able channels. Properties that are either timer type specific or dy-
namic, i.e., can change during run-time, are exposed through a
slim and straight forward interface (see Listing 3). All available
properties are encoded within the tim_prop_t enum. They can be
read using the get_property(tim_prop_t) and written using the
set_property(tim_prop_t, tim_propval_t) function.

12



Large-scale Timer Hardware Analysis and Low-level API Design
Towards a Clean-slate Timer Subsystem for RIOT-OS

typedef enum {
// ...
TIM_PROP_MODE = 0x01,
TIM_PROP_CNT_DIR = 0x02,
// ...
TIM_PROP_OVF_PENDING = 0xF0,
TIM_PROP_CMP_MATCH_PENDING = 0xF1,
// ...

} tim_prop_t;

typedef struct {
// ...
tim_propval_t (*get_property)(tim_prop_t prop);
int (*set_property)(tim_prop_t prop, tim_propval_t val);
// ...

} tim_driver_t;

Listing 3: Dynamic property interface provided by the hAPI.
Available properties are encodedwithin the tim_prop_t enum
and can be accessed using the shown driver calls.

Advanced timer type specific features, which cannot commonly
be found on all timers, are made accessible through the same flex-
ible interface. These features can likewise be reconfigured using
the set_property() function and their current configuration can
be determined using the get_property() function. Examples are
special counting modes, low-power features and hardware timer
chaining. Such again are represented as separate entities within the
tim_prop_t enum. If a given hardware timer does not support one
of these specific features it simply can be left unimplemented. In
this case, the platform developer may indicate the absence of this
specific feature via the return values of the access functions.

5.4.3 Memory Footprint. Every available driver requires memory
for storing the pointers to each function it provides. The fewer
individual functions are provided, the less memory is consumed for
associated function pointers. In order to keep the memory footprint
low, the hAPI interface therefore is kept as compact as possible.
This is accomplished by

(1) merging strongly coupled functionality into a single function.
For example:
a) start() and stop() are combined into a single enable(run)

function.
b) set(), set_periodic() and clear() are combined into a

single set_channel(tim_chan_mode_t) function.
(2) moving all functions that can be implemented as a sole com-

bination of other hAPI functions (i.e., compound functions)
to the uAPI. Relative timer channel arming, for example, can
be implemented by calling the hAPI functions read() and
set_channel() and therefore is implemented solely within
the uAPI as the timer_set() call (see Figure 3).

(3) exposing dynamic run-time properties and advanced timer
functions through a getter-setter-based interface (see Sec-
tion 5.4.2). A large amount of potentially unused function
pointers can hereby be eliminated.

(4) grouping functions for specific features, such as PWM or
timer chaining, into compile-time optional modules. Each
module can be enabled by respective preprocessor directives.

A further reduction of memory consumption is achieved by
strictly combining data into bit fields whenever appropriate, as for
example done with static timer properties attached to tim_periph_t

structs.

5.4.4 Virtual Drivers. In some use-cases it can be desirable to addi-
tionally provide virtual timer drivers. These drivers may not interact
with a single hardware timer directly but instead can use other base
drivers to interact with the required timers. They both can solely
rely on base driver calls but also are able to provide additional imple-
mentations for specific functions. If required, base driver functions
can further be overwritten by the virtual driver.

A common use-case is with hardware-supported timer chaining,
as illustrated in Figure 2c. Here, Timer 0 and Timer 1 can be con-
figured to operate as a combined timer module with an extended
counter register size.

Both timers can be initialized and controlled using their base
driver. But when chaining them into a combined module, additional
configuration and a special behavior during reads and writes is
mandatory. The virtual driver handles those two requirements by
selectively extending the base driver functionality. It exposes the
two small timers as a single tim_periph_t instance, featuring the
enlarged counter value. User applications or high-level modules
can now interact with the larger chained timer through the same
uAPI as with any other tim_periph_t instance. It should, however,
be noted that when exposing multiple hardware timers as a single
timer instance it might be required to remove the base timers from
the set of timer peripherals that is made available to the application.
Otherwise accessing one of the base timers might cause unexpected
behavior of the combined timer instance.

5.5 User-facing API
The user-facing API (uAPI) provides an interface to both the user
application and high-level RIOT-OS modules that is independent
of underlying timer types (see Table 3). It automatically delegates
function calls to the respective hAPI driver, as specified within the
tim_periph_t instance. It furthermore provides additional functions
that are not required to be implemented within the hAPI, such as
relative timeouts. In contrast to the hAPI, which provides multiple
sets of functions that are specific to the underlying timer type,
the uAPI only presents one single set of functions for all available
timers due to its abstraction of the underlying timer type.

5.5.1 Basic Common Timer Functions. Basic functions that are
commonly found on all timer types are exposed directly as separate
functions by the uAPI. Feature access is provided by unbundling the
compressed hAPI functions (see Section 5.4.3) into a user-friendly
interface. An example is the hAPI enable(run) function that is
split into the two more convenient timer_start() and timer_stop()

uAPI functions.
In contrast to hAPI drivers, the uAPI is not required to minimize

the amount of provided functions. As no drivers exist within the
uAPI, no function pointers need to be stored and therefore no
fixed amount of memory needs to be allocated for each of the
provided uAPI functions. Unused functions are removed by the
compiler during optimization and therefore do not negatively affect
the final binary size. Besides fully delegatable function calls, other

13



N. Gandraß

uAPI Function Description
tim_periph_t timer_get_periph(

tim_t dev
);

Returns the corresponding timer peripheral struct for the timer
device identifier dev.

int timer_init(
tim_periph_t *const tim,
unsigned long freq,
tim_clk_t clk,
bool ovf,
tim_cb_t cb,
void *arg

);

Initializes the timer module tim. The clock source clk is used
to achieve the requested operating frequency freq (number of
timer ticks per second)(a). If supported, counter overflow event
generation ovf can be enabled. A callback function cb to be
executed at timer event occurrence is registered. A pointer for
binding additional arguments arg may also be given.

int timer_start(
tim_periph_t *const tim

);

Enables the timer tim, i.e., starts incrementing the internal
counter of the hardware peripheral.

int timer_stop(
tim_periph_t *const tim

);

Disables the timer tim, i.e., stops incrementing the internal
counter of the hardware peripheral.

tim_cnt_t timer_read(
tim_periph_t *const tim

);

Reads the current raw counter value of the internal counter
register of timer tim.

void timer_write(
tim_periph_t *const tim,
tim_cnt_t cnt

);

Sets the current raw counter value of the internal counter reg-
ister of timer tim to the absolute value cnt.

int timer_set(
tim_periph_t *const tim,
unsigned int channel,
unsigned int timeout

);

Arms the timer channel channel to generate a timeout event
after the specified time timeout. The timeout period is relative
to the current internal counter value of the timer tim.

int timer_set_absolute(
tim_periph_t *const tim,
unsigned int channel,
tim_cnt_t cnt

);

Arms the timer channel channel to generate a timeout event
after the internal counter register of the timer tim has reached
the absolute counter value cnt.

int timer_clear(
tim_periph_t *const tim,
unsigned int channel

);

Disarms the timer channel channel of the timer tim. The channel
is disarmed regardless of its current state.

tim_propval_t timer_get_property(
tim_periph_t *const tim,
tim_prop_t prop

);

Reads the property prop of the timer tim.

int timer_set_property(
tim_periph_t *const tim,
tim_prop_t prop,
tim_propval_t val

);

Sets the property prop of the timer tim to the value val.

(a) If the specified clock source cannot safely be configured to generate the requested frequency an appropriate error code is
returned and the timer is left uninitialized. A function that determines the nearest achievable frequency is optionally provided.

