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Advanced Internet and loT Technologies

- Introduction to the Internet of Things -
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Agenda

The Internet of Things
~ Motivation and Use Cases

loT on Wireless Link Layers
IP in the Internet of Things
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What is the Internet of Things?

Prof. Dr. Thomas C. Schmidt

A system in which objects in the physical world
can be connected to the Internet by sensors
and actuators (coined 1999 by Kevin Ashton)

Key aspects:
- E2E communication via Internet standards
— Machine-to-machine communication

—-Embedded devices, often constrained and
on battery

— Typically without user interface

—Very large multiplicities, w/o manual
maintenance
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loT: Connecting the Physical World to the Internet
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loT: Connecting the Physical World to the Internet
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loT: Connecting the Physical World to the Internet
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Use Case: Security in Harsh Industrial Environments
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Use Case: Security in Harsh Industrial Environments
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Evolution Towards an loT

Embedded Wireless

IPv4 Uplink

to the Cloud

Controllers Networking
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Distributed local
intelligence

Embedded Wireless IPv4 Uplink

Controllers Networking to the Cloud
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Evolution Towards an loT

Distributed local Wireless sensor
intelligence network

Embedded Wireless IPv4 Uplink

Controllers Networking to the Cloud

Prof. Dr. Thomas C. Schmidt 23



Evolution Towards an loT

Distributed local Wireless sensor Internet of
intelligence network Things ?

Embedded Wireless IPv4 Uplink

Controllers Networking to the Cloud
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This Is not yet an
Internet
of Things!
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No Internet without Open Speech and Open Standards

XDl cBOR RDF
XHTML
JSON Telnet

CoAP HTTP XMPP

UDP

TCcp TLS/SSL

OSPF RPL  DHCP  BGP
OLSR IPv6 SLAAC Pv4

IEEE802.15.4 LoRa BLE
Ethernet

Prof. Dr. Thomas C. Schmidt 26



Evolution towards an Internet oT

Distributed local Wireless sensor Hype-Internet
intelligence network of Things

Embedded Wireless IPv4 Uplink

Controllers Networking to the Cloud
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Distributed local Wireless sensor Hype-Internet
intelligence network of Things

Embedded Wireless IPv4 Uplink

Controllers Networking to the Cloud

Interoperable
Information
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Evolution towards an Internet oT

Distributed local Wireless sensor Hype-Internet
intelligence network of Things

Embedded Wireless IPv4 Uplink
Controllers Networking to the Cloud

Interoperable + Distributed

Information Security
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Evolution towards an Internet oT

Distributed local Wireless sensor Hype-Internet
intelligence network of Things

Embedded Wireless IPv4 Uplink
Controllers Networking to the Cloud

Interoperable Distributed Things loosely
Information Security joined by IPv6
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Evolution towards an Internet oT

Distributed local Wireless sensor Hype-Internet
intelligence network of Things

Embedded Wireless IPv4 Uplink
Controllers Networking to the Cloud

Interoperable Distributed Things loosely
Information Security joined by IPv6

The Real Internet of Things (C. Bormann)
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The many faces of the loT

High-end IoT
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Processor: GHz, 32/64 Bit
Memory: M/Gbytes
Energy: Watt

Network access: 5G, WLAN
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The many faces of the loT

High-end IoT Low- end (or constralned) IoT

A Linux |m|c1n3=10|3
. “

-

Processor: GHz, 32/64 Bit Processor: MHz, 8/16/32 Bit
Memory: M/Gbytes Memory: kbytes

Energy: Watt Energy: MWatt

Network access: 5G, WLAN Network access: 802.15.4, BLE

Prof. Dr. Thomas C. Schmidt 33
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The Internet (as we know it)

Memory ~ 500 MB
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Memory ~ 1 GB

-
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== | Various hardware, but more importantly:
Memory > 4GB Memory~2GB - Open access specs
;g “. N\ .’ O- interope.rability
- Open source:
e OS + protocol implementations
A7) - Share dev load, accelerate innovation

