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Internet-wide scanning

Applications of high-speed scanning

Reducing the scanning footprint

How to scan IPv6?
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Discovery at Large

INTERNET-WIDE SCANNING
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Measurement objectives

Prof. Dr. Thomas C. Schmidt

Which IP address is online?
Which IP address runs which service?

Which type of host or service is behind an IP
or port?

You don’t have access to flow data.

You want to answer these questions for
(almost) all IP addresses.
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Network Mapper: NMAP

NMAP was the first integrated
tool for Internet scanning —
released in September 1997 by
Gordon Lyon (Fyodor)

Prof. Dr. Thomas C. Schmidt

Host discovery
— Originally using network ranges (lists)
— Random IP generation
Operating system discovery
— Originally fingerprinting the TCP/IP stack
— Response matching in OS database
Service discovery
— Determine open ports from protocol reply
— Determine closed ports from ICMP reply



Fingerprinting
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OS:

— Analyze protocol options and imple-
mentation details of IP/ICMP/TCP/UDP

— Predict the uptime from TCP timestamps
TCP service:

— Complete the connect handshake

— Many services send a banner
UDP service:

— UDP does not respond by itself

— Send protocol-specific payloads and
match responses



Fingerprinting

Fingerprinting is a
complex process of
correlating various
properties observed
from the system

Prof. Dr. Thomas C. Schmidt
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OS:

— Analyse protocol options and imple-
mentation details of IP/ICMP/TCP/UDP

— Predict the uptime from TCP timestamps
TCP service:

— Complete the connect handshake

— Many services send a banner
UDP service:

— UDP does not respond by itself

— Send protocol-specific payloads and
match responses



This is All Rather Complex

How do we
boost this to
Internet scale?

Prof. Dr. Thomas C. Schmidt
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Common scanning strategies

IANA /0
Addresses: ~4.3 billion
IANA allocated

Publications: [5H8}[11}/12

Addresses: ~3.7 billion
Announced addresses (BGP)
Publications: [10}/15(16|[19)
Addresses: ~2.8 billion

IP hitlists are lists of IP IP hitlists and samples
addresses that most likely Publications: EI, 11}/13l[14][18/ [20]
offer the scanned services. Addresses: 1-20 million

Prof. Dr. Thomas C. Schmidt 10



Challenges

Target Packet Packet

probing transmission reception

How to avoid overload How to send packets How to identify valid
of target networks? as fast as possible? responses?
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Challenges

Target Packet Packet
probing transmission reception
How to avoid overload How to send packets How to identify valid
of target networks? as fast as possible? responses?

We discuss how ZMap overcomes these challenges
compared to common approaches such as nmap.



Target probing
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Sending probes to targets in numerical order
may easily overload destination networks

Sending probes in random order prevents this
problem

How do you know which addresses you
already contacted?

13
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Target probing: An inexpensive approach

Prof. Dr. Thomas C. Schmidt

How do we randomly scan addresses without
excessive states?

Core idea

1.

Scan hosts according to random
permutation

Iterate over multiplicative group of integers
modulo p

14
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Brief math excursion: Multiplicative cyclic groups

If this is a primitive root, we can iterate
over all elements subsequently.

a*rmodp

Group is cyclic if p is prime.
For IPv4: 2"32+15 is the
smallest prime larger 2°32.

Prof. Dr. Thomas C. Schmidt 15
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Target probing: An inexpensive approach, details

a*rmodp

5¢5mod7=4
S 4 4+5mod7=6
1e5mod7=5 \ mod f=

1 6
3-5mod7=;\ 16-5m0d7=2

25mod7=3

Simplified example [USENIX Security 2013]

Prof. Dr. Thomas C. Schmidt

Details to generate a fresh random
permutation for each scan

1. Generate a primitive
2. Choose a random starting address

Negligible state overhead to store
1. Primitive root

2. Current address

3. Starting address

16
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Common packet transmissions

Sending packets via common socket interface
Introduces overhead

Buffer creation and table updates
Routing table lookup

ARP cache lookup

Potential network filters check packets
TCP handshakes

Prof. Dr. Thomas C. Schmidt 17
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Fast packet transmissions

Prof. Dr. Thomas C. Schmidt

Scan packets are different from typical
application layer packets.

Send packets directly at the Ethernet layer and
enable

Caching of Ethernet header
(except checksum header is constant)

Reduced TCP state management

18



Validating responses
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Problems

Measurement probe may see unsolicited data
(other scan background traffic ...)