Table 3: Excerpt of the user-facing API. Functions are independent of underlying timer types
and designed to be used by the user application or other high-level RIOT-OSmodules. Additional
functions for convenient feature access can be provided. Failed operations or incorrect usage is
indicated by respective return values.

14



Large-scale Timer Hardware Analysis and Low-level API Design
Towards a Clean-slate Timer Subsystem for RIOT-OS

Driver A

Driver B

Timer
0

Timer
1

Timer
2

(a) Driver granular code reusability

Driver A

Driver B

fn_A

fn_1

fn_2

fn_B

(b) Function granular code reusability

Base
Driver

fn

fn

fn

fnVirtual
Driver

Timer
0

Timer
1

Timer
0+1

(c) A virtual timer driver

Figure 2: Illustrations of hardware-facing API design concepts

basic convenience functions are provided to the user. As these can
entirely be fulfilled by combining multiple hAPI function calls,
they are implemented solely inside the uAPI. We refer to such
functions as compound functions. An example of such is setting
relative timeouts, as depicted in Figure 3.

User-facing API Hardware-facing API

timer_set()

read()

1
2
3

set_channel()

Figure 3: Exemplary uAPI compound function. Relative
timer arming is here implemented solely within the uAPI
as a combination of hAPI function calls.

5.5.2 Advanced Timer Functions and Status Information. Advanced
timer functions, which are not broadly available and therefore
timer type dependent, are made accessible via the hAPI (see Sec-
tion 5.4.2). The provided interface is based on getter and setter
functions that allow read and write access to the respective timer
properties and features. They are exposed by the uAPI in the same
way through the timer_get_property(tim_prop_t) and timer_set_ ⌋
property(tim_prop_t, tim_propval_t) functions. All available timer
features and peripheral properties that are listed in the tim_prop_t

enum can be addressed (see Listing 3). This includes both advanced
timer functions and run-time dynamic timer properties.

To further aid usability, the uAPI can provide additional wrapper
functions for conveniently accessing specific features and proper-
ties. Examples include, but are not limited to:

(a) timer_is_enabled(): Determines if a timer is running (i.e.,
counting)

(b) timer_has_pending_ovf(): Determines if a timer has an un-
handled overflow pending

(c) timer_set_count_dir(): Changes a timers counting direction
(d) timer_irq_ovf_enable(): Enables generation of overflow in-

terrupts
These convenience functions again do not end up in the final

binary if unused, due to applied compile-time optimization.

5.6 Counter Value
Values of the internal counter register that each timer offers are rep-
resented by the tim_cnt_t type throughout both the hAPI and the
uAPI. The exact size of the underlying datatype can be selected dur-
ing compile-time. On MCU platforms that only offer small timers
(e.g., 16-bit) the counter type width can hereby be adjusted ac-
cordingly to benefit performance and save memory. The selected
counter width must, however, be at least the size of the largest
timer exposed to the application, as configured compile-time static.

5.7 Interrupt Handling
Two separate callback functions can be attached to every timer
instance during initialization. One that is executed after a compare
match IRQ was generated (tim_cmp_cb_t) and one to be executed
after a counter register overflow IRQ occurred (tim_ovf_cb_t). If
one of both is provided, it is executed by the low-level timer module
once the corresponding IRQ was generated and after all required
interrupt maintenance tasks, such as updating the interrupt status
registers, were performed. During invocation, the interrupt cause
tim_int_t is determined by the executed callback and, if applicable,
the triggered timer channel is passed as a function argument. An
optional context can furthermore be bound to each of the callback
functions via a void pointer. Interrupt generation (i.e., masking)
can be run-time configured via the timer property interface.

The compare match and overflow callbacks are handled individu-
ally due to the disjoint use-cases of both events. Counter overflows
are most often used solely for timer maintenance tasks whereas
compare match events indicate elapsed timeouts, which the user
application wants to be informed of. By removing the need to de-
termine the interrupt cause within the attached callback function
shorter maintenance periods can be achieved, hereby decreasing
the overall resource consumption as well as reducing the latency
of elapsed timeouts.

Channel specific callback functions however are not separated
further, thus all compare match events are handled within the same
function. Only 31% of all analyzed timer types where found to pro-
vide distinct interrupts for every compare channel. Storing a large
number of callback function pointers, which will remain unused on
many platforms, therefore is considered inapplicable. Although, a
small number of platforms may experience a slightly lower timeout

15



N. Gandraß

latency, the majority of all MCU platforms only suffers the larger
memory footprint, due to the additional function pointers that need
to be stored, without gaining any benefits. Nonetheless, individual
functions can still be dispatched within the attached compare match
callback function, based on the provided channel argument.

5.8 Run-time Clock Configuration
System clock configuration is commonly implemented entirely
compile-time static. In order to provide flexibility and allow dy-
namic power mode transitions, the low-level timer API supports
changing timer clock sources during run-time. If not handled by
a designated system-wide clock configuration module, it can be
implemented within the timer-API itself. With this, however, two
crucial restrictions apply:

(1) Selecting a platform specific clock source comes at the cost
of loosing application portability.

(2) A clock source is only allowed to be changed during run-
time, if its altering does not affect other timers or hardware
peripherals in any way, i.e., it does not introduce side effects.

A clock source is uniquely identified by the tim_clk_t type. Its
default definition might be used, though it is highly encouraged to
redefine it for every MCU platform in order to reflect the actually
available clocks. To cope with restriction (1), both platform specific
clocks as well as platform independent abstract clock classes can
be provided. The first allow for fine-grained platform specific opti-
mizations while the latter provide a trade-off between optimization
potential and application portability.

Restriction (2) entails, that a closer look at the clock tree of the
respective MCU platform is mandatory during implementation. The
driver developer must determine the impact domain, i.e., the set
of affected peripherals, as well as possible side effects of a clock
change. Given a timer clock TIMx_CLK can be selected among
the three different clock sources CLK_A, CLK_B, and CLK_C. If
TIMx_CLK can be selected among all clock sources individually for
each timer module, available CLKs are: CLK_A, CLK_B, CLK_C. If
however, using CLK_A as a clock for TIMx_CLK implies this choice
for multiple peripherals, only TIMx_CLK is an allowed selection.
In other words: When traversing the hierarchical clock tree, only
clocks on the path originating from the timer peripheral up to the
first branch that leads to other peripherals, are applicable.

Moreover, techniques for deriving abstract descriptions of MCU
clock trees and dynamically altering clock configurations are being
developed. One such novel approach is FlexClock [16], allowing
run-time clock re-configuration in a generic platform-independent
fashion. It combines a flexible scheme for light-weight modeling
of MCU clock trees with a generic software implementation that
can dynamically explore and reconfigure the modeled clock-trees
during run-time. We suggest employing such techniques when
implementing the proposed API design for a diverse range of MCU
platforms from different manufacturers.

5.9 Issues
The proposed low-level timer-API brings many advantages when
compared to the current RIOT-OS peripheral drivers, as depict
in Section 4. These include the possibility to integrate currently
unsupported timer types, all usable through a unified and MCU

platform independent API. Advanced timer features and properties
are exposed and timer configuration possibilities are widened. With
the proposed API design, however, some implications and trade-offs
still exist. These are outlined in this section.

As only one uniform set of functions should be provided by the
uAPI, the same tim_cnt_t definition has to be used for all timer
types. It must be able to store values of the widest counter register
that is made available to the application. This implies that small
timers (e.g., 16-bit) are required to use unnecessarily large data
types when at least one larger timer (e.g., 32-bit) is exposed. This
trade-off was made to avoid having separate bit-size dependent
APIs or error prone void pointer casting.

