
Lasse Jonas Rosenow

Integration of OSCORE into
RIOT OS

Faculty of Engineering and Computer Science
Department Computer Science

Supervision: Prof. Dr. Thomas Schmidt
Submitted: December 24, 2023

HOCHSCHULE FÜR ANGEWANDTE
WISSENSCHAFTEN HAMBURG
Hamburg University of Applied Sciences

Contents

Contents

1 Introduction 1
1.1 Outline . 1
1.2 The Problem with OSCORE in RIOT OS 1

2 Background 2
2.1 IoT Security . 2
2.2 OSCORE . 3

3 Related Work 5
3.1 Relevant RFCs to Improve OSCORE . 5
3.2 Academic Publications . 6

4 How to Integrate OSCORE with the RIOT CoAP API? 7

5 Conclusion 10

References 11

ii

1 Introduction

1 Introduction

As the Internet of Things (IoT) landscape is rapidly growing in the pasts years it becomes
more relevant to ensure its robustness in terms of security. This makes it more important
then ever to guarantee strong confidentiality, integrity and authenticity, that reliably
works on heavily constrained devices such as they are common to find in IoT scenarios.

To make this work, standardized protocols such as Object Security for Constrained
RESTful Environments (OSCORE) were created. Integrating OSCORE into RIOT OS
is an important step towards a more secure IoT.

RIOT OS is an IoT operating system, that is usually running on low-tier devices with
hardware constraints such as low memory, low processing power, low battery capacity.
Such devices benefit a lot from a protocol such as OSCORE that was specifically designed
to run on very constrained hardware.

1.1 Outline

This report provides basic background knowledge on IoT security, OSCORE [1] and
RIOT OS [2], provides some related works regarding OSCORE itself and in the context
of RIOT. It further defines a rough sketch on possible ways to integrate the OSCORE
protocol into the RIOT operating system and concludes on which approaches may be
more or less suitable.

1.2 The Problem with OSCORE in RIOT OS

RIOT OS currently does not integrate well with the OSCORE protocol. There already
exists libraries such as libOSCORE1, that can be integrated into the RIOT build process,
but using them in conjunction with the RIOT Constrained Application Protocol (CoAP)
stack is a tedious process. Each RIOT module or application that depends on OSCORE
has to depend on a custom OSCORE implementation and can not access the OSCORE
stack through a common generic interface. As a consequence the application needs to
handle all the complex glue code between the OSCORE implementation and the RIOT
CoAP API. This can easily cause unnecessary bugs and further increases the maintenance
burden of the application itself. Furthermore having direct dependencies is problematic,

1https://gitlab.com/oscore/liboscore

1

2 Background

especially for security-related libraries. If for example, a module depends on a certain
OSCORE implementation, but this implementation is not maintained anymore, then the
module will also not receive important security fixes anymore, until it migrates to another
maintained OSCORE library. Hence wise the RIOT OSCORE integration should not
be a hard dependency and should not be difficult to be updated or replaced to get new
security capabilities such as updated encryption algorithms.

Having OS-level support for OSCORE, shifts this burden to the OS itself, future-proofing
its maintenance for all modules within the OS that depend on it.

Ideally the RIOT OS OSCORE integration is abstracted away under the RIOT CoAP
API that does not really show that OSCORE is used. Furthermore integrating OSCORE
into the RIOT CoAP API should also allow changing between different OSCORE imple-
mentations such as uOSCORE2. So applications and modules should only use the CoAP
API as they are used to do, while getting free OSCORE support by in example chang-
ing a compile time flag to enable OSCORE support and select the concrete OSCORE
implementation to be used.

2 Background

2.1 IoT Security

IoT is a broad field consisting of a diverse range of devices starting from small sensors
and going all the way up to large industrial machines. Letting all these device types
communicate via a shared protocol is a necessity, but comes with its own challenges. One
of these challenges is to harness the processing power and efficiency of large industrial
machines as well as to support extremely constrained devices such as a smart sensor
while still being able to guarantee strong security requirements such as confidentiality,
authenticity and integrity.