Per-target states are expensive

Solution

Encode secrets into mutable fields of probe
packets that will have recognizable effect on
responses

19



Validating responses
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receiver sender
Ethernet MAC address MAC address AT i /
[}
)
sender receiver
P fv [ IP address IP address ki /
!/
f
TCP sender | receiver sequence | ack.
port port number number data
!/
Solution

Encode secrets into mutable fields of probe
packets that will have recognizable effect on
responses

20
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These ideas have been implemented in ZMap

Simple network scanners
Reduce state by scanning in batches
« Time lost due to blocking
* Results lost due to timeouts
Track individual hosts and retransmit
* Most hosts will not respond
Avoid flooding through timing
« Time lost waiting
Utilize existing OS network stack

* Not optimized for immense
number of connections

Prof. Dr. Thomas C. Schmidt

ZMap
Eliminate local per-connection state

» Fully asynchronous components

* No blocking except for network
Shotgun Scanning Approach

» Always send n probes per host
Scan widely dispersed targets

« Send as fast as network allows
Probe-optimized Network Stack

« Bypass inefficiencies by
generating Ethernet frame

21
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Performance of ZMap

Complete scan of v4 address space takes 44
minutes with a gigabit Ethernet connection

Experiment hardware: Xeon E3-1230 3.2 GHz,
4GB RAM

Prof. Dr. Thomas C. Schmidt 22
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Scan rate: How fast is too fast?

1.02 .
Hitrate —sa—

No correlation between hit- & 1.01 ¢
(b} 1. o
rate and scan-rate S o099 |
£ o8t % % % s}; % % % % }
Slower scanning does not & 0.96 |
reveal additional hosts T 095¢F
0.94 1 | 1 1 l | 1 1 1 l | 1 1 1 1 l
20,55 %0, 70,55, 0, 20,55, 0, 78 0 s T K
©C 0 0 0O 0000000000 (,/))

Scan Rate (packets per second).

Prof. Dr. Thomas C. Schmidt 23



Coverage: Is one SYN enough?

Plateau approximates the
real number of listening
hosts.

Prof. Dr. Thomas C. Schmidt

Unique Hosts Found
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Comparison with Nmap

Normalized Duration Est. Internet
Coverage (mm:ss) Wide Scan

Nmap (1 probe) 81.4% 24:12 62.5 days
Nmap (2 probes) 97.8% 45:03 116.3 days
ZMap (1 probe) 98.7% 00:10 1:09:35
ZMap (2 probes) 100.0% 00:11 2:12:35

Averages for scanning 1 million random hosts

Prof. Dr. Thomas C. Schmidt 25
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Why does ZMap find more hosts?
1.0 s P P m— : : ==
o S 500 ms
3 i t
Statelessness leads to both g E : limeou
higher performance and £°°0 { 250 ms
iIncreased coverage. g : timeout
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8
0_2 -
0.0 — : L . ,
0 0.2 0.4 0.6 0.8

response time (seconds)

Prof. Dr. Thomas C. Schmidt 26
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APPLICATIONS OF HIGH-
SPEED SCANNING

Prof. Dr. Thomas C. Schmidt
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Enumerating vulnerable UPnP hosts

UPnP

Prof. Dr. Thomas C. Schmidt

150 lines of code to perform UPnP handshake
Took <2 hours to scan complete v4 addresses

HD Moore disclosed vulnerabilities in several
common UPnP frameworks in January 2013
Exposure possible with a single UDP packet!

Durumeric et al. found that 3.34 M of 15.7 M
devices were still vulnerable.

Think about the misuse of ZMap

28
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Monitoring service availability

Ty

Snapshot of HTTPS outages
caused by Hurricane Sandy

Prof. Dr. Thomas C. Schmidt

Specific protocol module help to identify the
deployment of service

Simple ICMP echo request scans can help to
track Internet outages

29
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censys.io: Search engine that uses ZMap

HOW WE HELP ~ PRICING ABOUT LOGIN
L, censys

Security starts with visibility

Find and monitor every server on the Internet

What servers and devices are exposed
on my network?

Enter an IP address or CIDR block (141.211.0.0/16) n

Prof. Dr. Thomas C. Schmidt 30
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ZMap: Fast Internet-Wide Scanning and its Security Applications

Zakir Durumeric Eric Wustrow 1. Alex Halderman
University of Michigan University of Michigan University of Michigan