When compared to existing implementations, the proposed API
comes with an increased memory footprint. This is due to the func-
tion pointers within tim_driver_t structs. As such driver structs
exists for every exposed timer type, the actual increase in memory
consumption strongly depends on the used timers and how they
are interfaced. If, for example, an application uses timers via three
of the existing APIs, replacing them with one uniform low-level
timer-API could potentially fully outweigh the described resource
impact. Future work (see Section 6) shall determine the exact impact
in different application scenarios. Though noteworthy, we expect
the increase to be negligible in most of the use-cases.

Last, as with every module reorganization, implementations of
the new API must be developed for all MCU platforms that are
supported by RIOT-OS. Even though this is not considered to be an
issue of the API design itself it must still be taken into account. Ex-
isting driver code segments for basic timer operation can of course
be reused during this process. Solely additional timer functions
that are currently left unimplemented require additional develop-
ment effort. It can furthermore be desirable to provide appropriate
compatibility layers for high-level modules.

6 FUTUREWORK
Completing outstanding tasks and resolving open issues related
to the conducted hardware platform analysis, as described in Sec-
tion 3.4, are next on our agenda. Nonetheless, additional work needs
to be done in order to enhance the proposed API design and to fi-
nally implement the aspired clean-slate timer-API for RIOT-OS. A
coarse overview of our next steps towards this goal is given in this
section.

(1) Abstract Timer Classes.Our analysis revealed that, apart from
general-purpose modules, timer peripherals vary greatly in
function and availability between different manufacturers.
To cope with this diversity we propose to define abstract
timer classes, each describing a particular set of features
a hardware timer of the respective category offers. Well-
considered definition of appropriate categories has to be
done. Conceivable types may include the following: general-
purpose, low-power, high-resolution, and long-running timers.
Introducing such would benefit a high-level timer module
by allowing platform-agnostic and dynamic management
of available timer resources, selecting the most appropriate
ones for the current application.

(2) Availability Analysis. Strongly linked to the definition of
abstract timer classes is the evaluation of their availability

16



Large-scale Timer Hardware Analysis and Low-level API Design
Towards a Clean-slate Timer Subsystem for RIOT-OS

across all hardware platforms. This step cannot only aid
developers during selection of appropriate MCUs for their
respective applications. It moreover allows us to estimate
the total number of platforms that would potentially benefit
from different aspects of the timer-API.

(3) Micro-benchmarks. Design decisions regarding the proposed
low-level timer-API shall be evaluatedwithmicro-benchmarks.
This step is crucial in order to generate performance data
that can then be used to compare different implementation
variants as well as the impact of individual design decisions
against each other. A respective set of use-cases and ap-
plication scenarios needs to be carefully defined for this
step. Conceivable analyses include the impact on memory
footprint and maintenance overhead as well as experienced
timeout latency. Further trade-off analyses, such as extend-
ing an existing function versus providing an additional API
call shall also be part of the planned micro-benchmarks.

(4) High-level Timekeeping-API Design. Creating a new poten-
tial high-level timer-API for RIOT-OS is a long term goal of
our work. During this step, all insights gathered from our
conducted research may be taken into account. Advanced
features that are made available by the proposed low-level
timer-API, as depict in Section 5, shall of course also be incor-
porated during this process. Considering proposed methods
and avoiding documented pitfalls from relatedwork, as show-
cased in Section 2.2, is furthermore desired. Requirements
for the high-level timer module shall be defined with respect
to various application scenarios and different characteristics.
The latter includes among others: maintenance complexity,
power-saving and energy-efficiency, platform abstraction,
API design, and maintainability. Based on the derived re-
quirements a prototypical high-level timer subsystem can
then be implemented and tested for a subset of the available
platforms.

7 CONCLUSION
The contribution of this work was threefold. We first reviewed
related work, depicting both timer hardware and software design
considerations. Various implementation techniques and common
pitfalls that are to be avoided were highlighted. Second, we con-
ducted a large-scale timer hardware analysis covering all MCU-
platforms that were supported by RIOT-OS at the time of writing.
We provided detailed information about every timer peripheral
type that is available on the targeted platforms and derived com-
parative inter-MCU-platform findings. Analysis results were then
discussed with respect to the development of a clean-slate timer
subsystem for RIOT-OS. Outstanding tasks as well as open issues
of the conducted hardware platform analysis were subsequently
outlined. We furthermore contributed an overview of all low-level
timer peripheral drivers of RIOT-OS, highlighting common design
aspects as well as their limitations. Third, we used insights gained
from the review of related work, the conducted hardware analysis,
and the low-level timer driver comparison to propose a comprehen-
sive low-level timer-API design. It is split into a hardware-facing
and a user-facing API component, thereby exposing the various
available timer types through the same uniform API to both the

user application and high-level modules. A platform independent
set of basic features is offered while access to specialized timer
features that are only available on a subset of peripherals is also
made possible. Conclusively, outstanding tasks and future work
were outlined.

ACKNOWLEDGMENTS
We would like to thank Michel Rottleuthner (Hamburg University
of Applied Sciences) for his help during the collection of the data
that was used in the hardware platform analysis as well as for
sharing his expertise in this field of research in general.

REFERENCES
[1] Mohit Aron and Peter Druschel. 2000. Soft Timers: EfficientMicrosecond Software

Timer Support for Network Processing. ACM Transactions on Computer Systems
(TOCS) 18, 3 (Aug. 2000), pages 197–228. https://doi.org/10.1145/354871.354872

[2] Emmanuel Baccelli, Cenk Gündogan, Oliver Hahm, Peter Kietzmann, Martine
Lenders, Hauke Petersen, Kaspar Schleiser, Thomas C. Schmidt, and Matthias
Wählisch. 2018. RIOT: an Open Source Operating System for Low-end Embedded
Devices in the IoT. IEEE Internet of Things Journal 5 (Dec. 2018), pages 4428–4440.
https://doi.org/10.1109/JIOT.2018.2815038

[3] Emmanuel Baccelli, Oliver Hahm, Mesut Günes, Matthias Wählisch, and
Thomas C. Schmidt. 2013. RIOT OS: Towards an OS for the Internet of Things. In
Proceedings of the 2013 IEEE Conference on Computer Communications Work-
shops (INFOCOM WKSHPS). IEEE Press, Piscataway, NJ, USA, pages 79–80.
https://doi.org/10.1109/INFCOMW.2013.6970748

[4] Patrick Bellasi. 2009. Linux Power Management Architecture: A review on Linux PM
frameworks. Technical Report. Politecnico di Milano, Dipartimenti di Elettronica
e Informazione.

[5] Thomas Gleixner and Douglas Niehaus. 2006. Hrtimers and Beyond: Trans-
forming the Linux Time Subsystems. In Proceedings of the 2006 Ottawa Linux
Symposium (Volume One). pages 333–346.

[6] Giovani Gracioli, Danillo Santos, Roberto Matos, Lucas Wanner, and Antônio
Fröhlich. 2008. One-shot time management analysis in EPOS. In Proceedings of
the International Conference of the Chilean Computer Science Society. pages 92–99.
https://doi.org/10.1109/SCCC.2008.13

[7] Vlado Handziski, Joseph Polastre, J.-H Hauer, Cory Sharp, Adam Wolisz, and
David Culler. 2005. Flexible Hardware Abstraction for wireless sensor networks.
In Proceeedings of the Second European Workshop on Wireless Sensor Networks.
pages 145–157. https://doi.org/10.1109/EWSN.2005.1462006

[8] Wanja Hofer. 2014. Sloth: The Virtue and Vice of Latency Hiding in Hardware-
Centric Operating Systems. Doctoral Thesis. Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU).

