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ABSTRACT
Malware is spread across the internet in various ways. The dataset
of this work was collected by the reactive network telescope Spoki,
which is actively approached by malware distributors. The malware
is distributed to victims who have been identified using two–phase
scanners. This methodology became prominent since the release
of the Mirai botnet code. After engaging into interaction during
the second phase by a TCP handshake, Spoki receives packets with
a payload that contains a download URLs. Using the download
URL from the payload, the samples are collected. The analysis of
the data shows that the malware samples differ a lot in the matter
of distribution infrastructure and behaviour. Furthermore, a first
analysis of the samples indicates that a lot of samples work as
droppers which are used to download further executables. This
work gives an overview of the data and ideas for future work.
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1 INTRODUCTION
A machine that is infected by a malicious software (malware) can
be abused by the intruder in multiple ways—stealing sensitive data,
causing unintended behaviour, such as launching DoS attacks and
mining cryptocurrency, or even causing system failures, only to
name a few. That makes malware one of the most severe threats.
Most of the time, an infection is caused over the network. A com-
mon scenario is that a user visits an infected web page, which
downloads and executes malware on the computer of the user.
Furthermore, malware distributors are actively scanning to find
vulnerable devices. This infection vector is a common approach for
IoT malware.

Observing network traffic that is caused by malicious activity using
a network telescope has been practised for a long time [6]. However,
most network telescope only operated passively—that is collect-
ing all network packets they receive. This works builds upon a
dataset that was collected by Spoki, a reactive network telescope
[7]. Spoki stands out due to its ability to react to two–phase scanners.
Two–phase scanning is a method that first uses stateless TCP scans
to find open ports and subsequently gathers further information
with a second stateful phase. Spoki engages in the TCP handshake
of the second phase and collects the payloads from the packets.
By downloading the URLs from the payloads, the samples for our
dataset could be collected. The observed spreading method differs
from other distribution techniques, such as social engineering or
drive by downloads [10], but is closer to the distribution of IoT
malware, as it is utilized with the Mirai botnet code [3].

1.1 Problem statement
Malware must be stopped as early as possible, as a system may
be hard or even impossible to recover once a malware settled in.
During the life cycle of malware, the initial infection is the first step.
Thus, it is important to understand what kind of malware is trying
to intrude a system. Therefore, we aim to analyse the collected
data in order to give a characterization of the samples. First, we
characterize our collected dataset, followed by the distribution
ecosystem and finally the executables themselves.

We use the collected data and extend it with information from
the VirusTotal (VT) database and the MalwareBazaar database.
VirusTotal is an information aggregator that presents data that is
a combined output of different antivirus products [9]. Using the
combined dataset, we aim to address the stated problems. The rest
of the work is structured as follows. Section 2 gives an overview
of related analysis methods found in the literature. In section 3
the collected data is presented and a summary of the used analysis
methods is given. The analysis results are shown in section 4 fol-
lowed by a conclusion and perspective on future work in section
5.

2 BACKGROUND
Analysing a dataset of malware samples or the network traffic that
was generated by a malware is an approach that is often seen in
literature. It is used to get an understanding of the ecosystem behind
malware, the behaviour of the malware, past events and current
emerging threats. The presented work is related to this work in
either the analysis techniques or the goal of the work.

Pastrana and Suarez-Tangil [17] aim to characterize the crypto-
mining malware ecosystem. They use public malware repositories,
such as VirusShare and VirusTotal, to create a dataset that is being
used to identify mining campaigns and their infrastructure by ag-
gregating the samples based on metadata such as the addresses of
the wallets which are being extracted from the binaries.

Using a dropper—a specialized or general–purpose program that
is being used to download further malware binaries—to distribute
malware is a central distribution technique. Kwon et al. [14] use
the Worldwide Intelligence Network Environment (WINE) dataset
to deduce downloader graphs for droppers to uncover relationships
between the downloaders and the malware they download by asso-
ciating the downloaded files with the URLs the file was downloaded
from and the processes that triggered the download.