Abstract

Internel-wide network scanning has numerous security
applications, including exposing new vulnerabilities and
tracking the adoption of defensive mechanisms, but prob-
ing the enlire public address space wilh existing lools is
both difficult and slow. We introduce ZMap, a modular,
open-source network scanner specifically architected to
perform Internel-wide scans and capable of surveying
the entire IPv4 address space in under 45 minutes from
user space on a single machine, approaching the theo-
refical maximum speed of gigabil Ethernel. We present
the scanner architecture, experimentally characterize its
‘performance and accuracy, and explore the security impli

cations of high speed Internet-scale network surveys, both
offensive and defensive. We also discuss best practices for
good Internet citizenship when performing Infernet-wide
surveys, informed by our own a

edu jhatderm@umich.edu

mid-range macl ing ZMap is capable of scanning
for a given open port across the entire public IPv4 address
space in under 45 minutes—over 97% of the theoreti-
cal maxi speed of gigabit Ethernet—without requir
ing specialized hardware [ 11] or kernel modules [8, 28].
ZMap’s modular architecture can support many types of
single-packet probes, including TCP SYN scans, ICMP
echo request scans, and application-specific UDP scans,
and it can interface easily with user-provided code to
perform follow-up actions on discovered hosts, such as
completing a protocol handshake.

Compared to Nmap—an excellent general-purpose net-
work mapping tool, which was utilized in recent Internet-
wide survey research (10, 14]—ZMap a
higher performance for Internet-scale scans. imen-
tally, we find that ZMap is capable of scanning the IPv4
public address space over 1300 times faster than the most

long-ferm research survey over the past year.

1 Introduction and Roadmap

Internet-scale network surveys collect data by probing
large subsets of the public TP address space. While such
scanning behavior is oflen associaied with boinets and
worms, it also has proved to be a valuable methodol-
ogy for security rescarch. Recent studies have demon-
strated that Internet-wide scanning can help reveal new
kinds of vulnerabilities, monitor deployment of mitiga-
tions, and shed light on previously opaque distributed
ecosyslems [10, 12, 14, 15,25,27]. Unfortunately, this

Nmap default settings, with equivalent accu-
racy. These performance gains are due to architectural
choices thal are specifically optimized for this application:
‘Optimized probing  While Nmap adapts iis tran:
sion rale to avoid saluraling the source or largel networks,
we assume that the source network is well provisioned
(unable o be saturated by the source host), and that the
argets are randomly ordered and widely dispersed (s0
no distant network or path is likely to be samrated by
the scan). Conscquently, we attempt to send probes as
quickly as the source’s NIC can support. skipping the
TCPAP stack and generating Fthernet frames directly. We
show that ZMap can send probes at gigabit line speed
from commodity hardware and entirely in user space.

has been o (0]
legitimate researchers, who cannot employ stolen network
access or spread sell-replicaling code. Comprehensively
scanning the public address space with off-the-shelf tools
like Nmap [23] requires weeks of time or many machines.

In this paper, we introduce ZMap, a modular and open
source network scanner specifically designed for perform-
ing comprehensive Internet-wide research scans. A single

No. pi jon stale While Nmap maintains
state for each connection to track which hosts have
been scanned and o handle timeouts and retransmis-
sions, ZMap forgoes any per-connection stale. Since
it is intended to target random samples of the address
space, ZMap ean avoid storing the addresses it has already
scanned or needs o scan and instead selects addresses
according to a random permutation generated by a eyelic

USENIX Association

22nd USENIX Security Symposium 605

31
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Making it even leaner

REDUCING THE FOOTPRINT
OF INTERNET-WIDE SCANS

Prof. Dr. Thomas C. Schmidt
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Problems of Internet-wide scans

Scan packets are overhead
Abuse reports
Threats of legal action

Impact on research results by
Load on intrusion detection systems
IP Blacklisting

Rate limiting by routers

Prof. Dr. Thomas C. Schmidt 88
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IP hitlists vs announced addresses (BGP)

Prof. Dr. Thomas C. Schmidt

Announced addresses (BGP)
High scan overhead
Results: stable over time

IP hitlists
Low scan overhead
Results: unstable over time (dynamic IPs)

Can we do better?

34
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ldea: Topology Aware Scanning Strategy (TASS)

Announced addresses (BGP)
Addresses: ~2.8 billion

BGP prefix hitlists (TASS)
Addresses: 0-2.8 billion

IP hitlists and samples
Addresses: 1-20 million

Prof. Dr. Thomas C. Schmidt

Hypothesis

Hosts with dynamic IP addresses do not often
change their announced BGP network prefix.