[
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The Internet of Things (loT)

Memory ~ 500 MB :
.:'.'--_kli.- j‘
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Memory ~ 16 KB

Memory ~ 1 GB

Memory > 4GB Memory ~ 2 GB
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MemurwaGB
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Memory ~ 8 KB Memory ~ 100 KB

Internet of Things
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loT Devices: High-end vs Low-end

C.Bormann et al. "RFC 7228:
Terminology for Constrained-Node
Networks,” IETF, May 2014.
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loT Requirements

Interoperability

Security

I:li Scalability

Reliability
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loT Requirements: Constraints

Interoperability

Security

Scalability =5y i e
I:l i D Low Memory

Energy Efficiency

Reliability

Limited CPU power
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loT Key Challenges
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Five key areas according to ISOC:

1.

o &~ Wb

Security

Privacy

Interoperability and standards

Legal, regulatory, and rights

Emerging economies and development

40
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Internet of Things
Trillion nodes
Building automation Smart metering
Fringe Internet
Billion nodes
Industrial
Phones Core Internet automation
Million nodes
Logistics
Personal sensors
Transportation
41
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The loT is Very Heterogeneous

Various boards

A zoo of components

Broad range of radios

Different Link-layers

Competing network layers

Diverging interests and technologies
A lot of experimentation ...

Prof. Dr. Thomas C. Schmidt 42
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Facility, Building and Home Automation
SmartCities & SmartGrids

Personal Sports & Entertainment
Healthcare and Wellbeing

Asset Management

Advanced Metering Infrastructures
Environmental Monitoring

Security and Safety

Industrial Automation

43
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loT Use Cases

Nature Monitoring Industry 4.0 Micro Satellites
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loT Use Cases

Nature Monitoring

Industry 4.0

Micro Satellites
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Use Case Safety Monitoring
Workers in industrial process plants

— Perform maintenance in safety-critical environments

— Dangerous events may occur at any time
— exposure to toxic/combustible gases
— oxygen depletion in confined spaces
— gas leaks/sudden outbursts of fire

— Continuous recording of sensor data required

Prof. Dr. Thomas C. Schmidt . 46



Technical Setting
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Body sensors
—loT controller
Protocols
—Alarm
—Mission log
— Configuration
- Management

Communication via border
gateway to cloud

— Mobility
— Intermittent connectivity

47
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Agenda

The Internet of Things

loT on Wireless Link Layers
~ Excursion to the World of Wireless
~ Low Power Lossy Links

IP in the Internet of Things
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Mobile Wireless Networks

THE HISTORY OF WIRELESS

Two scenarios:

1. Mobile users with
roaming infrastructure
— Mobile IP(v6)

2. Spontaneous networks
of (autonomous)

WE'RE STILL
WORKING ON IT

edge devices A
— the loT scenario

LONDON 1783z
THE FIRST PROTOTYPE OF THE WIRELESS GALLOWS

Prof. Dr. Thomas C. Schmidt 50



HAW
HAMBURG

The Global View:
Overlay Network Layers

integration of heterogeneous fixed and
mobile networks with varying
transmission characteristics

A\

vertical
handover
metropolitan area

P
4 N 1

local infrastructure horizontal

handover

< >

loT edge domain
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Mobile Ad Hoc Networks

Formed by wireless hosts which may be mobile
Without (necessarily) using a pre-existing infrastructure
Routes between nodes may potentially contain multiple hops
Motivations:

— Ease of deployment, low costs

- Speed of deployment

—Decreased dependence on infrastructure

Prof. Dr. Thomas C. Schmidt 52



Hidden and exposed terminals

Hidden terminals

A sends to B, C cannot receive A

C wants to send to B, C senses a “free” medium (CS fails)
collision at B, A cannot receive the collision (CD fails)

A is “hidden” for C

Exposed terminals

Prof. Dr. Thomas C. Schmidt

B sends to A, C wants to send to another terminal (not A or B)

C has to wait, CS signals a medium in use

but A is outside the radio range of C, therefore waiting is not necessary
C is “exposed” to B

HAW
HAMBURG
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Near and far terminals

Terminals A and B send, C receives
— signal strength decreases proportional to the square of the distance
— the signal of terminal B therefore drowns out A’s signal
— C cannot receive A

_

If C for example was an arbiter for sending rights, terminal B
would drown out terminal A already on the physical layer

Also severe problem for CDMA-networks - precise power control
needed!

