

Network Security and Measurement

- BGP (Border Gateway Protocol) -

Prof. Dr. Thomas Schmidt

http://inet.haw-hamburg.de | t.schmidt@haw-hamburg.de

AS Level Topology

BGP Routing

BGP Monitoring

Building a Network of Networks **AS LEVEL INTERCONNECTS**

Basically, we are interested in the AS Topology

Characterizing autonomous systems (ASes)

Characterizing AS connectivity

Motivating example 1: Router performance

Scaling the Internet – The Routing View Geoff Huston February 2001 Last month, in looking at the structure of routing within the Internet I ended with the Big Question: how will routing deal with the demands of tomorrow's Internet? Lets take a guick look 120000 10000 8888 able 6888 4999 2000 98 91 92 93 94 95 96 97 98 99 00

There's quite a story behind this chart, and it can tell us a lot about what is likely to happen in the future. The chart appears to have four distinct phases: exponential growth between 1988 and 1994, a correction through 1994, linear growth from 1995 to 1998 and a resumption of exponential growth in the past two years.

23.12.2006 11:08 Uhr

Routing-Tabellen im Internet werden zu groß

Von Monika Ermert

(1) 日 () 191

Das Internet Architecture Board (IAB) und die Internet Engineering Task Force (IETF) suchen nach einer Lösung für das Problem überbordender Routingtabellen. Einzelne Experten warnen davor, dass das enorme Wachstum der Routing-Informationen von vielen Routern nicht mehr bewältigt werden könne und man daher rasant auf gravierende Adressierungsprobleme im Netz zusteuere. IAB-Chefin Leslie Daigle informierte die Mitglieder der IETF diese Woche darüber, dass man beim IAB zu dem Schluss gekommen sei, es handle sich um ein echtes Problem. Allerdings sei man der Ansicht, dass genug Zeit bleibe, um über eine koordinierte Lösung zu diskutieren. Das IAB will einen Kreis von Experten (Directorate) berufen; eine oder mehrere IETF-Arbeitsgruppen sollen bei dem für Ende März angesetzten sechsten IETF-Treffen in Prag an den Start gehen.

It's challenging

Past estimates of links in the AS-graph.

Paper	Date	Measured	Estimated
Zhang <i>et al.</i> [66]	2004-10-24	45,058	55,388
He et al. [37]	2005-05-12	47,199	59,500
Mühlbauer et al. [45]	2005-11-13	49,241	58,903
Roughan <i>et al.</i> [67]	2004-01	38,397	42,818
	2005-01	45,814	54,582
	2006-01	50,129	59,319
	2007-01	57,038	68,856
	2008-01	63,536	76,944
Dhamdhere et al. [68]	end of 2007	70,000	-

[M. Roughan et al., "10 Lessons from 10 Years of Measuring andModeling the Internet's Autonomous Systems," IEEE JSAC 2011.]

It's challenging

Year/Methodology	Est. # of customer- provider links in the Internet	Est. number of peering links in the Internet
2008 (BGP)*	~60,000	~15,000
2010 (BGP + traceroute)**	~90,000	~30,000
2012 (ground truth from a large IXP)***	~90,000	>200,000

The Backbone Control Protocol **BGP ROUTING**

Border Gateway Protocol (BGP) in a nutshell

BGP is a **path vector protocol** (details see RFC 4271)

BGP routers exchange path vectors with BGP neighbors (peers)

- Typically, neighbors are connected directly or via a switch
- Multihop BGP peering: Neighbors need not be topologically adjacent

BGP peers accept or discard paths based on policies

• e.g., preferred neighbors, hot potato, shortest paths

BGP router decides on outgoing advertisements based on policies BGP is the "glue" of the Internet

Two faces of BGP

Tow faces of BGP

BGP implements three basic three steps

Learning prefixes

First, establish TCP connection (port 179) in which routers exchange BGP messages

Four BGP message types

Open Establishes a BGP session

Update

Announce or withdraw prefix(es)