35
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TASS approach

1. Perform a full IPv4 scan once

2. Get, sort, and select prefixes by their host
density until desired host coverage has
been reached

3. Scan only the selected prefixes for a given
time period

May reduce scan traffic by 35-90 % and miss
only 1-10 % service responses

Prof. Dr. Thomas C. Schmidt 36
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Step 1. Perform a full IPv4 scan once

Use data from existing scan projects, e.g.,
censys.io

Following results show IPv4 scan data from
Censys.io: HTTP(S), FTP, CWMP (CPE WAN
Management Protocol), 09/2015 to 03/2016

Prof. Dr. Thomas C. Schmidt 37



Step 2. Get and Sort prefixes (HTTPS)

Prefixes obtained by CAIDA
Routeviews Prefix-to-AS
database + some own
optimizations

Host density = #hosts divided
by #IP addresses contained by
the prefix

Prefixes sorted by their
density

Prof. Dr. Thomas C. Schmidt
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Step 2. Select prefixes (HTTPS)

1 —a 1
100 % of the HTTPS 0.8 - 108
host are distributed "% 0.6 F “host coverage 4 06 g
) = )
over 410,000 prefixes. g 04 1 04 é
0.2 4 0.2
0 | | I ! | 1 | | 0

19 S 7, a S Lo Oy O 4
%, %, %, %, %, %, %, %,
> % Y Y Y 9 b %

Prefixes (ranked)
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Step 2. Select prefixes (HTTPS)

Select all prefixes with
density > 0

Scanning 100 % of the
HTTPS host results

In a IPv4 address space
coverage of 64,5 %.

Prof. Dr. Thomas C. Schmidt

Density
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Step 2. Select prefixes (HTTPS)

;
0.8 |- 08
I 0)
Scanning 994) of all HTTPS 2 06 “host coverage 06 ©
hosts results in a address 5 o4 ¢ 1 04 2
QO . “J"‘ . @)
space coverage of only 42,7% 00 IPv4 space coverage  _,---- 0o ©
. \ ______ o7 T
0 e e ! [ [ | ! 0

Skipping some prefixes with
the lowest density

Prefixes (ranked)

Prof. Dr. Thomas C. Schmidt 41



Host Coverage vs. IPv4 Space Coverage

Little tweaks on the host
coverage have an important
Impact on the needed
address space coverage

Host / address space

coverage ratio depends on
the protocol.

Prof. Dr. Thomas C. Schmidt
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¢ FTP  HTTP HTTPS CWMP
o[l 0.574 0.648 0.645 [0.332
e 0.371 0.440 0.427
@ 2 095 0206 0279 0.262  0.085
£Y 07 0023 0048 0052  0.037
< 05 0006 0017 0.020 0.021

Host coverage

IPv4 space coverage

42
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Host Coverage vs. IPv4 Space Coverage

We are able to scan every second
host by scanning just 2% of the
announced IPv4 address space!

FTP  HTTP HTTPS CWMP
0574 0648 0.645  0.332

-

5% !

"y g 0.99 0371 0.440 0.427 0.113
This results in a scan traffic ﬁ é 095 0.206 0.279 0.262 0.085
reduction of 98 % compared 2‘5 0.7 0.023 0.048 0.052 0.037
to an IPv4 full scan. _

Prof. Dr. Thomas C. Schmidt 43



TASS compared to a IPv4 full scan (density = 1)

. e a4

0.9 r -

After six months, TASS 0.8 |
finds only 4% less hosts g

= 0.7 r i
than a IPv4 full scan =

0.6 _

0.5 ¢ -

0.4 ' ' ' ' '

09/15 10/15 11/15 12/15 01/16 02/16 03/16
Time [month/year]

CWMP FTP -~ HTTP <+ HTTPS =
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1

0.9
After six months, IP @ 0.8
hitlists finds 30-55% g 0.7
less hosts than an L 0.6 - i
IPv4 full scan. '
0.5 .
0.4

09/15 1015 11/15 12/15 01/16 02/16 03/16
Time [month/year]

CWMP FTP - HTTP - HTTPS =
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Towards Better Internet Citizenship:
Reducing the Footprint of Internet-wide Scans by
Topology Aware Prefix Selection

Johannes Klick Stephan Lau Matthias Wahlisch
Freie Universitat Berlin Freie Universitat Berlin Freie Universitat Berlin
Jjohannes Klick@fu- slephan.lau@fu-berlin.de m.waehlisch@fu-

berlin.de berlin.de
Volker Roth
Freie Universitl Berlin
volker.roth@fu-berlin.de
ABSTRACT leawst. 2.8 billion addrosscs advertised in the TPvd ad

Internet service discovery is an emerging topic to study
the deployment, of protocols. Towards this end, our
communily periodically scans the entire advertisod [PvA
address space. In this paper, we question this princi-
ple. Being good Internet citimens means that we should
limit scan traffic to what is necessary. We conducted a
atudy of ecan data, which shows that several prefixes do
not accommodate any host of interest and the network
topology is fairly stable. We argne that this allows us
to collect representative data by scanning less. In our
paper, we explare the ddea to scan all prefises onee and
il Ty prefixes of interest for Tuture seanning.