Prof. Dr. Thomas C. Schmidt 54
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Multi-hop Topologies

May need to traverse multiple wireless links to reach a destination

Prof. Dr. Thomas C. Schmidt 55



Two Solution Spaces

Prof. Dr. Thomas C. Schmidt
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IP on the single link
— Single-hop solution
— Adaptation to constraints
IP for multi-hop traversal
—Routing protocol

— Changing topologies due to
link degradation and mobility

56
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Low Power Lossy Wireless

Default networking for the constrained loT
Typically battery operated
Key problem: energy consumption

Low power leads to loss

Transmission capabillities
are weak

Prof. Dr. Thomas C. Schmidt 57
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How to Reduce the Radio Energy Consumption?

58
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1

How to Reduce the Radio Energy Consumption?

Energy Consumption

W Always on Radio Duty Cycling ® Goal

59
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Energy Savings along the loT Protocol Stack

Protocols

CoAP

UDP

RPL

IPv6 / 6LoOWPAN

802.15.4, BLE, LoRA...

ISM band

Content Aware

Transport
1

31
Medium Access

Mechanisms

Pre-determined proxy

Reduced state & trickle

Compressed pkt headers

Minimized idle listening

Low-power radio

60



i
> >

MBURG

Physical Aspect: Duty Cycling

« Switch peripherals to sleep between cycles
of duty

« Different levels of sleep (board-dependent),
some can handle interrupts

 Deep sleep in networking may lead to
packet loss in unsynchronized scenarios

61



— HAW
—— HAMBURG

System Aspect: Dynamic Voltage and Frequency Scaling

 DVFS adapts clock speed to task demands
« Voltage may then be reduced for slower clock ticks

15 =

o DF DFS OFF
Assessment > ON >0
_ High PU Thread
< 10 =
&
- Task Start
=
O
£ S5
S PU Calculation
and Output
0 - '\Frequency Cycle Start Low PU Thread
I | |
1.0 1.5 2.0
Time [S]
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Dynamic Clock Reconfiguration for the Constrained loT
and its Application to Energy-efficient Networking

Michel Rottleuthner
HAW Hamburg

michel.rottleuthner@haw-
hamburg.de

Abstract

Clock configuration takes a key role in tuning constrained
general-purpose microcontrollers for performance, timing
accuracy, and energy efficiency. Configuring the underlying
clock tree, however, involves a large parameter space with
complex dependencies and dynamic constraints. We argue
for clock configuration as a generic operating system module
that bridges the gap between highly configurable but com-
plex embedded hardware and easy application development.
In this paper, we propose a method and a runtime subsystem
for dynamic clock reconfiguration on constrained Internet
of Things (IoT) devices named ScaleClock. ScaleClock de-
rives measures to dynamically optimize clock configurations
by abstracting the hardware-specific clock trees. The Scale-

Thomas C. Schmidt
HAW Hamburg

t.schmidt@haw-hamburg.de

Matthias Wahlisch

Freie Universitat Berlin
m.waehlisch@fu-berlin.de

(;‘3} Task 1 Task 2 Task 3
ScaleClock | | |

OS Scheduler & & &
Monitoring ) 0 Q

Adaptation rr

grr 0 0 i
O-O| ~SORD || ~SOED
ClONC

Clock Network Clock Tree 1 Clo{:k-Tree 2

Figure 1: ScaleClock derives tasks characteristics at runtime

Michel Rottleuthner, Thomas C. Schmidt, Matthias Wahlisch,
Dynamic Clock Reconfiguration for the Constrained IoT and its Application to Energy-efficient Networking,
In: Proc. of Embedded Wireless Systems and Networks (EWSN'22), p. 168—179, ACM : New York, USA, October 2022.