Focused on IoT malware, but still relevant in terms of analysis
techniques and general malware ecosystem characteristics, Choi
et al. [5] dissect a dataset that was collected by a Telnet Honey-
pot. By reverse engineering the samples, they identify “dropzone”
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IPs—servers where malware binaries are stored for download—and
“target” IPs—targets for further infections. Furthermore, Alrawi
et al. [2] study the life cycle of IoT malware. They used data from
network data collection points and VT to perform an extensive
analysis of a set of malware samples. First, they characterized the
samples using the metadata, then they performed a static analysis
using multiple tools, such as the bash file tool, YARA signatures and
UPX, to extract further information, e.g., IP addresses and infection
vectors. Finally, a dynamic analysis is used to collect system and
network calls. They show that IoT and traditional desktop malware
have a similar life cycle.

Peng et al. [18] aim to explore the labelling process of VirusTotal in
their work. Even though their focus is on the labelling of URLs, the
question of how fast the results are available on the API and how
consistent the labels are across different vendors is still of interest
in a general context. They conclude that VirusTotal seems to pull
(update) the labels from the vendors only when the scan API is
triggered. The scan API is used when a URL is submitted, whereas
the querying API provides the data from the database. Therefore,
labels may be outdated and inconsistent with the vendor’s API,
when a URL has not been submitted for a while. Vendors only seem
to share their results on demand and do not push an update to Virus-
Total. This indicates that it may take some time until results show
on VirusTotal. Furthermore, they showed that the performance
considering the correct classification across different vendors vary.

Being related to the previous work, Kantchelian et al. [13] addressed
the question of weighting the labels of the file scan API of VirusTotal
and their consistency. They found that vendors are changing their
labels over time as a rescanmay happen that causes a change in their
classification. Furthermore, the labels of a sample differ between
the vendors, and it also has to be taken into account that there is a
chance of a wrong label classification by individual vendors.

Focusing on DoS, Moura et al. [15] analysed the 2015 Root DNS
Event, Jonker et al. [11] aimed to characterize the DoS ecosystem
and Antonakakis et al. [3] looked at the Mirai Botnet. All works
analyse the network traffic that was collected at collection points.
The researchers focusing on the Mirai botnet furthermore analysed
collected binary samples using YARA signatures and static analy-
sis. In regard to this work, especially the analysis methods of the
network traffic are interesting. Multiple cleaning, extraction and
aggregation methods are used.

In their work, Invernizzi et al. [10] aim to detect malware distribu-
tion in large scale networks. They identify the traffic in multiple
steps: First they filter by the MIME type of the payload, then they
identify candidates who could be distributing malware and finally
they aggregate the data to detect the distribution infrastructure. In
this work, the detection of distribution candidates is not of interest,
but the final aggregation and clustering of distributors is relevant.

3 METHODOLOGY
In this section, the individual data sources and the analysis methods
are described. For each data source, a brief summary on which
information is included and how the information is gathered is
given.

3.1 Data Sources
Starting from the 29/3/2021 until the 19/8/2021 we were able to
download a total of 8914 malware files on 104 days. The total down-
loads contain 241 unique executables. Due to a system outage, the
collection period is divided by a gap in which no samples could be
collected. Throughout the download process, different kind of data
is collected. The following datasets were created which are used
for the analysis.

Activity log.We define an activity as the attempt to download the
data from a URL, which was extracted from a payload that we re-
ceived from a scanner. In order to limit the download rate, there is a
timeout for any given unique URL of 1 hour. The information about
an event of a download attempt is logged in the activity log. Those
include whether the download was successful, which status mes-
sage we received from the connection, which URL was used for this
download and at what time the download attempt was performed.
If the download results in a successful downloaded executable, the
hash value of the executable is added as well. Furthermore, we are
logging if a download was not performed due to the timeout of a
URL. For the second collection period we introduced the gathering
of reverse DNS data for the used URLs. As this data is only available
for half of the dataset, it is only of limited usage, but may be useful
in the future.