Furthermore in the case of devices with extremely constrained processing powers, memory
or battery life, it is necessary to find a sufficient balance between efficiency and security,
guaranteeing secure operation while still being able to perform all necessary tasks that
the device is supposed to do.

2https://github.com/eriptic/uoscore-uedhoc

2

2 Background

Another thread to IoT security is build on the various types of communication networks
that the IoT makes use of. It is not uncommon that devices communicate through
multiple networks, including wireless and wired ones. This further increases the attack
vector available to malicious actors.

But not only different network types but also the transmission through different protocols
connected by proxies pose a thread. In some cases a large industrial machine might send a
HTTP request to a wireless sensor, which only supports CoAP. To make both devices able
to communicate, it is necessary to provide a proxy in-between that translates between
both protocols. These proxies dramatically increase security risks as will be further
explained in subsection 2.1.

To guarantee secure operation of all our IoT devices while considering all the previously
mentioned challenges, it is necessary to make use of well defined and internationally
standardized protocols.

One newer kind of these protocols is the OSCORE protocol.

2.2 OSCORE

OSCORE is an Internet protocol defined by the Internet Engineering Task Force (IETF).
More specifically the working group that is responsible for OSCORE is called the Con-
strained RESTful Environments (CoRE) working group34. OSCORE is designed to ad-
dress common security challenges such as authenticity, confidentiality or integrity, which
are commonly faced by more constrained IoT devices such as smart light bulbs, ther-
mostats or any other kind of edge devices.

Usually, these devices suffer from limitations such as low energy availability, low com-
putational power, low memory and low bandwidth. These limitations make traditional
security protocols such as Transport Layer Security (TLS) [3] or Datagram Transport
Layer Security (DTLS) [4] a less suitable fit for constrained IoT devices. Reasons for
them not being suitable are for example the need to establish sessions, which includes a
heavy overhead that is especially problematic for heavily constrained devices that also
happen to sporadically start or stop communications. Another limitation is the overhead

3https://datatracker.ietf.org/wg/core/meetings
4https://mailarchive.ietf.org/arch/browse/core

3

2 Background

created by the need for re-encryption of data during a session resumption or a key rene-
gotiation. Doing additional computation can overload the constrained processing power
and will also lead to an increase of energy consumption, which in case of battery powered
devices causes a shorter lifetime until the battery needs to be changed. Another limita-
tion is that IoT devices often operate with very small packet sizes due to their bandwidth
limitations. This can cause that data needs to be transferred using fragmentation, but
for so small packet sizes as they can happen in the constrained IoT, the fragmentation
header overhead itself can become a considerable amount of the total transferred data.
As a result much more data needs to be transferred compared to the same data but
without encryption.

Furthermore, communication in IoT applications often is done via the CoAP [5] proto-
col. But CoAP often heavily relies on the usage of proxies especially as gateways such as
“CoAP-to-CoAP”, “CoAP-to-HTTP” or “HTTP-to-CoAP”. These proxies require TLS or
DTLS to be terminated at the proxy, which discloses data to the proxy, open to manip-
ulation. Allowing it to transform or read the payload or metadata of the CoAP message
itself. Additionally, the proxy can inject, delete or reorder packets since they are not
protected by TLS or DTLS. This makes proxies a security thread possibly compromising
the integrity and security of our CoAP communication.

OSCORE intends to fix these IoT security issues by providing “object-level” security on
top of the already existing CoAP standard. Through object-level security the transferred
data itself is secured on its individual object (CoAP message) level, applying encryption,
authentication and integrity protection to each CoAP message. This prevents proxies or
any other middleboxes to get access or manipulate data undetected. Furthermore OS-
CORE is comparably lightweight. It provides security information in a compact format
and comes with carefully selected, efficient encryption algorithms and provides mecha-
nisms for mutual authentication and data integrity specified as a standardized solution,
ensuring interoperability between platforms. It enables group communication, by allow-
ing devices of the same group to establish a shared security context. It further improves
efficiency by allowing to retransmit messages without the need to re-encrypt them. With
the upcoming individual “Cacheable OSCORE” draft [6], it will even be possible to se-
curely cache protected OSCORE messages at proxies.