Prof. Dr. Thomas C. Schmidt
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Link Layer Aspects

Prof. Dr. Thomas C. Schmidt

Inherently unreliable due to wireless medium

Small frame size: ~100 Bytes

Low bandwidth: ~100 kbit/s

Topologies include star and mesh

Networks are ad hoc & devices have limited accessibility

Typical radios
— Short range: IEEE 802.15.4, Bluetooth Low Energy (BLE)
— Long range: NB-loT, LoRA

64
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IEEE 802.15.4

Common low-power radio
— Lower layer of Zigbee and (some) Xbee
- |P convergence layer: 6LOWPAN

Characteristics of 802.15.4:
- Frequencies: 868 MHz, 915 MHz, 2.4 GHz
— 16-bit short or IEEE 64-bit extended MAC addresses
— Entire 802.15.4 frame size is 127 bytes, 25 bytes frame overhead
— Bandwidth ranges from 20 to 250 kbit/s
— QOutreach ranges from 1 to 100 m
—802.15.4 subnets may utilize multiple radio hops

Prof. Dr. Thomas C. Schmidt 65
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IEEE 802.15.4: Different Types of MAC Operations

Idle-listening Indirect Transmissions DSME

= ) "=. J
b ’
/s
Crateway !
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2] @ ol @ll ollll @I ofif ell olfl el
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= / ,)’ ; ¢
d ;'1 . ~"I|".
MNode F m [ ;‘ ]
y L 7

Off Data MLME-POLL Request ACK (No Frame Pending) ACK (Frame Pending) Multiple Channels G TS Request GTS Reply GTS Notify

=l .r""'.‘f 1“"\
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LoRa

Long range radio communication technology
—typical transmission range 5 — 15 km
Frequency (ISM) band depends on region
Duty cycle of 1% / channel
Modulation robust and configurable
—adjusts Range, Time on Air, energy consumption
Semi-proprietary technology by SEMTECH
—LoRa Alliance with ~ 200 members

Prof. Dr. Thomas C. Schmidt 67
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Three LoRa Device Classes
Class A Class B Class C
nly receiv . . .
Only receive Receive windows Always listen
after send |
scheduled Highest power
Very low power _
consumption consumption
Gateway | Class A RECEVERNTATED R omAvz Note: RK_DELAY_1 = %*RX_DELAY_2 = 1second +/- 20
Clasy® T
https://link.springer. COI;l/aI't;CIe/l 0.1007/s11277-017-4419-5 -

Prof. Dr. Thomas C. Schmidt
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LoRa: IP-Embedding by LoRaWAN

End nodes: Transmit to Gateways

Gateways: Transparently relay (tunnel)

Network Server: De-duplicates and routes to application
Application: Holds ey py toglen
security association .-

EEEEEEEEEE

mmmmmmm

LoRa® RF TCP/IP SSL TCP/IP SSL
LoRaWAN™ LoRaWAN™ Secure Payload
AES Secured Pavload

Prof. Dr. Thomas C. Schmidt 69
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Low power long range IPv6 networking

UNLOCKING LORA

Prof. Dr. Thomas C. Schmidt 70
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LoRa vers. LoRaWAN

LoRa wireless modulation:

* Long range transmission (up to 15 kms)
 Low power consumption (mJ)

 Low data rate (bytes/s)

LoRaWAN cloud-based network emulation:
 Centralized

« Uplink-oriented, no P2P

« Unbound transmission delays

Prof. Dr. Thomas C. Schmidt 71
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LoRa: Client-to-Client Communication?