[9] Wanja Hofer, Daniel Danner, Rainer Muller, Fabian Scheler, Wolfgang Schröder-
Preikschat, and Daniel Lohmann. 2012. Sloth on Time: Efficient Hardware-Based
Scheduling for Time-Triggered RTOS. In Procceedingss of the 33rd IEEE Real-Time
Systems Symposium. pages 237–247. https://doi.org/10.1109/RTSS.2012.75

[10] Wanja Hofer, Daniel Lohmann, and Wolfgang Schröder-Preikschat. 2011. Sleepy
Sloth: Threads as Interrupts as Threads. In Proceedings of the 32nd IEEE Real-Time
Systems Symposium. pages 67–77. https://doi.org/10.1109/RTSS.2011.14

[11] Jupyung Lee and Kyu-Ho Park. 2005. Delayed locking technique for improving
real-time performance of embedded Linux by prediction of timer interrupt. In
Proceedings of the 11th IEEE Real Time and Embedded Technology and Applications
Symposium. pages 487– 496. https://doi.org/10.1109/RTAS.2005.16

[12] Raj Kamal. 2011. Embedded Systems: Architecture, Programming and Design
(second ed.). Tata McGraw Hill Education.

[13] Per Lindgren, Emil Fresk, Marcus Lindner, Andreas Lindner, David Pereira, and
Luís Miguel Pinho. 2016. Abstract Timers and Their Implementation onto the
ARM Cortex-M Family of MCUs. ACM SIGBED Review 13 (Mar. 2016), pages
48–53. https://doi.org/10.1145/2907972.2907979

[14] Vesna Mincev and Dragan Milicev. 1998. A Tree-Driven Multiple-Rate Model of
Time Measuring in Object-Oriented Real-Time Systems. In Proceedings of the Con-
ference on Parallel and Distributed Processing (IPPS). Springer Berlin Heidelberg,
pages 1037–1046. https://doi.org/10.1007/3-540-64359-1_769

[15] Pratyush Patel, Manohar Vanga, and Bjorn Brandenburg. 2017. TimerShield: Pro-
tecting High-Priority Tasks from Low-Priority Timer Interference. In Proceedings
of the 2017 IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS). pages 3–12. https://doi.org/10.1109/RTAS.2017.40

[16] Michel Rottleuthner, Thomas C. Schmidt, and Matthias Wählisch. 2021.
FlexClock: Generic Clock Reconfiguration for Low-end IoT Devices.
arXiv:eess.SY/2102.10353

[17] Ioan Susnea and Marian Mitescu. 2005. Microcontrollers in Practice (Springer
Series in Advanced Microelectronics) (first ed.). Springer-Verlag, Berlin, Heidelberg.

17

https://doi.org/10.1145/354871.354872
https://doi.org/10.1109/JIOT.2018.2815038
https://doi.org/10.1109/INFCOMW.2013.6970748
https://doi.org/10.1109/SCCC.2008.13
https://doi.org/10.1109/EWSN.2005.1462006
https://doi.org/10.1109/RTSS.2012.75
https://doi.org/10.1109/RTSS.2011.14
https://doi.org/10.1109/RTAS.2005.16
https://doi.org/10.1145/2907972.2907979
https://doi.org/10.1007/3-540-64359-1_769
https://doi.org/10.1109/RTAS.2017.40
http://arxiv.org/abs/eess.SY/2102.10353


N. Gandraß

https://doi.org/10.1007/3-540-28308-0
[18] Andrew S. Tanenbaum. 2009. Moderne Betriebssysteme (3. aktualisierte auflage

ed.). Pearson Studium.
[19] corbet (Pseudonym). 2007. Deferrable timers. News Article. Released in Linux

Weekly News (LWN). https://lwn.net/Articles/228143/
[20] Edward W. Thompson and Stephen A. Szygenda. 1975. Three levels of accuracy

for the simulation of different fault types in digital systems. In Proceedings of the
12th Design Automation Conference (DAC). IEEE Press, pages 105–113.

[21] Dan Tsafrir. 2007. The Context-Switch Overhead Inflicted by Hardware Interrupts
(and the Enigma of Do-Nothing Loops). In Proceedings of the 2007 Workshop on
Experimental Computer Science (San Diego, California) (ExpCS ’07). Association
for Computing Machinery, New York, NY, USA, pages 4–es. https://doi.org/10.
1145/1281700.1281704

[22] Dan Tsafrir, Yoav Etsion, and Dror Feitelson. 2005. General purpose timing:
the failure of periodic timers. Technical Report. School of Computer Science &
Engineering, The Hebrew University.

[23] Ioanna Tsekoura, Gregor Rebel, Mladen Berekovic, and Peter Glösekötter. 2014.
An evaluation of energy efficient microcontrollers. In Proceedings of the 9th
International Symposium on Reconfigurable and Communication-Centric Systems-
on-Chip (ReCoSoC). https://doi.org/10.1109/ReCoSoC.2014.6861368

[24] George Varghese and Anthony Lauck. 1997. Hashed and Hierarchical Timing
Wheels: Efficient Data Structures for Implementing a Timer Facility. IEEE/ACM
Transactions on Networking 5, 6 (Dec. 1997), pages 824–834. https://doi.org/10.
1109/90.650142

18

https://doi.org/10.1007/3-540-28308-0
https://lwn.net/Articles/228143/
https://doi.org/10.1145/1281700.1281704
https://doi.org/10.1145/1281700.1281704
https://doi.org/10.1109/ReCoSoC.2014.6861368
https://doi.org/10.1109/90.650142
https://doi.org/10.1109/90.650142


Large-scale Timer Hardware Analysis and Low-level API Design
Towards a Clean-slate Timer Subsystem for RIOT-OS

A HARDWARE ANALYSIS RESULTS
Detailed results from the conducted timer hardware analysis are found in the following tables. Each table contains the analyzed timer module
types and their respective properties for a set of MCUs as indicated by the table captions.

A.1 Column Key / Explanation of Criteria
A.1.1 Timer Type. Name of the respective timer type. Generic timer modules across various platforms are united under the type name
"General-purpose" in order to be easily identifiable throughout the results. Names of special purpose timers are adopted from naming
conventions in the corresponding datasheets.

A.1.2 Counter Width. Width of the internal counter register in bits. If multiple counter widths are available for a single timer type, these
are listed below each other inside a single cell. Can be omitted if timer does not contain plain counter register (e.g., real-time-clocks).

A.1.3 Compare Channels. Number of compare channels available in a single timer module of the given type. Can be a single number, a
range or multiple fixed values.

A.1.4 Prescaler Type. Availability of a prescaler that divides the timer clock. Can be one of the following:
× No prescaler is available.
E Prescaler can be continuously selected as exponentials of 2 (e.g., 1, 2, 4, 8, . . . , 2𝑛).
F Prescaler can be selected from fixed values with varying intervals (e.g., 1, 16, 64, 512).
R Prescaler can be continuously selected as discrete integer values (e.g., 1, 2, 3, 4, . . . , 65536).

A.1.5 Max Prescaler. Maximum value that can be selected as a prescaler (i.e., greatest clock divider resulting in longest time to over-
/underflow) with respect to Prescaler Type. Can be omitted when Prescaler Type is ×.