This makes OSCORE a possibly good candidate to provide security for IoT devices that
usually come with low processing power, low energy or low memory.

4

3 Related Work

3 Related Work

3.1 Relevant RFCs to Improve OSCORE

The CoRE working group of the IETF is currently working on a few “active internet
drafts” that propose changes or additions to the current OSCORE RFC.

Key Update for OSCORE (KUDOS) “How to update keys that the 2 peers can
use to establish a new OSCORE security context?” [7]

OSCORE-capable Proxies “How to use OSCORE for protecting CoAP messages
also between an origin application endpoint and an intermediary, or between two in-
termediaries?”, “How to secure a CoAP message by applying multiple, nested OSCORE
protections?” [8]

Cacheable OSCORE “How to cache Group OSCORE messages on proxies that don’t
know about OSCORE?” [6]

Protecting EST Payloads with OSCORE “How to protect EST payloads with
OSCORE?” [9]

Admin Interface for the OSCORE Group Manager “How to define a RESTful
admin interface for the OSCORE Group Manager?” [10]

Group Object Security for Constrained RESTful Environments (Group OS-
CORE) “How can OSCORE be used in a group communication setting?” [11]

Key Usage Limits for OSCORE “What are good key usage limits for OSCORE?”
[12].

5

3 Related Work

3.2 Academic Publications

Connecting the World of Embedded Mobiles: The RIOT Approach to Ubiq-
uitous Networking for the IoT [13] This paper explains the design of the RIOT
OS networking. It explains its “modular architecture with generic interfaces for plugging
in drivers, protocols, or entire stacks”, the authors further explain the “support for multi-
ple heterogeneous interfaces and stack that can concurrently operate” and introduce the
“GNRC, its cleanly layered, recursively composed default network stack”.

The paper is relevant for this report, as it shows how to create a well-designed abstraction
layer within RIOT OS on the example of its GNRC network stack. For the OSCORE in-
tegration into RIOT OS a well-designed abstraction layer to support plugging in different
OSCORE or CoAP implementations is needed as well.

Group Communication with OSCORE: RESTful Multiparty Access to a Data-
Centric Web of Things [14] This paper mainly focuses on measuring the perfor-
mance of a custom “information-centric Web of Things” implementation built on CoAP
and OSCORE.

While this is an interesting use case, this paper is mostly relevant in the area of our
project, because the OSCORE implementation is built on RIOT OS as well. This can
give us a good first hint on how to roughly start making OSCORE and CoAP work nicely
together within the RIOT OS ecosystem.

Content Object Security in the Internet of Things: Challenges, Prospects,
and Emerging Solutions [15] This paper compares the performances of CoAP over
DTLS, OSCORE and the information-centric Named Data Networking (NDN).

The paper itself does not give insight into our project regarding the integration into
RIOT OS, but further proves the advantage of OSCORE over DTLS in constrained and
wireless IoT scenarios. This shows the relevance of integrating it into RIOT OS.

DNS over CoAP (DoC),” [16] This RFC defines a protocol to send DNS queries
and get DNS responses via CoAP. These CoAP messages are either secured by DTLS
or by OSCORE. The RFC is inspired by DNS over HTTPS, but aims the much more
constrained IoT. As HTTPS has too high requirements for many IoT scenarios.

6

4 How to Integrate OSCORE with the RIOT CoAP API?

This document is relevant as it further shows an important use-case for OSCORE in IoT
scenarios. Getting a more secure DNS for constrained devices without the HTTPS or
DTLS overhead through CoAP with the help of OSCORE is a necessary addition to the
IoT ecosystem.

Furthermore the author has published a “hacked together” OSCORE client for RIOT
on GitHub5, which can be a good guidance for implementing OSCORE into the RIOT
CoAP API.