Prof. Dr. Thomas C. Schmidt

Optional App. Logic

OptiOIlEll I backhaul
GW

-
-
-~

s
s
s
.
-~ -

C£<—D

S -~
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DSME MAC
) I\D/Ieﬁrr;iniStifESytnChronous DSME Multiframe Structure
ultichannel Extensions s Bescor
« Standard MAC-Layer from ! |
IEEE 802 15 4 BS CAP CFP BS CAP CFP BS CAP CFP BS CAP CFP BS

« Configurably combines

« Contention access (CAP)
«  Contention free access (CFP)

Superframe_ '

Beacon interval

A
Y

Time

Y

Prof. Dr. Thomas C. Schmidt 73



H
H

DSME-LoRa
802.15.4 DSME MAC

S 4 ) )
802154 frame | __ 802154 chamnel | __________ CCA_____
_ ! v Y v

LII.I ' | Frame mapping Channel mapping CCA mapping
= . S b L.
) LoRa frame LoRa PHY channel LoRa CAD

O ! + +

LoRa Radio

Prof. Dr. Thomas C. Schmidt
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6LoRa: Transmission of IPv6 Packets over LoRa
Application
« |[ETF 6LoWPAN? for IPv6
transmission over |EEE IPv6 Network Stack
302.15 4
¢ |nherit 6LOWPAN I’Oles 6L oWPAN ‘
"RFC 6282. September 2011.
DSME-LoRa |
LoRa PHY |

Prof. Dr. Thomas C. Schmidt 75
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6LoRa Performance: Packet Reception
Class A Class C 6LoRa
1 N N | —
0.75 — iy — u | X
- - l’p - /’/ I:i
. 0.25 - H | u - S
S 0 — | | | ad | | | | |
0 10 20 30 0 20 40 0 1 2 3 4
1 B B |~
0.75 — e ] x
0-5 7 / - i /" —e—e " N / TZ
0.25 — | u S
0 — | | | e | | | | |

Completion time [s]

Prof. Dr. Thomas C. Schmidt 76
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Energy Consumption

Device TXi [s] Power [mMW]
SCHC-LoRaWAN  6LoRa

Class A C(Class C

Sensor 20 0.49 12.87 1.33
Sensor 10 0.87 13.3 2.04
Actuator - 0.54 12.41 2.93

Prof. Dr. Thomas C. Schmidt 77
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DSME-LoRa: Seamless Long Range Communication Between
Arbitrary Nodes in the Constrained loT

JOSE ALAMOS, PETER KIETZMANN, and THOMAS C. SCHMIDT, HAW Hamburg, Germany
MATTHIAS WAHLISCH, Freie Universitit Berlin, Germany

Long range radio communication is preferred in many IoT deployments as it avoids the complexity of multi-hop wireless
networks. LoRa is a popular, energy-efficient wireless modulation but its networking substrate LoRaWAN introduces severe
limitations to its users. In this paper, we present and thoroughly analyze DSME-LoRa, a system design of LoRa with IEEE
802.15.4 Deterministic Synchronous Multichannel Extension (DSME) as a MAC layer. DSME-LoRa offers the advantage
of seamless client-to-client communication beyond the pure gateway-centric transmission of LoRaWAN. We evaluate its
feasibility via a full-stack implementation on the popular RIOT operating system, assess its steady-state packet flows in an
analytical stochastic Markov model, and quantify its scalability in massive communication scenarios using large scale network
simulations. Our findings indicate that DSME-LoRa is indeed a powerful approach that opens LoRa to standard network
layers and outperforms LoRaWAN in many dimensions.

CCS Concepts: « Computer systems organization — Sensor networks; « Networks — Link-layer protocols; Network
performance analysis.

Additional Key Words and Phrases: Internet of Things, wireless, LPWAN, MAC layer, network experimentation

Jose Alamos, Peter Kietzmann, Thomas C. Schmidt, Matthias Wahlisch,
DSME-LoRa: Seamless Long Range Communication Between Arbitrary Nodes in the Constrained IoT,
Transactions on Sensor Networks (TOSN), Vol. 18, No. 4, p. 1-43, ACM : New York, USA, November 2022.