Based on our analysis of the censys.io data set (1.1
T3 data encompassing 28 full IPv4 seans within § months)
we found that we can reduce sean traffic hetween 25-
90% and miss only 1-10% of the hests, depending on
dusiror trade-offs and protocols.

1. INTRODU(,TION

Fast. Tnberned-wide: scan i growing in popularity
ameng rescarchers, At the time of writing, researchers
regularly scan the Internet for valnerable SSL certifi-
eates [i[13), SSH public keys [T0], and for the banners
of plain text protoeols such as SMTE, HTTE, FTE,
and Telnet 5. The majority of rescarchers scan al
Permissacm to make digial or hand copies of all or part of this work for pensosal

or classmoom use & gramied withowm foc provided dhat copics are not made or
disaritasted for profit or commercial advantage and ol copics bear this natice.
and the full Gitation om the firs page. Copyrights for compoacnts of this wark.
owned by athers than the author(s) must be honored. Absiracting with credi s |5
pemmitied. To copy otherwise, ar republish, 10 POs 00 SETVETS or Lo
i, Fregeires prioe spocilis permisaaan andioce o fee. I{mnslpumms’lw\l

ions facm org.

IMC 2016, November 14 - 16, 2016, Sania Monica, CA, USA
) 20105 Copyright ekt ly e crsmertanthants) Publication rghts Beensed 1
ACM. ISHEN 7814504520216 1. $15.00

Dor: hittp:/ fdbx.doi. org,/ 10,1145 /2987447, 2067457

dress spaco [5 810 [T3[15,T6R/19]. Hitrates, the frc-
tion of probed addresses from which a response is re-
exivesl, are very often under two percent [7]. This means
that most sean trallic is overbead, Most of these scans
are done periodically for trend analyses, which exacer-
bates the amount of unnecessary scan traffic. For ox-
ample, the ongeing Internet-wide research project cen-
syeio [77] probes the TANA allocated address space for
19 protocoks on & continuous basis, This resulls in 72.2
billion generatod IP-packets per week. which causes
several bostile responses ranging from threatening le-
ol actions te conducted denial of serviee attacks
Whereas seanning U TPvA addross space is easible this
is nob any more the case for IPv6. When IPv6 becomes
more popular, we need scanning strabegies that limit
scans to parts of the address space that are in nee.

Many measurement seenarios require only partial seans
imstbezind of exploring the Ful auddress space. However,
we currently lack a systematic understanding of the de-
ployment of Internet services with respect to I address
ranges.

In this paper, we wanl b start the discussion how
wo can roduee scan traffic systematically,. We present
the Topology Aware Scanning Strategy (TASS), a new
1¥* prefix based and topology sware scanning stratogy
for periodic scanning. TASS enables researchers to col
lect respanscs from 90-99% of the available hoste for six
months by seanning only 10-755% of the announced [Pvd
address space in each scan cycle (protocol dependent).
TASS is seeded with the results of a full advertised 1Pv1
aubdress scan for a given protoes] and time period. The
profixes for all responses will be selocted for periodic
scans of the given protocel.

Porindic seanning of only selected prefices reduces
scan traffic significantly while hi
of interest. For inslanee, our analy .
sponsive prefixes obtained from o ful T scan cover

46
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The Bigger Network

HOW TO SCAN IPV6
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232 IPv4 addresses scanned in 44 minutes
1,7*107-10 seconds per address

Prof. Dr. Thomas C. Schmidt 48
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232 IPv4 addresses scanned in 44 minutes
1,7*107-10 seconds per address

2128 IPv6 addresses scanned in ?7?



Approaches to find active IPv6 addresses

DNS Structural Combined Crowd-

techniques properties Hitlists sourcing
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DNS techniques based on reverse IPv4 DNS

Limited to finding
Dual Stack Hosts

Prof. Dr. Thomas C. Schmidt

Derive v4 addresses from passive BGP
measurements

Query reverse DNS entry for all these
addresses

Query AAAA (IPv6) record for responses

51
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DNS techniques based on reverse IPv6 DNS

Leverage non-existent domain name record
(NXDOMAIN)

There are no entries under this DNS subtree

.ip6.arpa
/qi\
e f
o T Enumerate the reverse IPv6 DNS tree and
o 7+ . e r jgnore complete subtrees if NXDOMAIN
O,Aef replied

Challenges: Scaling, non-standard compliant
servers ...