4 How to Integrate OSCORE with the RIOT CoAP API?

Since RIOT OS currently does not come with first-class OSCORE support, it proves to
be relevant to research how to properly integrate it, so that first-class OSCORE support
can be implemented into it. Of course OSCORE implementations such as “libOSCORE”
can already be used within RIOT OS as a direct dependency, but that comes with its
own difficulties and drawbacks as explained in subsection 1.2. Having OS-level support
for OSCORE, shifts these difficulties to the OS itself, future-proofing its maintenance for
all modules within the OS that depend on it.

To decide how to integrate OSCORE into RIOT, we need to discuss different abstraction
levels. In its documentation6 the “libOSCORE” library already specifies how to integrate
it using various integration levels.

In the following paragraphs we will introduce each proposed integration level of the
“libOSCORE” library.

Light Integration The light integration is the most basic way of using libOSCORE.
In the light integration the application uses the CoAP API of libOSCORE directly.
Furthermore libOSCORE internally uses the provided “Native CoAP API” and “Native
crypto API” that are for example provided by the OS.

The advantage of this integration level is, that the application gets full control of each
OSCORE step and theoretically perform optimizations for its specific use-case.

5https://github.com/RIOT-OS/RIOT/commit/d659ef82da025962c80e51e659b32e59c08ca469
6https://oscore.gitlab.io/liboscore/integration_levels

7

4 How to Integrate OSCORE with the RIOT CoAP API?

The disadvantage of this integration level is, that managing the whole encryption and
decryption steps as well as the interaction between OSCORE and CoAP manually is very
prone to error and requires not only a lot of work, but also a lot of inside knowledge,
how to properly orchestrate everything well.

Figure 1 shows the light integration architecture.

+----------------------------+

| |

| Application |

| |

+---------------+[libOSCORE CoAP API]-+ |

| | |

| libOSCORE | |

| | |

+-[nat. crypto API]-+----[native CoAP API]---+

| | |

| Native crypto l. | Native CoAP library |

| | |

+-------------------+------------------------+

Figure 1: Light Integration Diagram

Full Integration The full integration fully hides the interaction with libOSCORE
behind a CoAP API. This CoAP API internally implements all the steps of the “light
integration”, that otherwise would need to be implemented by the application.

The advantage of this integration level is, that applications in this case don’t need to take
care of the complicated OSCORE integration and just interact with a standard CoAP
API. The OSCORE security context can in this case be set as a regular parameter of a
CoAP message. By hiding the implementation details behind the CoAP API of the OS,
it also gets much more easy for applications that previously did not provide any end-to-
end security, to profit from end-to-end security without having to implement anything
to make it work.

The disadvantage of this integration level is, that it removes some control from the
application and thus limits the room for use-case specific optimizations.

The libOSCORE documentation considers this approach to be the most suitable way for
building applications on platforms that have a powerful and stable CoAP API such as
RIOT OS.

Figure 2 shows the full integration architecture.

8

4 How to Integrate OSCORE with the RIOT CoAP API?

+---------------------------+

| |

| Application |

| |

+----[original CoAP API]----+

| |

| Native CoAP library |

| |

+----[libOSCORE CoAP API]---+---------+

| |

| libOSCORE |

| |

+-[nat. crypto API]-+----[native CoAP API]---+

| | |

| Native crypto l. | Native CoAP library |

| | |

+-------------------+------------------------+

Figure 2: Full Integration Diagram

Intermediate Integration The intermediate integration is a middle ground between
the “light” and the “full” integrations. A “intermediate module” is provided, which simpli-
fies the necessary steps to drive libOSCORE together with a CoAP API. The application
itself interacts with a custom interface provided by the “intermediate module”. In con-
trast to the “full integration” this interface does not represent the “Native CoAP API”
though.

The advantage of this integration level is, that it allows applications that build on top
of the “intermediate module” to be portable across different CoAP APIs.

The disadvantage of this integration level is, that a new interface for interacting with
CoAP is created, which does not represent the “Native CoAP API”. Thus applications can
not automatically benefit from OSCORE support, but must migrate to the new API.

The libOSCORE documentation recommends this integration level if portability between
different CoAP libraries is intended or if the “full integration” is not available on a
platform.