A.1.6 Chaining Support. Indicates if chaining timers of the given type is possible. This feature can be used to combine small counters into a
larger one (e.g., combining two 16-bit timers into a 32-bit timer). Can be one of the following:

× No support for timer chaining available. Chaining by routing signals through additional peripherals is counted as not available.
✓ Combination of multiple timer modules is possible (e.g., configured in timer control registers).

A.1.7 Compare INT. Type of interrupts generated on a compare channel match event. Can be omitted if Compare Channels is 0. Can be one
of the following:

× Non-existing. Compare matches cannot generate any kind of interrupt.
◦ Available but shared with other timer events. Applies if only a single interrupt per timer module is available.
□ Available but shared with other compare channels. Applies if a single timer module has one interrupt that exclusively services all its

compare matches.
✓ Available and offering unique interrupts for each compare channel (i.e., no status bit / event flag read is necessary to identify the

compare channel that produced the match event).

A.1.8 Overflow INT. Type of the interrupt generated on a counter register over-/underflow. Can be one of the following:
× Non-existing. A counter over-/underflow cannot generate any kind of interrupt.
◦ Available but shared with other timer events. Applies if only a single interrupt per timer module is available.
✓ Available and offering a unique interrupt (i.e., no status bit / event flag read is necessary to distinguish from compare matches).

A.1.9 Event Flags. Determines the availability of status bits that indicate if an event (e.g., compare match or over-/underflow) was observed by
the timer hardware. These flags need to be updated independently of the generated interrupts and must be available even if the corresponding
interrupt is currently masked. Can be one of the following:

× No event status bits / flags available.
✓ Event status bits / flags are available and updated even if the corresponding interrupt is masked.

A.1.10 Auto-reload. Availability and type of the auto-reload function. Can be one of the following:
× Not available (i.e., one-shot mode).
◦ Timer auto-reloads / warps only at counter over-/underflow (i.e., full width free-running mode).
□ Auto-reload at arbitrary value is available but sacrifices one compare channel (i.e., limited width free-running mode).
✓ Auto-reload at arbitrary value is available. No compare channel is required, exclusive auto-reload match register available (i.e., limited

width free-running mode).

A.1.11 PWM Generation. Indicates if a timer module can directly generate and output pulse-width-modulation (PWM) waveforms. Can be
one of the following:

× Not available. PWM generation through additional peripherals (e.g., exclusive PWM peripheral) counts as not available.
✓ PWM generation available.

19



N. Gandraß

A.1.12 Internal CLKs. Number of internal clocks the timer is able to run of.
A single clock is categorized as internal, if it can in at least one case be configured to be driven from an internal oscillator. If it is able to

run from either an internal or external oscillator, it is categorized as both internal and external clock.
Listed clocks are based on their scope and potential side effects on other peripherals. Given a timer clock (e.g., TIMx_CLK) can be selected

among three different clock sources (e.g., CLK_A,CLK_B, CLK_C). If TIMx_CLK can be selected among all clock sources individually for each
timer module, available Internal CLKs are: CLK_A,CLK_B, CLK_C. If however, using CLK_A as a source clock for TIMx_CLK implies this choice
for multiple peripherals, only TIMx_CLK is counted as Internal CLK. In other words: Within the hierarchical clock tree, only clocks starting
from the timer peripheral up to the first branch that leads to other peripherals, are listed here.

A.1.13 External CLKs. Number of external clocks the timer is able to run of.
A single clock is categorized as external, if it can in at least one case be configured to be driven from an external oscillator. If it is able to

run from either an external or internal oscillator, it is categorized as both external and internal clock.
Listed clocks are based on their scope and potential side effects on other peripherals. See Section A.1.12 for details.

A.1.14 Low-power CLK. Indicates if the timer module can be operated with a low-power clock source (internal or external). A low-power
clock is defined as one that allows the CPU and high-frequency peripheral base clock to be turned off while the low-power clock is still
operational (i.e., the timer can be operated in lower power-states). Can be one of the following:

× No low-power clock source available.
✓ Timer can be operated using a low-power clock source. Timer is operational in lower power states.

A.1.15 Deep-sleep Active. Indicates whether the timer is operational in the lowest power states of the MCU, as typically found with
real-time-clocks. Very low power modes are characterized by the power-down of the CPU, nearly all peripherals, and oscillators. Modules of
this category are often among the only wakeup-sources that can wake the device from deep sleep states. Can be one of the following:

× Timer is never active in the lowest power states.
✓ Timer can be operated in the lowest power states.

A.1.16 Unresolved or Not-applicable Items. In some cases one of the above described attributes does not apply to the timer module (e.g.,
counter width for some real-time-clocks), it is currently unknown or it is unclear and needs confirmation. In such cases one of the following
values can be used for any of the above properties:

- Not applicable
? Unknown / Documentation unclear / Needs confirmation

Timer Type Co
un
ter
Wi
dth

Co
mp
are

Ch
an
ne
ls

Pre
sca
ler
Ty
pe

Ma
x. P

res
cal
er

Ch
ain
ing

Su
pp
ort

Co
mp
are

IN
T

Ov
erfl
ow

IN
T

Ev
en
t F
lag
s

Au
to-
rel
oad

PW
M
Ge
ne
rat
ion

Int
ern
al C

LK
s

Ex
ter
na
l C
LK
s

Lo
w-
po
we
r C
LK

De
ep-
sle
ep
Ac
tiv
e

General-purpose 16 bit 1-4 R 216 ✓ ◦ ◦ ✓ ✓ ✓ 2 3 × ×32 bit

Advanced-control 16 bit 4, 6 R 216 ✓ ◦ ◦ ✓ ✓ ✓ 2 3 × ×
Basic 16 bit 0 R 216 ✓ × ◦ ✓ ✓ × 1 1 × ×

Low-power 16 bit 1 E 27 × ◦ × ✓ ✓ ✓ 3 3 ✓ ×

SysTick 24 bit 0 F 23 × × ✓b ✓ ✓ × 1 1 × ×

Real-time clock - 1-2c Re 27+15 × ◦ ◦d ✓ - × 1 2 ✓ ✓

Independent WDG 12 bit 0 E 28 × × × - × × 1 0 ✓e ✓

System window WDG 7 bit 0 E 212+3 × × × - × × 1 1 × ×
Table 4: Timer Comparison Matrix: STMicroelectronics STM32

20



Large-scale Timer Hardware Analysis and Low-level API Design
Towards a Clean-slate Timer Subsystem for RIOT-OS