Download log. If the download of an executable is successful,
we save information about the event in the dedicated log of the
specific file. Each executable is identified by its hash value. By using
the hash, we can determine if we have downloaded the executable
before, so there is only one sample of each unique executable stored.
Irrespective of saving the file, a log entry is created for the download
event. The logged information includes the name of the executable,
the URL, the timestamp of the event, the server from which we
downloaded the executable and the tag of the download event.
The name of the executable and the server are extracted from the
URL. For example, if the URL is http://123.123.123.123/bins/evil.arm7
the server is interpreted as 123.123.123.123 and the name of file as
evil.arm7. The tag of the event is set to the event tag which lead to
the initial retrieval of the payload that included the download URL.

VirusTotal and MalwareBazaar. VirusTotal (VT) is an informa-
tion aggregator which is collecting the ratings of over 70 antivirus
vendors [9]. It is offering a public API which can be used to query
hash values and as a result returns characteristics and general statis-
tics about the file. When an executable is successfully downloaded
for the first time we query VT. Depending on whether the exe-
cutable is known to VT, we save the received data. During the
finalization of our dataset we re-queried all files. Thus, we have two
datasets of the VT information. One, that was created and expanded
during the collection period and one that represents the status of
the API on a specific date, namely the 26/8/2021. Looking at the sec-
ond dataset, 189 of 241 samples were known to VT. MalwareBazaar
[1] serves as a sharing platform for researchers where malware
samples can be easily shared. It differs from VT in multiple ways:
(I) It’s database only consists of malware samples–no benign files
or adware, (II) it is not a multi antivirus scanning engine and it con-
tains confirmed malware samples only. All collected samples were
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queried against MalwareBazaar’s API to collect further information.
In total 71 samples of our dataset were known to MalwareBazaar.

3.2 Analysis methods
Aggregating malware based on their metadata to form groups is a
common approach [17]. We adapt this practice for our dataset and
adjust those methods to fit our needs.

In order to create a basic understanding of our dataset, multiple
characteristics can be determined. By using the activity log, it is pos-
sible to determine how often an executable is downloaded among
other statistics. Additionally, the potential downloads, which means
that a URL had a timeout, may be added as well. A possible flaw at
this point is that the malware executable that is served by a specific
URL may have changed during the timeout.

VirusTotal uses the trid[9] tool to determine the type of an exe-
cutable file. As there are samples which are unknown to VT and
we do not have the file type information as a consequence, we use
the file standard program of Unix to determine the file types for
the missing samples. In order to ensure conformity, a comparison
of both tools was performed for any sample that was classified by
both tools.

Each sample that is known to VT may have multiple labels. Each
label can be given by a different number of vendors. We consider the
label which was given by the most vendors the ground truth for the
sample. Tools like AVClass[19] are used by researchers to automate
this process [5]. In future work, the usage of such tools should be
adapted as those tools additionally extract further information and
take them into account.

YARA is a tool that aids researchers in identifying and classifying
malware samples. It uses rules that identify a sample with textual
or binary patterns. A common usage is to identify relevant samples
in a dataset [3, 8, 17] or classify samples into categories[2]. The
effectiveness of YARA is dependent on the rules that are used to
for the identification. We used YARA to classify our samples into
malware families.

4 ANALYSIS RESULTS
In this section the analysis results will be presented. First the gen-
eral characteristics of our dataset are addressed, followed by the
distribution ecosystem and behaviour and finally an analysis of the
executables.

4.1 General characteristics
In period one 23984 activities were recorded which led to the down-
load of 3579 executables that are compound of 139 unique samples.
Period two has 27573 activities, 5335 downloads and 118 unique
executables. 16 executables were seen in both periods. Figure 1
shows the number of downloads per day. Each executable in the
figure has a unique colour. Throughout both collection periods an
increase in the number of downloads is visible: in January the daily
downloads were below 100 whereas they are above 300 in August.
The share of the samples in the total of downloads of each day dif-
fers significantly between the months. However, it is clearly visible,
that the downloads are dominated by several samples, which are