Prof. Dr. Thomas C. Schmidt 52



Structural properties
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Apply machine learning on IPv6 input data set
to identify address plans

Find dense regions in the v6 address space
and generate neighboring addresses, based
on input addresses

Calculate Hamming distance on granularity of
nybbles (= 4 bit of hex character in IPv6
addresses)

53



Combined Hitlists

Prof. Dr. Thomas C. Schmidt
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Passive
Flow data of large networks

Active

Alexa Top 1M

Rapid7 IPv4 rDNS

Rapid7 DNS ANY

DNS zone files

CAIDA IPv6 router DNS names
Traceroute

54



Crowdsourcing

How many red and/or blue balls do you see on the page?

If you do not see any red/blue balls, that's perfectly fine. Just pick 0 (zero) from the list

2]
Red Balls Blue Balls
v 0(Zero) 0(Zero) *
1 (One)
2 (Two)

3(Threey  the number of balls. Incorrect submissions will not be approved!!!
4 (Four)

Submit

Prof. Dr. Thomas C. Schmidt
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Crowdsourcing

How many red and/or blue balls do you see on the page?

If you do not see any red/blue balls, that's perfectly fine. Just pick O (zero) from the list

i i i!

Red Balls Blue Balls

v 0(Zero) 0(Zero) ¢
1 (One)
2 (Two)
3(Threey  the number of balls. Incorrect submissions will not be approved!!!
4 (Four)

Submit

Prof. Dr. Thomas C. Schmidt
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Blue balls are only served by an IPv6-
enabled server

Inspect server logs to measure host
addresses
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Looking at the entire IPv6 node space

How biased are sources of IPv6 addresses?

Prof. Dr. Thomas C. Schmidt 57
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Cumulative increase of vb6 addresses

60 M
Strong increase of S0 M. =E:r;2:£:sts
traceroute due to home —
routers O e R
30 v [ Bitnodes
I RIPE Atlas
20M{ [ Traceroute
10M
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Understanding traceroute grow in more detalil

. ff:fe:..

Indicates SLAAC addresses
Roughly, split 48 bit MAC
address into two 24 bit blocks,
separated by ff.fe

(Privacy extensions exist ...)

Prof. Dr. Thomas C. Schmidt 59
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Understanding traceroute grow in more detalil

. ff:fe:..

Indicates SLAAC addresses
90% were SLAAC addresses

47% ZTE Roughly, split 48 bit MAC
47% AVM address into two 24 bit blocks,
1% Huawel separated by ff.fe

+ long tail of 240 other vendors
(Privacy extensions exist ...)

Prof. Dr. Thomas C. Schmidt 60
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Do the sources cover many ASes?

1.0 -

0.8 1

Unbalanced (CT, domain lists) Sormainlist
omainilists

9]

()

wn

<C

=

o

2

vs. balanced (RIPE Atlas) £ 0.6 ,

. . ~--- FDNS

©

> —o— CT

v 0.4 -e-- AXFR

= —¥— Bitnodes

£ 0.2 -¥-- RIPE Atlas

E —m— Scamper
0_0[ T T LI | T T T T T T T AL | T T LRI |

100 10! 102 103 104
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Visualizing IP address space

IPv6
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zesplot: Visualizing v6 announced address space

| —
&)
<

IPv6 prefixes represented
as a rectangle

—
o
W
~

Order prefixes by {prefix-
size, ASN}

N
=
sassaIppe J1 andug

Start by filling vertical row, - in A TR SR
then horizontal row, then
vertical row etc.

S
o
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Some prefixes contain unusually large
numbers of addresses. Why?
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Challenge: Aliased network prefixes

Prof. Dr. Thomas C. Schmidt

Complete prefix is assigned to a host
Host listens on all possible addresses
Consequence

Artificial inflation of hitlists
Some hosts will over-represent the hitlist
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Alias detection: Fixed prefix length

Prof. Dr. Thomas C. Schmidt

Assumption

It is unlikely that a randomly selected IPv6
address replies

Approach
Construct medium-sized prefixes (e.g., /96)

Send probes to n randomly selected
addresses in the prefixes

If you receive n replies, likely because of
aliased prefix
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A
A

Alias detection: Dynamic prefix length

Detection at different prefix lengths

Generate pseudo-random address for each 4-
bit sub-prefix

2001 :0db8:0407:8000: ©151:2900:77e9:03a8
2001 :0db8:0407:8000: 1 5ab:3855:92a0:2341

2001 :0db8:0407:8000: : / 64% 16 branches (random IPs)

2001:0db8:0407:8000: e aae:cb10:9321:ba76
2001:0db8:0407:8000: £693:2443:915e:1d2e