Timer Type Co
un
ter
Wi
dth

Co
mp
are

Ch
an
ne
ls

Pre
sca
ler
Ty
pe

Ma
x. P

res
cal
er

Ch
ain
ing

Su
pp
ort

Co
mp
are

IN
T

Ov
erfl
ow

IN
T

Ev
en
t F
lag
s

Au
to-
rel
oad

PW
M
Ge
ne
rat
ion

Int
ern
al C

LK
s

Ex
ter
na
l C
LK
s

Lo
w-
po
we
r C
LK

De
ep-
sle
ep
Ac
tiv
e

General-purpose 8 bit 2 F 210 × ✓ ✓ ✓a □ ✓ 1 2 ✓ ×16 bit 2-3

Asynchronous 8 bit 2 F 210 × ✓ ✓ ✓a □ ✓ 1 3 ✓ ✓

High-speed 10 bit 3 E 214 × ✓ ✓ ✓a □ ✓ 2 2 × ×

Watchdog - 0 E 210 × × ✓ ✓ × × 1 0 ✓e ✓

Table 5: Timer Comparison Matrix: Microchip / Atmel megaAVR

Timer Type Co
un
ter
Wi
dth

Co
mp
are

Ch
an
ne
ls

Pre
sca
ler
Ty
pe

Ma
x. P

res
cal
er

Ch
ain
ing

Su
pp
ort

Co
mp
are

IN
T

Ov
erfl
ow

IN
T

Ev
en
t F
lag
s

Au
to-
rel
oad

PW
M
Ge
ne
rat
ion

Int
ern
al C

LK
s

Ex
ter
na
l C
LK
s

Lo
w-
po
we
r C
LK

De
ep-
sle
ep
Ac
tiv
e

General-purpose 16 bit 1 F 28 ✓ ✓ × ✓ ✓ × 1 1 × ×32 bitg

Asynchronous 16 bit 1 F 28 × ✓ × ✓ ✓ × 1 2 ✓ ✓

Real-time clock - 1 × - × ✓ × ✓ - × 0 1 ✓ ✓

Watchdog 25 bit 0 E 220 × × ✓ ✓ × × 1 0 ✓ ✓

Table 6: Timer Comparison Matrix: Microchip PIC32MX/MZ

Timer Type Co
un
ter
Wi
dth

Co
mp
are

Ch
an
ne
ls

Pre
sca
ler
Ty
pe

Ma
x. P

res
cal
er

Ch
ain
ing

Su
pp
ort

Co
mp
are

IN
T

Ov
erfl
ow

IN
T

Ev
en
t F
lag
s

Au
to-
rel
oad

PW
M
Ge
ne
rat
ion

Int
ern
al C

LK
s

Ex
ter
na
l C
LK
s

Lo
w-
po
we
r C
LK

De
ep-
sle
ep
Ac
tiv
e

Timer Counter (TC)o 16 bit 3 F 27 ✓ ◦ ◦ ✓ □ ✓ 2 5 ✓ ×
Pulse Width Modulation (PWM)o 16 bit 0 E 210 × × ✓ ✓ ✓ ✓ 1 1 ✓ ×

SysTick 24 bit 0 F 23 × × ✓ ✓ ✓ × 1 1 ✓ ×

Real-time timer (RTT) 32 bit 1 R 216 × ◦ × ✓ ◦ × 1 1 ✓ ✓

Real-time clock (RTC) - 1 F 215 × ◦ × ✓ ◦ × 1 1 ✓ ✓

Watchdog (WDT) 12 bit 0 F 27 × × ✓ ✓ × × 1 1 ✓ ×
Table 7: Timer Comparison Matrix: Microchip / Atmel SAM3

aWhen enabled
bSystem Tick Interrupt
cRTC Alarm(s)
dFrom periodic wakeup timer
eIndependent oscillator
fFor internal calibration only

21



N. Gandraß

Timer Type Co
un
ter
Wi
dth

Co
mp
are

Ch
an
ne
ls

Pre
sca
ler
Ty
pe

Ma
x. P

res
cal
er

Ch
ain
ing

Su
pp
ort

Co
mp
are

IN
T

Ov
erfl
ow

IN
T

Ev
en
t F
lag
s

Au
to-
rel
oad

PW
M
Ge
ne
rat
ion

Int
ern
al C

LK
s

Ex
ter
na
l C
LK
s

Lo
w-
po
we
r C
LK

De
ep-
sle
ep
Ac
tiv
e

General-purpose
08 bit

2 F 210 ✓ ◦ ◦ ✓ ✓ ✓ 1 1 ✓ ✓16 bit
32 bitg

General-purpose for Control 16 bit 4 F 210 ×k ◦ ◦ ✓ ✓ ✓ 1 1 ✓ ✓24 bit

SysTickj 24 bit 0 ? ? × × ✓b ? ✓ × 1 1 × ×

Real-time counter 32 bit 1 E 210 × ◦ ◦ ✓ ✓ × 3 1 ✓ ✓

Watchdog - 2 - - - ◦ - ✓ - × 2 1 ✓ ✓

Table 8: Timer Comparison Matrix: Microchip / Atmel SAMD21

Timer Type Co
un
ter
Wi
dth

Co
mp
are

Ch
an
ne
ls

Pre
sca
ler
Ty
pe

Ma
x. P

res
cal
er

Ch
ain
ing

Su
pp
ort

Co
mp
are

IN
T

Ov
erfl
ow

IN
T

Ev
en
t F
lag
s

Au
to-
rel
oad

PW
M
Ge
ne
rat
ion

Int
ern
al C

LK
s

Ex
ter
na
l C
LK
s

Lo
w-
po
we
r C
LK

De
ep-
sle
ep
Ac
tiv
e

General-purpose (FRC1) 23 bit 0 F 28 × × ✓ ? ◦ ✓ 0 1 × ×
General-purpose (FRC2) 32 bit 1 F 28 × ✓ × ? ◦ × 0 1 × ×

Real-time clock 32 bit ? × - × ? ? ? - × 0 1 ✓ ✓

Watchdog - 0 × - × × × - × × 0 1 ? ?
Table 9: Timer Comparison Matrix: Espressif ESP8266

Timer Type Co
un
ter
Wi
dth

Co
mp
are

Ch
an
ne
ls

Pre
sca
ler
Ty
pe

Ma
x. P

res
cal
er

Ch
ain
ing

Su
pp
ort

Co
mp
are

IN
T

Ov
erfl
ow

IN
T

Ev
en
t F
lag
s

Au
to-
rel
oad

PW
M
Ge
ne
rat
ion

Int
ern
al C

LK
s

Ex
ter
na
l C
LK
s

Lo
w-
po
we
r C
LK

De
ep-
sle
ep
Ac
tiv
e

General-purpose 64 bit 1 R 216 × ✓ × ? □ × 1 1 × ×

Real-time clock 48 bit 1 × - × ✓ × ? - × 1 1 ✓ ✓

Main System Watchdog 32 bit 0 × - × × ✓ ? × × 1 1 × ×
RTC Watchdog 32 bit 0 × - × × ✓ ? × × 1 1 ✓ ✓

Table 10: Timer Comparison Matrix: Espressif ESP32

gRequires two hardware timer modules
hIncremented on every RTC count pulse
iAdditional 8-bit repeat register
jReference manual does not provide details
kPossible via events and another TCC utilized as event counter
lClocked by SysClk which may use any available oscillator

22



Large-scale Timer Hardware Analysis and Low-level API Design
Towards a Clean-slate Timer Subsystem for RIOT-OS

Timer Type Co
un
ter
Wi
dth

Co
mp
are

Ch
an
ne
ls

Pre
sca
ler
Ty
pe

Ma
x. P

res
cal
er

Ch
ain
ing

Su
pp
ort

Co
mp
are

IN
T

Ov
erfl
ow

IN
T

Ev
en
t F
lag
s

Au
to-
rel
oad

PW
M
Ge
ne
rat
ion

Int
ern
al C

LK
s

Ex
ter
na
l C
LK
s

Lo
w-
po
we
r C
LK

De
ep-
sle
ep
Ac
tiv
e

General-purpose 16 bit 3-4 E 210 ✓ ◦ ◦ ✓ ✓ ✓ 2 2 × ×32 bit

Pulse counter 8 bit 0 × - × × ◦ ✓ ✓ × 1 2 ✓ ✓16 bit

Low-energy 16 bit 2 E 215 × ◦ ◦ ✓ □ ✓ 1 1 ✓ ✓

Cryotimer 32 bit 1 E 27 × ✓ × ✓ ◦ × 2 1 ✓ ✓

SysTickj 24 bit ? ? ? ? ? ? ? ? ? ? ? ? ?