Figure 1: Number of successfully downloaded samples per
day. Each unique executable was assigned an individual
colour.

downloaded way more often than other executables. Especially in
March and April most of the downloads are by one executable. In
August, the share of this executable is lower, but it is still visible in
the plot, which means that is seen comparatively often, even though
several other samples are dominating this month. Due to the size of
the plot not all samples of a day can be seen, but this visualization
still demonstrates the composition of our dataset. On average, we
receive 15.67 different unique samples per day in period one and
20.81 in period two. In period one, 93 samples (66.91%) were seen
only on one collection day. This applied to 65 samples (55.08%) in
period two.

Due to the timeout of one hour for each unique URL, not all down-
loads are actually executed.When a URL is in timeout, the download
is not attempted, but the activity that had the specific URL in its
payload is still tracked. This restriction does not apply, when an
executable is downloaded from different URLs. This is only the case
for some executables; in both periods around three quarters were
downloaded from one URL only. The other executables mostly have
up to 100 different URLs. Seven extremes are present, with a maxi-
mum 2418 of URLs for one executable. The observation that most
executables are always downloaded from the same URL indicates
that during the timeout period a download could have been per-
formed and would have led to the collection of a specific executable.
On the other hand, there are several URLs from which we down-
loaded different executables. We further address this observation
in section 4.2.

When a packet is received from a scanner with a downloader pay-
load, different destination ports are used. In Figure 2 the distribution
between the ports is shown. Some ports are assigned ports, e.g.,
port 80, while others are unregistered ports which are used for
special purposes by specific devices. Those ports are sometimes
known for services that can be exploited. For example, port 37215
is a known exploit vulnerability port for Huawei routers1. When
comparing both periods as shown in Figures 2a and 2b, it strikes
out that the distribution changed among the different ports. The
top ports are different except for two ports. Port 9090 which had a
share of over 10% in period one is not even in the top 20 in period
two. Furthermore, port 60001 which was second most used port in
period one with about 12.5% more than doubled its share in period
two and becomes the top port with almost 30% percent of the total.

1https://vuldb.com/?id.114804

https://vuldb.com/?id.114804
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(a) Period one (Jan–Mar 2021). (b) Period two (Jul–Aug 2021).

Figure 2: Top 20 ports targeted by scanners for both collection periods. The remaining ports are aggregated into “others”. Note
the different y–axis scales.

Figure 3: Number of activities per day. The download rate
is limited to one download per URL per hour and repeated
events are skipped.

In Figure 3 the composition of attempted and unattempted down-
load events in the activity log is shown. The share of unattempted
downloads is significantly higher every day. In the dataset, a tiny
minority of seven scanner source addresses is responsible for al-
most half the activities. That is not due to the fact that those source
addresses send a lot of different URLs in their payload, but that
the number of packets received from them is very high. The other
activities are split between 10632 other scanner source addresses.
Furthermore, most of the activities (81.86%) were not attempted to
download. The share of attempts by the seven top source addresses
is very small. This explains why the share of unattempted down-
loads is so high. Five of the highly active scanners do not have any
download attempts at all, and the other two only have a very small
amount. This further indicates that the rate they are sending their
payloads is very high, as they are in the time out of one hour most
of the time. Furthermore, the URL that is sent very often by the
top source addresses, is also distributed by other source addresses,
which leads to the fact that some do not have a single download
attempt.

4.2 Distribution ecosystem
URL reusage and availability. Out of the 7961 unique URLs from
which we downloaded an executable, 11 (3 in period one and 8 in
period two) were recorded that were reused to distribute different
unique executables. Figure 4 illustrates the availability of different
executables from a URL. Each executable has a start and end date
which are determined by the first and last successful download.

Figure 4: Availability of different executables from a URL.
The availability is determined by the first and last successful
download.

The executables were only downloaded from this particular URL.
As visible in the Figure, the periods in which the executables are
available never overlap. The time spans in which the URL provides
an executable varies. Some were only available for one day, whereas
others were for several weeks. All executables were downloaded
with the same name and have a similar size (2 KB difference).