Figure 3 shows the intermediate integration architecture.

9

5 Conclusion

+----------------------------+

| |

| Application |

| |

+-------[bespoke API]--------+

| |

| Intermediate module |

| |

+---------------+[libOSCORE CoAP API]-+ |

| | |

| libOSCORE | |

| | |

+-[nat. crypto API]-+----[native CoAP API]---+

| | |

| Native crypto l. | Native CoAP library |

| | |

+-------------------+------------------------+

Figure 3: Intermediate Integration Diagram

5 Conclusion

We have learned the advantages of OSCORE over traditional protocols such as DTLS
in the context of IoT and why it is necessary to integrate OSCORE into RIOT (see
subsection 1.2). Furthermore we found previous work that gives guidance for starting to
implement OSCORE into RIOT correctly (see subsection 2.2).

In section 3.2 we learned about possible strategies in how to integrate the RIOT CoAP
API with the ‘libOSCORE’ OSCORE implementation. From this knowledge we can
conclude that a full integration should be the best fit for RIOT OS, as it was also
recommended by the library itself. The full integration allows to fully hide the OSCORE
implementation behind the RIOT CoAP API, allowing for seamless integration existing
and future applications build on top of RIOT OS. Since RIOT OS provides a stable
CoAP API called “GCoAP”7 the risks of relying on it are negligible.

Additionally, even though the focus of this project is on integrating OSCORE support
in RIOT OS, other operating systems in the IoT space such as Zephyr OS can learn
from our design decisions and base their implementations on how RIOT OS solved this
problem.

7https://doc.riot-os.org/group__net__gcoap.html

10

References

References

[1] G. Selander, J. Mattsson, F. Palombini, and L. Seitz, “Object Security for
Constrained RESTful Environments (OSCORE),” IETF, RFC 8613, July 2019.
[Online]. Available: https://doi.org/10.17487/RFC8613

[2] E. Baccelli, C. Gündogan, O. Hahm, P. Kietzmann, M. Lenders, H. Petersen,
K. Schleiser, T. C. Schmidt, and M. Wählisch, “RIOT: an Open Source Operating
System for Low-end Embedded Devices in the IoT,” IEEE Internet of Things
Journal, vol. 5, no. 6, pp. 4428–4440, December 2018. [Online]. Available:
http://doi.org/10.1109/JIOT.2018.2815038

[3] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.3,” IETF,
RFC 8446, August 2018. [Online]. Available: https://doi.org/10.17487/RFC8446

[4] E. Rescorla, H. Tschofenig, and N. Modadugu, “The Datagram Transport Layer
Security (DTLS) Protocol Version 1.3,” IETF, RFC 9147, April 2022. [Online].
Available: https://doi.org/10.17487/RFC9147

[5] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application
Protocol (CoAP),” IETF, RFC 7252, June 2014. [Online]. Available: https:
//doi.org/10.17487/RFC7252

[6] C. Amsüss and M. Tiloca, “Cacheable OSCORE,” IETF, Internet-Draft – work in
progress 07, July 2023. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-amsuess-core-cachable-oscore-07

[7] R. Höglund and M. Tiloca, “Key Update for OSCORE (KUDOS),” IETF,
Internet-Draft – work in progress 06, October 2023. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-key-update-06

[8] M. Tiloca and R. Höglund, “OSCORE-capable Proxies,” IETF, Internet-Draft –
work in progress 07, July 2023. [Online]. Available: https://datatracker.ietf.org/
doc/html/draft-tiloca-core-oscore-capable-proxies-07

[9] G. Selander, S. Raza, M. Furuhed, M. Vučinić, and T. Claeys, “Protecting
EST Payloads with OSCORE,” IETF, Internet-Draft – work in progress 03,
October 2023. [Online]. Available: https://datatracker.ietf.org/doc/html/draft-ietf-
ace-coap-est-oscore-03