Prof. Dr. Thomas C. Schmidt 78
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The Internet of Things
loT on Wireless Link Layers
IP in the Internet of Things

~ Architectural Challenges
~ 6LOWPAN Adaptation Layer

~ Application-Layer Protocols
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The loT today looks mostly like this

e

Proprietary Proprietary
Gateway Gateway

<N <N

Prof. Dr. Thomas C. Schmidt



The loT we want looks more like that

-

another another
router router

// N 7L\
N/

-

Prof. Dr. Thomas C. Schmidt



The loT we want is... the Internet!

Prof. Dr. Thomas C. Schmidt
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The Difference

Prof. Dr. Thomas C. Schmidt
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Network level interoperability
- End-to-end connectivity per default
—Device-to-device connectivity
=> No more walls!

System level interoperability
— Efficient hardware-independent software
—No device lock-down
=> No more waste!

83
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IP in the Internet of Things

100+ Billion microcontrollers exist worldwide
(in contrast to several hundred million Internet devices)

— Rapid growths and demands for scalable connectivity

— Integrate into the global Internet with E2E data flows

— Interoperable, long-lived, reliable standards required: |IP++
Link-layers are different

— All wireless, dedicated technologies
Constraint Communication: Low Power Lossy Networks (LLN)

— Measures of Bytes ... instead of Megabytes
Constraint Devices: Microcontrollers

— Measures of kHz and kByte

— Often on batteries

Prof. Dr. Thomas C. Schmidt 84
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What is 6LoWPAN

IPv6 over Low-Power (D Personal) wireless Area Networks
—Declare IPv6 a distinct network layer
A transparent way to integrate embedded devices into the global Internet
— Global addressing
—E2E transport between embedded and core devices
IPv6 adaptation to LLNs
— Stateless and stateful header compression
- Optimized neighbor discovery
—Standard Socket API

Prof. Dr. Thomas C. Schmidt 85



Challenges of LOWPAN

Impact Addressing Routing Security Network
Analysis management
Low power Storage Periodic sleep Simplicity (CPU Periodic sleep aware

L limitations, low aware routing, usage), low management, low
(1-2 years lifetime on overhead low overhead overhead overhead
batteries)
Low cost Stateless address | Small or no Ease of Use, Space constraints

) generation routing tables simple
(<$10/unit) bootstrapping
Low bandwidth Compressed Low routing Low packet Low network
( <300kbp S) addresses overhead overhead overhead
High density Large address Scalable and Robust Easy to use and
) space — IPv6 routable to *a scalable
(<2-47? units/sq ft) node*
IP network interaction Address routable | Seamless IP Work end to end | Compatible with
from IP world routing from IP network SNMP, etc

Source: Kushalnagar/Montenegro@IETF62

Prof. Dr. Thomas C. Schmidt
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Protocol Stack