Infrastructure. The download process involves two servers: One
server that initializes a contact with our system, and at some point
sends a payload which contains a download URL. This server will be
referred to as the scanner server. The second server, which will be
called the hoster server, hosts the download URL and thus provides
the executable. Both servers can be the same server, but do not
have to be. In period one in all activities, 35.81% of the servers were
identical. If only servers are considered from which we successfully
downloaded an executable, the share rises to 52.35%. Throughout
period two, 23.3% of the activities had the same server and 31.26%
of the servers with a successful download.

The total number of unique download servers (7666) is almost as
high as the number of unique URLs from which we downloaded
a binary (7961). This indicates that most servers only serve a sin-
gle URL–which we have seen. In total we recorded 7400 servers
from which we only downloaded from one URL. 245 servers offered
two URLs. The maximum is at 6 URLs by one single server. There
are several possible explanations for that fact. First, the reuse of a
server may not be a common practice. Second, as our dataset is not
continuous and the total period is only half a year long, it must be
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considered that either different URLs were not tracked, or the usage
duration is longer than half a year. Furthermore, the distribution
methods differ among different malware families. Peer–to–peer
distribution, like it was used by the Mirai botnet, propagates itself.
Infected machines are scanning for other machines that are vul-
nerable. As more machines get infected, more scanning activity
would occur–even for the same address space. As a consequence,
this propagation behaviour leads to traffic from a lot of different
scanner and hoster servers. Additionally, as observed before, there
are URLs which are reused to distribute different executables. Thus,
a server can serve various malware’s by using the same URL over
again.

The location of the IP addresses was determined using the GeoLite2
database.2 See the appendix for a visualization of the distribution
of the scanner and hoster source addresses. There is a significant
difference between the periods. In Period one, the scanners are
dominated by the Netherlands with almost 30%, followed by India
and France with about 15%. Only some more countries have a share
of over 5%. In contrast, period two is mainly made up of scanners
from China and the US, which have a combined share of over 80%.
China has not been in the top 20 at all before and the share of the
US has increased by over 30%. Furthermore, there is a difference
between hoster and scanner origins. Comparing the confirmed
hoster addresses (see Figure 7, which are those from which we
successfully downloaded an executable, and the scanner addresses
(see Figure 5) shows that there are several origin countries which
have a similar share in both scanner and hoster origins. On the
other hand, Germany is the top hoster origin country in period two
and has only a tiny share in the scanning activity. The unconfirmed
hosters have a significant share of nan values. This was caused by
a handful of malformed URLs. For example, the URL http://%s:%d/
Mozi.7 indicates that the wild cards s and d should be replaced with
a source address and port. However, this was not performed, which
leads to an unresolvable origin country. The comparison of the
origin countries shows that scanning activities are performed from
a variety of different origins (82 countries in total) but are mainly
seen from several dominating origins. Furthermore, the hosters
show a different distribution than the scanners, which indicates
two separate infrastructures.

4.3 Basic binary analysis
Target. Throughout the collection period, a total of 241 unique
executables were collected. The samples have different file formats.
In table 1 the different file types and their share in the total amount
of executables is displayed. Most files are ELF executable files, which
is the standard binary format for Unix [16]. Table 2 shows the
target architectures of the ELF files. The majority target the MIPS
architecture, which is used in the embedded processor market.
Furthermore, beside shell scripts, there are also several executables
which are in plain ASCII text or HTML format.

Additionally, by performing a basic decoding operation from Uni-
code to ASCII text format, more samples could be transformed so
that they are human–readable. In total we were able to access 68
samples. Table 3 shows the classification of all readable files. The

2https://dev.maxmind.com/geoip/geolite2-free-geolocation-data?lang=en

File Type Absolute Share
ELF 166 68.89%
Bourne-Again shell script 26 10,79%
POSIX shell script 11 4,56%
HTML document 9 3,73%
ASCII text 28 11,62%
unknown 1 0,41%
Total 241 100%

Table 1: Distribution of file types among the collected
unique executables.