Prof. Dr. Thomas C. Schmidt 67



Detected aliased prefixes

|
e

I
I
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Detected aliased prefixes

|
e

All /48 prefixes

LHIHH
I

[y
W
ce
~

Majority belongs =

to Amazon and

Incapsula (both sl

N
~

cloud providers) SRR RS e

sessaappe J1 indug

o
co
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148K : o i e : Tt 148K

2% 5 I i -__:_ - 2K 3
% .| i - . s i w-lﬂ-ﬁ-'"-' &
?E I I I | - ] §

48 3 . i i 48 @

. T B i
1 : ; 1
All prefixes covered by hitlist Aliased prefixes
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Can we identify common addressing schemes
in hitlists?
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Techniques to learn new addresses

Entropy/IP
« (Generate new addresses by leveraging entropy of seed addresses
« Similar approach to grouping addresses based on their structure as shown earlier
6Gen
« (Generate new addresses in dense address regions
« If we see addresses
e 2001:0db8:0407:8000::4
e 2001:0db8:0407:8000::5
e 2001:0db8:0407:8000::8
* Likely other valid addresses
e 2001:0db8:0407:8000::6
e 2001:0db8:0407:8000¢::7

Prof. Dr. Thomas C. Schmidt 72



Entropy clustering

Prof. Dr. Thomas C. Schmidt
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Take a set of responsive IPv6 addresses from a
particular network (e.g., /32 prefix, a prefix from
BGP dumps, or an AS)

Calculate the normalized Shannon entropy for
each IPv6 nybble (4 bits = one hex char) for all
addresses in the set; repeat for each network

Use these fingerprints as input for k-means
clustering to predict more responsive addresses

Plot median fingerprints and cluster popularity
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2001:0dbs:4001: 0806 00600 : 0000 :0000:201b 2001:0db9:0011:00d1} fdad:Taa0:8370:7321
2001:0db8:4£03:0cPO} 0RO : 0ROL: 0RB0 0B C2 20e1:0db9:482f:7d0e; fdce:dadc:aa23:5ea5
2001:0db8:4004:080f| 0060 :0000:0600: 2014 2001:0db9:4134:9700 645¢c:b3c2:b5bd:ae87
2001:0dbs:4001:0cP8[ 0000 : 0600 :0000:001c 2001:0db9:4134:9700F f47d:cc3b:5956:845F
2001:0db8:4£02:0803| 0006 : 000 :0RB0: 2069 2001:0db9:4306:9d08 ecal:e@2e:13e8:4ca3
2001:0db8:4002:0cP9}| 0000 : 0600 : 0600 :007d 2001:0db9:4333:5400 fa32:e4ff:fead:86dc
2001:0dbs:4009:080d|[ 0060 : 0000 :06000:101b 2001:0db9:43da: 9600 98b2:c969:b41c:ddch
2001:0db8:4P0a:0807| 0006 : 0000 : 00602011 2001:0db9:43e6:9200482c:87a9:c25b: 7626
20801:0db8:400c:0cP4} 0060 : 0000 : 0000 : 8056 2001:9db9:43e6:9200F455b:da2b:2482:ef42

0000 : 0000 : 0000 :009b 2001:9db9:43e6:9200F d921:6beb:16f8:41d6
(ignore) v fingerprint! v ignore fingerprint! \
17 32 17 32

Prof. Dr. Thomas C. Schmidt 74
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Entropy clustering of /32 prefixes
(consider only interface identifiers)

Fingerprint is only based

on nybbles 17-32
1.0
1
A 0.8 >,
Dl =y
[m) ol s
20 0.6 £
1)} oL a
*%‘ A 04 S
: Lo 4 ©
g3 s
SERRRREE 02 =
at i -
II:I 00
50 40 30 20 10 O 18 20 22 24 26 28 30 32
/32 prefixes [%] IPv6 nybble (hex character)
75

Prof. Dr. Thomas C. Schmidt



=H
Entropy clustering of /32 prefixes = HAMBURG
(Full address)

Just a handful of 1.0
schemes deployed in 08
the Internet a S
. 0.6 £
g o
5 0.4 ©
o ©
- u
02=

1T T o

M I I I t e e e t
50 40 302010 0 10 12 14 16 18 20 22 24 26 28 30 32
/32 prefixes [%] IPv6 nybble (hex character)
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How does cross-protocol responsiveness look like?

Prof. Dr. Thomas C. Schmidt 7
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Generate v6 targets and probe daily

If address responds on protocol X, how likely
IS it to respond on protocol Y?

Helps to identify relevant addresses for
specific measurements

Prof. Dr. Thomas C. Schmidt 78
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UDP/443 - 0.017 0.035 0.054 0.0065

5
5 UDP/53- 0.069 0.1 0.14
st
S
[
S TCP/443- 0.29
5
S - 0.4
S
& TCP/80- 0.45
a
- 0.2

ICMP

ICMP TCP/80 TCP/443 UDP/53 UDP/443
Protocol X
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Is there a benefit of using more than one
address learning tool?