Real-time-counter 24 bit 2 E 215 × ◦ ◦ ✓ □ × 1 1 ✓ ✓32 bit

Real-time clock 32 bit 3 E 215 × ◦ ◦ ✓ - × 2 1 ✓ ✓

Watchdog - 1 E 217 × ◦ ◦ ✓ × × 3 2 ✓ ✓

Table 11: Timer Comparison Matrix: Silicon Labs EFM32/EFR32

Timer Type Co
un
ter
Wi
dth

Co
mp
are

Ch
an
ne
ls

Pre
sca
ler
Ty
pe

Ma
x. P

res
cal
er

Ch
ain
ing

Su
pp
ort

Co
mp
are

IN
T

Ov
erfl
ow

IN
T

Ev
en
t F
lag
s

Au
to-
rel
oad

PW
M
Ge
ne
rat
ion

Int
ern
al C

LK
s

Ex
ter
na
l C
LK
s

Lo
w-
po
we
r C
LK

De
ep-
sle
ep
Ac
tiv
e

General-purpose 16 bit 3 E 210 ✓ ◦ ◦ ✓ ✓ ✓ 1 1 × ×
Low-energy 16 biti 2 E 215 × ◦ ◦ ✓ □ ✓ 1 1 ✓ ×

SysTickj 24 bit ? ? ? ? ? ? ? ? ? ? ? ? ?

Real-time counter 24 bit 2 E 215 × ◦ ◦ ✓ □ × 1 1 ✓ ×
Backup Real-time counter 32 bit 1 E 27 × ◦ × ✓ ✓ × 2 1 ✓ ✓

Watchdog - 0 F 218 × ◦ × ✓ ✓ × 2 1 ✓ ×
Table 12: Timer Comparison Matrix: Silicon Labs EZR32

mOnly available in RTC-mode with external clock
nSupports masking of individual bits
oModule contains multiple timer peripherals. Values shown refer to a single counter
pOnly pre-defined intervals are selectable

23



N. Gandraß

Timer Type Co
un
ter
Wi
dth

Co
mp
are

Ch
an
ne
ls

Pre
sca
ler
Ty
pe

Ma
x. P

res
cal
er

Ch
ain
ing

Su
pp
ort

Co
mp
are

IN
T

Ov
erfl
ow

IN
T

Ev
en
t F
lag
s

Au
to-
rel
oad

PW
M
Ge
ne
rat
ion

Int
ern
al C

LK
s

Ex
ter
na
l C
LK
s

Lo
w-
po
we
r C
LK

De
ep-
sle
ep
Ac
tiv
e

General-purpose (GPTM) 16 bit 2 R 28 ✓ ✓ ◦ ✓ ✓ ✓ 1 1 × ×32 bitg

AUX Timer 0 16 bit 0 E 215 ✓ × ✓ ✓ ✓ × 1 1 ✓ ×AUX Timer 1

AUX Timer 2 16 bit 4 R 28 ✓ ✓ × ✓ ✓ ✓ 3 2 ✓ ×
Radio Timer 32 bit 3 × - × ◦ × ✓ ◦ × 1 0 × ×

SysTick 24 bit 0 × - × - ✓ ✓ ✓ × 1 1 × ×

Real-time clock (RTC) 70 bit 3 × - × ✓ × ✓ ◦ × 1 1 ✓ ✓

Watchdog (WDT) 32 bit 0 F 25 × × ✓ ✓ ◦ × 1 1 × ×
Table 13: Timer Comparison Matrix: Texas Instruments CC13x2 / CC26x2

Timer Type Co
un
ter
Wi
dth

Co
mp
are

Ch
an
ne
ls

Pre
sca
ler
Ty
pe

Ma
x. P

res
cal
er

Ch
ain
ing

Su
pp
ort

Co
mp
are

IN
T

Ov
erfl
ow

IN
T

Ev
en
t F
lag
s

Au
to-
rel
oad

PW
M
Ge
ne
rat
ion

Int
ern
al C

LK
s

Ex
ter
na
l C
LK
s

Lo
w-
po
we
r C
LK

De
ep-
sle
ep
Ac
tiv
e

General-purpose 16 bit 2 R 28 ✓ ◦ ◦ ✓ ✓ ✓ 1 1 × ×32 bitg

MAC Timer 16 bit 2 × - × ◦ ◦ ✓ ◦ × 1 1 ✓ ✓

Sleep (SM) Timer 32 bit 1 × - × ✓ × ✓ ◦ × 1 1 ✓ ✓

SysTick 24 bit 0 × - × - ✓ ✓ ✓ × 1 1 × ×

Watchdog 15 bit 1p × - × × × - × × 1 1 ✓ ✓

Table 14: Timer Comparison Matrix: Texas Instruments CC2538

24



Large-scale Timer Hardware Analysis and Low-level API Design
Towards a Clean-slate Timer Subsystem for RIOT-OS

Timer Type Co
un
ter
Wi
dth

Co
mp
are

Ch
an
ne
ls

Pre
sca
ler
Ty
pe

Ma
x. P

res
cal
er

Ch
ain
ing

Su
pp
ort

Co
mp
are

IN
T

Ov
erfl
ow

IN
T

Ev
en
t F
lag
s

Au
to-
rel
oad

PW
M
Ge
ne
rat
ion

Int
ern
al C

LK
s

Ex
ter
na
l C
LK
s

Lo
w-
po
we
r C
LK

De
ep-
sle
ep
Ac
tiv
e

Timer_A 16 bit 7 F 26 × ◦ ◦ ✓ □ ✓ 2 4 ✓ ✓

Real-time clock A (RTC_A)

8 bit

1 E 28 × ◦ ◦ ✓ ◦ × 2 2 ✓ ✓
16 bit
24 bit
32 bit

Real-time clock D (RTC_D)

8 bit

1 E 28 × ◦ ◦ ✓ ◦ × 0 1 ✓ ✓
16 bit
24 bit
32 bit

Watchdog (WDT_A) 32 bit 1p × - × ✓ × ✓ × × 3 2 ✓ ✓

Table 15: Timer Comparison Matrix: Texas Instruments CC430

Timer Type Co
un
ter
Wi
dth

Co
mp
are

Ch
an
ne
ls

Pre
sca
ler
Ty
pe

Ma
x. P

res
cal
er

Ch
ain
ing

Su
pp
ort

Co
mp
are

IN
T

Ov
erfl
ow

IN
T

Ev
en
t F
lag
s

Au
to-
rel
oad

PW
M
Ge
ne
rat
ion

Int
ern
al C

LK
s

Ex
ter
na
l C
LK
s

Lo
w-
po
we
r C
LK

De
ep-
sle
ep
Ac
tiv
e

General-purpose / RTC 16 bit 12 R 28
✓ ◦ ◦ ✓ ✓ ✓ 1 2 ✓ ✓m

32 bit × -

General-purpose / RTC 32 bit 12 R 216
✓ ◦ ◦ ✓ ✓ ✓ 1 2 ✓ ✓m

64 bit × -

SysTick 24 bit 0 × - × × ✓b ✓ ✓ × 2 1 ✓l ×

Watchdog (SysClk) 32 bit 0 × - × × ✓ ✓ × × 1 1 ✓
✓Watchdog (PIOSC) 1 0 ×

Table 16: Timer Comparison Matrix: Texas Instruments LM4F120

Timer Type Co
un
ter
Wi
dth

Co
mp
are

Ch
an
ne
ls

Pre
sca
ler
Ty
pe

Ma
x. P

res
cal
er

Ch
ain
ing

Su
pp
ort

Co
mp
are

IN
T

Ov
erfl
ow

IN
T

Ev
en
t F
lag
s

Au
to-
rel
oad

PW
M
Ge
ne
rat
ion

Int
ern
al C

LK
s

Ex
ter
na
l C
LK
s

Lo
w-
po
we
r C
LK

De
ep-
sle
ep
Ac
tiv
e

General-purpose (Timer A) 16 bit 2-3 E 23 × ◦ ◦ ✓ □ ✓ 2 4 ✓ ✓

General-purpose (Timer B)