Target MIPS ARM Intel 80386 x86-64
Absolute 130 32 2 2
Share 78,31% 19,29% 1,2% 1,2%

Table 2: Distribution of the architecture of the ELF files.

File Type VT Not VT Total
ASCII text 12 16 28
Bourne-Again shell script 9 17 26
POSIX shell script 9 2 11
HTML document 2 0 2
unknown 1 0 1
Total 33 35 68

Table 3: Characterization by file type and knowledge of VT
of all malware samples that could be decoded to ASCII for-
mat.

files are distinguished by the fact if they are known to VT or not
and what file type they have. More than half of the files are un-
known to VT. For all the files that are known to VT, the assigned
threat categories are distributed as follows: 2 miners, 10 trojans
and 15 downloaders. The other files that have been submitted to
VT before are labelled undetected or type unsupported only, which
indicates that those files, even though known to VT, were not classi-
fied by any vendors yet. Interestingly, many files labelled as trojans
have almost as many labels as downloaders. This is conform with a
manual inspection, which shows that these files usually perform
downloads as well. Furthermore, our brief inspection showed that
most files that are unknown to VT show a similar composition as
the downloaders that are known.

The executables which are in ASCII text format could be read and
inspected. Most of those samples show the structure of a shell script:
navigating directories, downloading and executing further files. For
example:

1 wget <ur l >/ arm ;
2 c u r l −O <ur l >/ arm ;
3 chmod 777 arm ;
4 . / arm e x p l o i t ;
5 rm − r f arm

http://%s:%d/Mozi.7
http://%s:%d/Mozi.7
https://dev.maxmind.com/geoip/geolite2-free-geolocation-data?lang=en
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Listing 1: Source code of a downloader script

The executables which have been analysed and submitted to Virus-
Total before are labelled byVirusTotal. 237 threat categories changed
comparing the initial and final dataset. Even though that does not
necessarily mean that the most popular category changed, we use
the most up–to–date labels. Each executable may have multiple
different labels as assigned by the vendors. In total, the samples
are labelled by VT as follows: 164 trojans, 15 downloaders and 2
miners. Sometimes multiple labels almost have the same amount
of votes by the vendors. Furthermore, the labels are known to be
inconsistent and sometimes inaccurate [13]. Thus, the labels must
be regarded with caution.

All executables that were unknown to VT when the initial query
was performed were still unknown at the time of the requery. The
labels of the known executables changed on the other hand. On
average the executables gained 1.7 labels as malicious and lost 2.1
labels as undetected. This shows that the known executables were
analysed by more vendors who shared their data with VirusTotal.

Malware family classification

MalwareBazaar query results include a signature of a malware file,
which is defined as the malware family. However, this attribute
is not always available. In total, 71 samples of our dataset were
known by MalwareBazaar. 35 files samples have a signature: 34
belong to the Mirai and one to the Gafgyt malware family. In order
to further classify the samples, we apply YARA rules on our dataset
and analyse the file names.

https://github.com/InQuest/awesome-yara

YARA. YARA is a tool that helps malware researches to identify
and classify malware samples. File are classified based on patterns
defined in a rule.

Rules are composed of two parts: strings definition and condition.
The defined strings are used in the condition which determines the
circumstances under which a file satisfies the rule.

Strings may be hexadecimal strings, text strings or regular expres-
sions. Hexadecimal strings allow wild cards, jumps and alternatives
which makes them a powerful raw byte sequence matching mecha-
nism. Text strings and regular expressions on the other hand are
used to match legible text.