11

https://doi.org/10.17487/RFC8613
http://doi.org/10.1109/JIOT.2018.2815038
https://doi.org/10.17487/RFC8446
https://doi.org/10.17487/RFC9147
https://doi.org/10.17487/RFC7252
https://doi.org/10.17487/RFC7252
https://datatracker.ietf.org/doc/html/draft-amsuess-core-cachable-oscore-07
https://datatracker.ietf.org/doc/html/draft-amsuess-core-cachable-oscore-07
https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-key-update-06
https://datatracker.ietf.org/doc/html/draft-tiloca-core-oscore-capable-proxies-07
https://datatracker.ietf.org/doc/html/draft-tiloca-core-oscore-capable-proxies-07
https://datatracker.ietf.org/doc/html/draft-ietf-ace-coap-est-oscore-03
https://datatracker.ietf.org/doc/html/draft-ietf-ace-coap-est-oscore-03

References

[10] M. Tiloca, R. Höglund, P. V. der Stok, and F. Palombini, “Admin Interface
for the OSCORE Group Manager,” IETF, Internet-Draft – work in progress 10,
October 2023. [Online]. Available: https://datatracker.ietf.org/doc/html/draft-ietf-
ace-oscore-gm-admin-10

[11] M. Tiloca, G. Selander, F. Palombini, J. P. Mattsson, and J. Park, “Group
Object Security for Constrained RESTful Environments (Group OSCORE),”
IETF, Internet-Draft – work in progress 20, September 2023. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-groupcomm-20

[12] R. Höglund and M. Tiloca, “Key Usage Limits for OSCORE,” IETF,
Internet-Draft – work in progress 01, July 2023. [Online]. Available: https:
//datatracker.ietf.org/doc/html/draft-ietf-core-oscore-key-limits-01

[13] M. Lenders, P. Kietzmann, O. Hahm, H. Petersen, C. Gündogan, E. Baccelli,
K. Schleiser, T. C. Schmidt, and M. Wählisch, “Connecting the World of Embedded
Mobiles: The RIOT Approach to Ubiquitous Networking for the Internet of
Things,” Open Archive: arXiv.org, Technical Report arXiv:1801.02833, January
2018. [Online]. Available: https://arxiv.org/abs/1801.02833

[14] C. Gündogan, C. Amsüss, T. C. Schmidt, and M. Wählisch, “Group Communication
with OSCORE: RESTful Multiparty Access to a Data-Centric Web of Things,”
in Proc. of the 46th IEEE Conference on Local Computer Networks (LCN).
Piscataway, NJ, USA: IEEE Press, Oct. 2021, pp. 399–402. [Online]. Available:
https://doi.org/10.1109/LCN52139.2021.9525000

[15] ——, “Content Object Security in the Internet of Things: Challenges, Prospects,
and Emerging Solutions,” IEEE Transactions on Network and Service Management
(TNSM), vol. 19, no. 1, pp. 538–553, March 2022. [Online]. Available:
https://doi.org/10.1109/TNSM.2021.3099902

[16] M. S. Lenders, C. Amsüss, C. Gündoğan, T. C. Schmidt, and M. Wählisch, “DNS
over CoAP (DoC),” IETF, Internet-Draft – work in progress 05, November 2023.
[Online]. Available: https://datatracker.ietf.org/doc/html/draft-ietf-core-dns-over-
coap-05

12

https://datatracker.ietf.org/doc/html/draft-ietf-ace-oscore-gm-admin-10
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oscore-gm-admin-10
https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-groupcomm-20
https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-key-limits-01
https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-key-limits-01
https://arxiv.org/abs/1801.02833
https://doi.org/10.1109/LCN52139.2021.9525000
https://doi.org/10.1109/TNSM.2021.3099902
https://datatracker.ietf.org/doc/html/draft-ietf-core-dns-over-coap-05
https://datatracker.ietf.org/doc/html/draft-ietf-core-dns-over-coap-05

	Introduction
	Outline
	The Problem with OSCORE in RIOT OS

	Background
	IoT Security
	OSCORE

	Related Work
	Relevant RFCs to Improve OSCORE
	Academic Publications

	How to Integrate OSCORE with the RIOT CoAP API?
	Conclusion
	References