8 bit

3, 7 E 23 × ◦ ◦ ✓ □ ✓ 2 4 ✓ ✓
10 bit
12 bit
16 bit

Watchdog 16 bit 0 × - × × ✓ ✓ × × 3 3 ✓ ✓

Table 17: Timer Comparison Matrix: Texas Instruments MSP430x1xx / MSP430x2xx

25



N. Gandraß

Timer Type Co
un
ter
Wi
dth

Co
mp
are

Ch
an
ne
ls

Pre
sca
ler
Ty
pe

Ma
x. P

res
cal
er

Ch
ain
ing

Su
pp
ort

Co
mp
are

IN
T

Ov
erfl
ow

IN
T

Ev
en
t F
lag
s

Au
to-
rel
oad

PW
M
Ge
ne
rat
ion

Int
ern
al C

LK
s

Ex
ter
na
l C
LK
s

Lo
w-
po
we
r C
LK

De
ep-
sle
ep
Ac
tiv
e

FlexTimer (FTM) 16 bit 2-8 E 27 × ◦ ◦ ✓ ✓ ✓
4 3

✓ ×Timer/PWM Module (TPM) 1 2

Quad Timer (TMR)o 16 bit 2 E 27 ✓ ◦ ◦ ✓ ✓ ✓ 1 1 ✓ ×
Periodic Interrupt Timer (PIT) 32 bit 2-4 × - ✓ ✓ × ✓ □ × 1 1 × ×

Low-power PIT (LPIT) 3 1 ✓ ✓

Pulse Width Timer (PWT) 16 bit 0 E 27 × - ◦ ✓ ◦ × 1 2 ✓ ×
Low-power Timer (LPTMR) 16 bit 1 E 216 × ✓ × ✓ □ × 4 2 ✓ ✓

Real-time counter 16 bit 1 E 211 × ✓ × ✓ □ × 3 3 ✓ ✓

Real-time clock 32 bit 1 × - × ◦ ◦ ✓ ◦ × 1 3 ✓ ✓

Watchdog 16 bit 1 F 28 × ✓ × ✓ × × 3 2 ✓ ✓

Table 18: Timer Comparison Matrix: NXP Semiconductors Kinetis

Timer Type Co
un
ter
Wi
dth

Co
mp
are

Ch
an
ne
ls

Pre
sca
ler
Ty
pe

Ma
x. P

res
cal
er

Ch
ain
ing

Su
pp
ort

Co
mp
are

IN
T

Ov
erfl
ow

IN
T

Ev
en
t F
lag
s

Au
to-
rel
oad

PW
M
Ge
ne
rat
ion

Int
ern
al C

LK
s

Ex
ter
na
l C
LK
s

Lo
w-
po
we
r C
LK

De
ep-
sle
ep
Ac
tiv
e

General-purpose 32 bit 4 R 216 × □ × ✓ □ × 1 1 × ×
Repetitive Interrupt 32 bit 1n × - × ✓ × ✓ □ × 1 1 × ×

SysTick 24 bit 1 × - × ✓ × ✓ □ × 1 1 × ×

Real-time clock - 2 × - × □ × ✓ - × 0 1 ✓ ✓

Watchdog 32 bit 0 F 22 × - × - - × 2 2 ✓ ✓

Table 19: Timer Comparison Matrix: NXP Semiconductors LPC176x/5x

Timer Type Co
un
ter
Wi
dth

Co
mp
are

Ch
an
ne
ls

Pre
sca
ler
Ty
pe

Ma
x. P

res
cal
er

Ch
ain
ing

Su
pp
ort

Co
mp
are

IN
T

Ov
erfl
ow

IN
T

Ev
en
t F
lag
s

Au
to-
rel
oad

PW
M
Ge
ne
rat
ion

Int
ern
al C

LK
s

Ex
ter
na
l C
LK
s

Lo
w-
po
we
r C
LK

De
ep-
sle
ep
Ac
tiv
e

General-purpose 32 bit 4 R 216 × □ × ✓ □ × 1 1 × ×

Real-time clock - 2 R 213 × □ × ✓ - × 2 1 ✓ ✓

Watchdog 32 bit 0 F 22 × - × - - × 2 2 ✓ ✓

Table 20: Timer Comparison Matrix: NXP Semiconductors LPC2387

26



Large-scale Timer Hardware Analysis and Low-level API Design
Towards a Clean-slate Timer Subsystem for RIOT-OS

Timer Type Co
un
ter
Wi
dth

Co
mp
are

Ch
an
ne
ls

Pre
sca
ler
Ty
pe

Ma
x. P

res
cal
er

Ch
ain
ing

Su
pp
ort

Co
mp
are

IN
T

Ov
erfl
ow

IN
T

Ev
en
t F
lag
s

Au
to-
rel
oad

PW
M
Ge
ne
rat
ion

Int
ern
al C

LK
s

Ex
ter
na
l C
LK
s

Lo
w-
po
we
r C
LK

De
ep-
sle
ep
Ac
tiv
e

General-purpose

8 bit

4 E 29 × ◦ × ? ◦ × 2 2 × ×16 bit
24 bit
32 bit

Real-time counter 24 bit 4 R 212 × ◦ ◦ ? ◦ × 1 1 ✓ ✓

Watchdog 32 bit 0 × - × × × ? ✓ × 1 0 ✓ ✓

Table 21: Timer Comparison Matrix: Nordic Semiconductor nRF51x/52x

Timer Type Co
un
ter
Wi
dth

Co
mp
are

Ch
an
ne
ls

Pre
sca
ler
Ty
pe

Ma
x. P

res
cal
er

Ch
ain
ing

Su
pp
ort

Co
mp
are

IN
T

Ov
erfl
ow

IN
T

Ev
en
t F
lag
s

Au
to-
rel
oad

PW
M
Ge
ne
rat
ion

Int
ern
al C

LK
s

Ex
ter
na
l C
LK
s

Lo
w-
po
we
r C
LK

De
ep-
sle
ep
Ac
tiv
e

Machine timer 64 bit 1 ×h - × ✓ × ✓ ◦ × 1 1 ✓ ✓

Real-time counter ≥48 bit 1 E 215 × ✓ × ✓ - × 1 1 ✓ ✓

Watchdog 31 bit 1 E 215 × ✓ × ✓ □ × 1 1 ✓ ✓

Table 22: Timer Comparison Matrix: SiFive FE310-Gx

27


	Abstract
	1 Introduction
	2 Related Work
	2.1 Timer Hardware
	2.2 Software Modules
	2.3 Summary

	3 Hardware-Platform Analysis
	3.1 Scope
	3.2 Methodology
	3.3 Results
	3.4 Outstanding Tasks & Open Issues

	4 RIOT-OS Low-level Timer Modules
	4.1 Overview
	4.2 Analysis

	5 Low-level Timer-API Design
	5.1 Generic API Requirements
	5.2 Architectural Overview
	5.3 Timer Types and Instances
	5.4 Hardware-facing API
	5.5 User-facing API
	5.6 Counter Value
	5.7 Interrupt Handling
	5.8 Run-time Clock Configuration
	5.9 Issues

	6 Future Work
	7 Conclusion
	Acknowledgments
	References
	A Hardware Analysis Results
	A.1 Column Key / Explanation of Criteria