In order to use YARA, rules must be obtained. Writing rules requires
expertise and a dataset of samples upon which the rules are based.
Furthermore, there are a number of publicly available rules sets
which offer a good starting point to use YARA. For this work, the
following rule sets were used:

YARA-Rules repository This project is a public rule set that was
created by a group of IT Security Researchers to centrally collect
rules. It is maintained by the community and often used in
literature.3

3https://github.com/Yara-Rules/rules

Signature–Base This is the rule set that is used by the scanners
LOKI and THOR lite It is the free version of a commercial, more
extensive rule repository.4

Malpedia’s YARA-signator rules Malpedia’s rules are automati-
cally generated based on a set of malware samples of Malpedia’s
malware database [4].5

ReversingLabs YARA Rules The rules of this project are written
by threat analysts with a focus on precise rules and the aim to
provide zero false-positive detections.6

Open-Source-YARA-rules This repository is a very large collec-
tion of free rules that the creator found across the Internet.7

InQuest YARA rules A rule repository that is maintained by net-
work and cloud cybersecurity company.8

All rule sets were applied to the executables we collected. In total,
57.26% (138 unique executables) matched at least one rule. However,
only three of the listed datasets contain rules that matched a sample:
Yara-Rules repository, Open-Source-YARA-rules and Signature–Base.

The matched executable are 95 ELF files, 6 Bourne Again shell
scripts, 10 POSIX shell scripts, 9 HTML files and 18 plain ASCII
text files. On average, 17 rules matched per executable. However,
most of the rules that did match are very generic rules. For example,
rules such as math_entropy_4 or contains_base64 are not conclu-
sive in terms of malware classification. More precise rules, such
as MAL_ELF_LNX_Mirai_Oct10_2, only make up the minority of
matches. Comparing the different rule sets, especially the large rule
collections have a lot of matches. The YARA–Rules repository, which
is often used in literature, resulted in many generic matches and no
specific malware identifications. An investigation showed that most
of the rules of this repository are rather old (3–4 years) which could
be the reason for the bad performance on our very up–to–date
dataset. The rule set of Signature–Base showed several specific
matches. 13 samples matched Mirai rules. Two different variants
were identified. Another rule which identifies files that abuse a
vulnerability in the Traffic Management User Interface (TMUI)9
matched five samples. Furthermore, there are 69 matches for UPX
compressed files, which is a common obfuscation technique, and 36
matches for Mozilla/5.0 hard coded user agent strings, which has
been seen in a Command and Control (C2) malware setup.10

File names. VT provides all names that are associated with a file.
Furthermore, a meaningful name is chosen, which is defined as
“the most interesting name out of all file’s names” [9]. Some file
names are obviously inconclusive, such as bin.sh, copy.sh or when
the name is just the hash of the file.

Considering all the file names that are provided by VT, two–thirds
match the names under which we gathered the executable. A very
dominant example are the Mozi executables, which have three

4https://github.com/Neo23x0/signature-base
5https://github.com/malpedia/signator-rules
6https://github.com/reversinglabs/reversinglabs-yara-rules
7https://github.com/mikesxrs/Open-Source-YARA-rules
8https://github.com/InQuest/yara-rules
9https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5902
10https://us-cert.cisa.gov/ncas/analysis-reports/ar21-048b

https://github.com/InQuest/awesome-yara
https://github.com/Yara-Rules/rules
https://github.com/Neo23x0/signature-base
https://github.com/malpedia/signator-rules
https://github.com/reversinglabs/reversinglabs-yara-rules
https://github.com/mikesxrs/Open-Source-YARA-rules
https://github.com/InQuest/yara-rules
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5902
https://us-cert.cisa.gov/ncas/analysis-reports/ar21-048b
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different extensions: Mozi.m, Mozi.a and Mozi.7. In our dataset,
several unique executables were downloaded under different names
which are different combinations of the Mozi names. If all Mozi
names are considered a match regardless of their extension when
comparing our names to the VT names, 78% of the names match.
If further all inconclusive names of VT are ignored, 93% match.
Therefore, we use our collected names for the classification.

Classifying our dataset by name results in 70 different groups. Our
set of names also includes inconclusive names such as arm7,mips or
infect. This fact looks as if our parsing of the name failed. However,
some characteristics can still be derived. Out of 241 unique samples,
112 belong to the Mozi family. Furthermore, if our downloads are
filtered by all Mozi name variants, 90.6% (8083 of 8914) of the per-
formed downloads can be mapped to the Mozi executables. On the
other hand, the share ofMozi is 15.55%, if the time outed downloads
are considered as well.