Keepalive

Check if adjacent peers are still available

Notification

Handle errors

A closer look into a BGP update message

Path attributes describe the way to the prefix(es)

mandatory	Origin of the path information IGP, EGP, Incomplete
mandatory	AS_PATH, sequence of ASNs the update traversed e.g., 3320, 780
mandatory	NEXT_HOP, (unicast) IP address of the router that should be used as the next hop to the destinations
optional, non-transitive	MULTI_EXIT_DISC (MED), discriminate among multiple entry points to a neighboring autonomous system
optional, non-transitive	LOCAL_PREF, inform other internal peers of the advertising speaker's degree of preference for an advertised route
optional, transitive	Communities , aid in policy administration and reduce the management complexity

Example: BGP RIB Entry

TIME: 2008-7-1 02:36:49

TYPE: MSG_TABLE_DUMP/AFI_IP6

VIEW: 0 SEQUENCE: 2702

PREFIX: 1.2.0.0/19

ORIGINATED: Mon Jun 30 10:29:18 2008

FROM: 2001:0418:0000:1000:0000:0000:0000:f000 AS15169

AS_PATH: 15169 20 10

MULTI_EXIT_DISC: 1

COMMUNITIES: 15196:420 15169:2000 15169:3000

BGP implements three basic three steps

Selecting best path

Exporting prefixes

Which path to use?

Controls outbound traffic

Phase 1: Calculation of Degree of Preference

Based on local policies and attributes, a preference will be assigned to all RIB entries

Phase 2: Route Selection

For each IP prefix, select one best route

Phase 3: Route Dissemination

Before RIB entries will be announced to neighbors, they will be filtered again based on **local policies**

Route selection in detail

BGP speaker identifies the route that has:

a) the highest degree of preference of any route to the same set of destinations, or

b) is the only route to that destination, or

c) is selected as a result of the tie breaking rules

Speaker shall install that route in the local RIB

Tie breaking rules

- a) Shortest AS path wins
- b) Prefer IGP over EGP over incomplete
- c) Lowest MED wins
- d) Prefer eBGP over iBGP
- e) Lowest IGP metric to BGP NEXT_HOP wins
- f) Oldest path wins*
- g) Lowest speaker ID wins
- h) Lowest peer IP address wins

* Not defined in RFC 4271 but implementation practice.

How do you assign local preferences?

Types of peering relations: Two main business relations

Customer pays \$\$ provider to get Internet connectivity

Peers don't pay each other, exchange own and prefixes of customers

Which routes do you prefer?

Rule of thumb, which works most of times

For a destination prefix, prefer routes from

customers over

peers over

providers

BGP implements three basic three steps

Learning prefixes Selecting best path

Exporting prefixes

Which path to use?

Controls outbound traffic

Which path to advertise?

Controls inbound traffic

Which routes do you export to whom?

Providers transit traffic for their customers

Peers don't transit between each other

Customers don't transit between providers (\$\$)

Common exporting rules

	Announce to		
	Customer	Peer	Provider
Customer	Yes	Yes	Yes
Peer	Yes	-	-
Provider	Yes	-	-

Rule of thumb: Follow the money.

Attention

Common import and export do not always hold

Why do researchers still mostly use them? Simplicity.

What did we learn from the protocol design?

BGP is a highly scalable and expressive information hiding protocol by design.

To keep BGP scalable, only best paths are distributed.

To hide internal network structure, BGP allows operators to exchange routing data w/o revealing information about their own network.

To allow full configuration flexibility w/o conflicting with business, BGP hides policies.

Observing the Wild **BGP MONITORING**

BGP data sources

BGP Looking glasses

Routing information services Route Views RIPE RIS (Routing Information Service)

How does a route collector work?

Route collector peers with other ASs: Vantage Points

- Takes role of a customer
- Should receive full BGP tables
- Route collector receives the view of how the Vantage Point sees the Internet
- Route collector grants access to its table

Data from BGP collectors has limitations

Collectors sees what the vantage point sent. We do not see the Internet as seen by the connected router.

Type of collected information is not always the same. Most feeds are "full-feed", some are "partial feeds".

Some ASes span multiple continents, you usually see data from one peer. Most operators keep traffic local, which may result in different views.

Most collectors are biased towards core networks and IXPs.

Connections between VPs and monitors are not 100% reliable.

Single triggering event may cause multiple updates to be observed at the collector.

Various artifacts appear in the data, which may conflict with the actual inter-domain topology.