TCP/IP Protocol Stack

HTTP RTP

TGP UDP ICMP

IP

Ethernet MAC

Ethernet PHY

Application
Transport
Metwork

Data Link

Physical

6LoWPAN Protocol Stack

Application

UDP

ICMP

IPvE with LoOWPAN

IEEE 802.15.4 MAC

Source: Shelby & Bormann — 6LoWPAN, Wiley 2011

Prof. Dr. Thomas C. Schmidt

IEEE 802.15.4 PHY

HAW
HAMBURG
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Architecture

Remote Server

Internet

1] E
i m
LLLLL

Local ferver

Backhaul link

Backbone link

Edge Router

Simple LoWPAN Extended LoWPAN

®

® ® Wireless network is

® % ® one IPv6 subnet

Ad-hoc LoWPRAN

Source: Shelby & Bormann — 6LoWPAN, Wiley 2011

Prof. Dr. Thomas C. Schmidt 88



Architecture

Prof. Dr. Thomas C. Schmidt

LoWPANSs are stub networks
Simple LoOWPAN

— Single Edge Router
Extended LoOWPAN

— Multiple Edge Routers with common backbone link

Ad-hoc LoWPAN

— HAW
—— HAMBURG

— No route outside the LOWPAN
Internet integration issues

IPv6

Ethernet MAC

- Maximum transmission unit

LoWPAN Adaptation

IEEE 802.15.4 MAC

— Application protocols Ethernet PHY

IEEE 802.15.4 PHY

- |Pv4 interconnectivity IPv6-LoWPAN Router Stack

- Firewalls and NATSs
— Security
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Key Problems
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Efficient use of available bits in a packet
— Frame: 127 bytes — 25 bytes L2 header
- |IPv6 header: 40 bytes, UDP header: 8 bytes

IPv6 MTU size > 1280

— |P packets need transparent fragmentation on
frames

— Lost fragments cause retransmission of entire
packet

Wireless ad hoc networks can be multihop
—No direct router link <> Router Advertisement
— Multicast is only local «» Neighbor Discovery

20
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Base Solution: RFC 4944

Makes 802.15.4 look like an IPv6 link:

Efficient encapsulation
— Stateless IP/UDP header compression of intra-packet redundancy
—Unicast + Multicast address mapping

Adaptation layer for fragmentation (1280 MTU on ~100 bytes packets)
- Fragmentation: Datagram tag + offset
—No dedicated fragment recovery

Mesh forwarding
—Link generated by ,mesh-under” (L2) routing
—ldentify originator and final destination
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Adaptive Neighbor Discovery RFC 6775
Includes ,route-over” (L3 routing)
Multihop forwarding of Router Advertisements
(GW and prefix dissemination) p—
Address Registration and e Ratomen P rouer
Confirmation at Router Edge Rouer Gy

RA from the ER

Router keeps track of
wireless nodes (incl. DAD)

RA from each
LoWPAN Router

@
I

®

&

LoWPAN
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Typical 6LowPAN-ND Exchange

Solicited router advertisement only _ _
- removes periodic Router Advertisements ~ Optional multi-hop DAD

- includes 6LowPAN context option
ge
Host | Ri'iﬂ - | | IPv6 Host l
Address registration
- removes multicast needs

Router
. RS ——»
- supports sleeping nodes

\‘

NS with ARO + DAR
« NA with ARO — DAC
- Data flows >

Authoritative Border Router Option (ABRO) to distribute prefix and
context across a route-over network
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Improved Header Compression RFC 6282

Router Advertisements distribute a well-known area context
- Common prefix — LOWPAN is a flat network
-6LoOWPAN-HC — header compression methods
No addresses — Interface Identifiers derived from MAC addresses
— Optional unicast and multicast address fields (compressed)
Remaining IPv6 header fields compressed or elided
—Length derived from frame, ToS and Flow Label elided

Stateless UDP header compression including short ports and
selected checksum removal

—Length derived from frame length
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LOoWPAN UDP/IPv6 Headers

LoWPAN IPv6 UDP

0 1 2 3
0123456789 012345678901234506789¢01
+—t—F—t—t—F—t—F—F—t—F—F—F—F—t—Ft—F—F—t—F—F—F—F—F—F—F—F -+ —F—F+—F—+—+
| Dispatch with LOWPAN IPHC | LOWPAN NHC | Src | Dst |
+—t—t—F—t—F—t—t—+—+—+—+ -ttt -+—+ -+ttt -+ —+—+

| UDP Checksum | UDP Payload
F—t—t—t—t—F—t—F—F—t—t—F—F—F -ttt -ttt —F—F—F—F—F—F - —F—F—F—+—+

Payload

6 Bytes!
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6LoOWPAN Headers

Orthogonal header format for efficiency
Stateless header compression

- IEEE 802.15.4 Frame (127 B) >
21B 1B 40B BB 53B 4B

Payload

Full UDP/IPV6 (64-bit addressing)

-4 IEEE 802.15.4 Frame (127 B) >

Payload

Minimal UDP/6LoWPAN (16-bit addressing)