5 CONCLUSION AND FUTUREWORK
This work analysed the data that is collected at the reactive network
telescope Spoki. We gave an overview about the data and showed
basic characteristics. A focus of the work is the distribution of the
individual executables that were downloaded. Even though our
dataset is not continuous, it is already clear that unique executables
may have peak periods, in which they are seen very often. In order
to model and follow the development of the distribution, a more
stable dataset is required. Furthermore, it is shown that even though
a lot of different samples are collected, prominent samples usually
dominate the dataset. Especially the Mozi malware family was
seen very often during the collection period. It is an IoT P2P botnet
malware11. A first classification of the collected executables gave an
idea of the different types of files that are collected. Most prominent
are ELF executables and shell scripts.

The analysis in this work gave a first idea of the possibilities that our
data offers. In order to enhance the work and offer more valuable
insights, future work should consider the following aspects:

As for data collection, the following points offer enhancement pos-
sibilities. Even though the current dataset is not continuous, the
change in the distribution behaviour of samples can already be
estimated. Some samples, which are very present in one month,
do have a significantly lower impact in other months. In order to
deduce further steps, the data collection must be stabilized. Further-
more, we have seen malware executables that are used to download
further files from a remote server. This relates to the work of Kwon
et al. [14], which studies the distribution networks of malware. In
future work, the subsequent downloads shall be performed in order
to acquire further samples, derive the relationships of malware sam-
ples and gain further information about the malware’s life cycle.
Additionally, the collection of further metadata may be useful. For
example, if the availability of an executable is of interest, periodi-
cally re-querying the URL(s) could show how long the executable
is available from a URL or if the URL is reused for distributing a
different executable.

11https://malpedia.caad.fkie.fraunhofer.de/details/elf.mozi

The analysis of the samples could be improved with the following
aspects. Depending on the file type, different analysis methods can
be adopted. For legible files, applying the URL extraction techniques
which we used in the payloads can help to discover further URLs.
For other files, such as ELF executables, a static analysis tool can
help to parse and extract further information from those binaries.
We are currently distinguishing the malware samples using their
hash value, which is calculated using the SHA256 algorithm. This
method does not consider that reobfuscation and repackaging is an
established practice. Thus, there is the possibility that the actual
set of different malwares is smaller than we assume. To address the
classification problem, machine learning approaches are becoming
popular [12, 20] in which neural networks are trained to identify
malware samples. Furthermore, an established practice is the use of
the YARA tool. The possibilities of YARA were shown in this work
by a first classification using different rule sets. In order to further
improve the performance, a solid rule set must be created. This does
not necessarily mean writing custom rules, but rather collecting
publicity available rules. As a starting point, the awesome–YARA
repository12 provides an extensive list of free YARA rule repositories.
First, the performance of the available rules should be evaluated.
Then a subset of rules should be created based on the relevance
of the rules for the samples that we are collecting. Furthermore, a
regular update strategy must be determined, as rule repositories
are often updated and may provide further useful rules.

In summary, this work showed first characteristics and facts about
the collected data and unveils improvement possibilities and analy-
sis approaches for future work.
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APPENDIX

(a) Period one (Jan–Mar 2021). (b) Period two (Jul–Aug 2021).

Figure 5: Top 20 origin countries of the scanner source addresses of all recorded activities. The remaining countries are aggre-
gated into “others”. Note the different y–axis scales.

(a) Period one (Jan–Mar 2021). (b) Period two (Jul–Aug 2021).

Figure 6: Top 20 origin countries of all hoster source addresses of all recorded activities. The remaining countries are aggregated
into “others”. Note the different y–axis scales.

(a) Period one (Jan–Mar 2021). (b) Period two (Jul–Aug 2021).

Figure 7: Top 20 origin countries of the hoster source addresses from which a successful download could be performed of all
recorded activities. The remaining countries are aggregated into “others”. Note the different y–axis scales.
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