Prof. Dr. Thomas C. Schmidt 80
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Comparing Entropy/IP and 6Gen and responsiveness

ICMPv6 TCP/80 TCP/443 UDP/53 UDP/443 Entropy/IP  6Gen
v X X X X 41.1% ©66.8%
v v v X X 12.3% 9.2%
X X X v X 231% 7.3%
v v X X X 3.4% 4.9%
v v v X v 6.1% 3.2%

Prof. Dr. Thomas C. Schmidt
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Discussions

Time-to-measurements
IPv6 server are more responsive compared to home devices and clients
When using hitlists as input, client devices need to be measured in minutes

Hitlist tailoring
Prevent bias by removing aliased prefixes
Tailor down to ASes, protocols etc. depends on study

Unresponsive addresses
Can be used to understand addressing schemes inside a prefix

Prof. Dr. Thomas C. Schmidt 82
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1 INTRODUCTION

Network arean the

Internet history of generating insights for secu-

Internet. Due to the expanse of the IPve aiess space, exhaustive
scans as in IPv4 are not possible for [Pvé. In recent years. several
studies have proposed the use of targe lists of [Pv6 addresses, called
IPvé hitlists.

In this paper. we show that addresses in IPve hitlists are heavily
clustered. We present novel techniques that allow IPv6 hitlists to
be pushed from quantity to quality. We perform a longitudinal
active measurement study over 6 months, targeting more than 50M
addresses. We develop a rigorous method to detect liased prefixes,
which identifies 1.5 of our prefixes as aliased. pertaining o about
half of our target addresses. Using entropy clustering, we group the
entire hitlist into ust & distinct addressing schemes. Furthormore,
we perform client measurements by leveraging crowdsourcing.

To encourage in network
and to serve a5 a starting point for future [Pvs studies, we publish
source code, analysis tools, and data.

CCS CONCEPTS
« Networks — Network structure. Naming and addressing

KEYWORDS

[Py, Hillist, Clustering, Aliasing, Entropy
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in the Expanse:, Understanding and Urbiasing IPv6 Filists. In 2018 Internet
Measur ement Conference [IMC '), October 3t Nevermber 3, 2018, Boster, MA,
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rity, topology, routing, and many other fields. Advances in software
and link speeds in recent years allow the entire IPv4 Internet o
be easily scanned in just a few minutes (2. 24, 42]. However, scan-
ning the expanse of the entire IPv6 Internet is infeasible due to
its size. which bove bath what be
sent ar stored, and what is 2n ethical volume of queries Lo be sent
to a system or network. Therefore, state-of-the-art [Pvé Internet
scanning resorts to the methods used in the early days of IPva
Internet scanning, i.e., using lists of target P addresses, so-called
hitlists, which served as a representative subset of the IPv4 address
space [19, 21, 27]

“The IPvé address space also comes with unique, different chal-
lenges to such hitlists. First, hitlists can be biased (ie, not represen-
tative of the Internet as a whole) due to imbalanced Autonomous
System (AS) and prefix representations ar [P address aliasing Sec-
ond, due to similarly large allocation sizes, a single nebw ork—or
even a single machine’ —can easily overwhelm a hitlist with count-
less IP adiresses. Third, addresses might be used anly for very
brief periods of time, s there is no pressure for re-use. Thus, &
key quality of IPvé hitlists is not the count of I addresses. but
responsiveness and balance over ASes and prefixes. In this papes,
we systematically tackle these challenges by

Comprehensive Address Discovery: The first step in unbias-
ing a hitlst i creating 2 comrehenstve hillist, for which we draw P
addresses from a multitude of state-of-the-art sources, cf. Section 3

Clustering by Entropy: To discover and understand clusters
in the expanse of the IPve space, we leverage entropy analysis of
IPvé addresses. This helps to determine addressing schemes and
aggregate clusters, which we explore in Section 4.

De-Aliasing: To reduce the potential impact of aliased prefixes—
ie. a single machine responding to all addresses in a possibly Large
prefix—we postulate and implement & rigorous method for aliased
pr?ﬁx detection, which we present in Section 5.

Stability Probing: To find relisbly responsive

o a fee. Rexaest permissos from permssionsiacm.org.

MC 13, Cctober 33 Newermber 2, 3018, Bston. MA, USA

9,212 Copyigh el by the it Publicaion gt emd ta ACK.
ACM IS o7 36180, $1580

g kg1 WS ARS8

ntldmsn!s‘ we conduet longitudinal scans for our hitlist across sev-
eral protocols. As expected. we find only a fraction of discovered

R P . = e 2% addresses.
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