Source: Shelby & Bormann — 6LoWPAN, Wiley 2011
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CoAP: Constrained Application Protocol

Prof. Dr. Thomas C. Schmidt

Constrained machine-to-machine Web protocol

Representational State Transfer (REST)
architecture

Simple proxy and caching capabilities
Asynchronous transaction support

Low header overhead and parsing complexity
URI and content-type support

UDP binding (may use IPsec or DTLS)

Reliable unicast and best-effort multicast support
Built-in resource discovery
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COAP Message Semantic

Four messages:
— Confirmable (CON)
— Non-Confirmable (NON)
— Acknowledgement (ACK)
— Un-processing (RST)

REST Request/Response
piggybacked on CoAP Messages

Methods: Get, Put, Post, Delete
— Several extensions defined

Prof. Dr. Thomas C. Schmidt

Application

CoAP Request/Response

CoAP Messages

UDP

HAMBURG
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Message Transactions, Packet Loss

Prof. Dr. Thomas C. Schmidt

CoAP CoAP
Client Server

CON [0x1a] GET /humidity

X

v
. CON [0x1a] GET /humidity
timeout |

ACK [0x1a] 2.05 Content "<humidity>..."

<

Each message carries an ID (transactional processing) and
an optional token (for asynchronous matching)

Stop and Wait approach
Repeat a request in case ACK (or RST) is not coming back

29



CoAP Operational Modes

GET
GET /temp

205 tontent 21°C

GET (c)
GET /temp

- T
- —_ —

2.05 Content 21°C
GET /temp

2.05 Content 21°C

Prof. Dr. Thomas C. Schmidt

PUT
PUT /temp 21°C

S o i

2.64 Changed

PUT (c)
PUT /temp 21°C
S o
2.04 Changed

PUT /temp 21°C

&S ©

-~ -
- —

204 Changed

HAW

HAMBURG
OBS
GET /temp [OBS]
&S o
2.05 Content 21°C
&S 0
2.05 Content 22°C
&S o
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MQTT: Message Queuing Telemetry Transport

Prof. Dr. Thomas C. Schmidt

Publish-subscribe protocol (IBM 1999)
Lightweight & simple on top of TCP/IP
MQTT-SN — UDP-based variant for the loT

Publishers and subscribers exchange data
via a Broker

Different quality levels:

—QO0 — unreliable
- Q1 —reliable (at least once)
- Q2 - reliable (exactly once)
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MQTT-SN Operational Modes
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CONNECT

CONNACK

REGISTER /temp

S o i

-
— - -
S - [

REGACK topic;g

SUBSCRIBE /temp

&S © o

-~ -
~ - e

SUBACK

QO
PUBLISH topic;q 21°C
S o i
Q1

PUBLISH topic;q 21°C

S o i

I
PUBACK

PUBLISH topicjq 21°C

&S o i

PUBACK

HAW
HAMBURG
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Performance Comparison
Experiments in a Single Hop Testbed

Time to content arrival for scheduled publishing every 50 ms

1.0 .
1 = Om =6 = = b =6 — o
0.8- l'f”
u_0'6_ }',__*_,..._.—.-—o-—o--—o—-o—-.-
) 17
0.4 i — CoAP OBS
{ ~&=CoAP PUT (n)
f --— CoAP PUT (c)
0.2 / MQTT-SN (QO)
y f-F MQTT-SN (Q1)
5 10 15 20

Prof. Dr. Thomas C. Schmidt

Time to Completion [ms]

Push protocols

CDF

1.0 R
-&=CoAP GET (n) W
----- CoAP GET (c)
0.81 r
.
0.6- ;
|
0.4- !
o
L.+
0.2- [
o
5 10 15 20

Time to Completion [ms]

Pull protocols

HAW
HAMBURG
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Further Aspects & Activities

6LoWPAN on Blue Tooth Low Energy & Lora
Application Layer Encoding: CBOR
— RFC 7049 Concise Binary Object Representation
— Minimal code size, small message sizes, no deflation
— Based on the JSON data model
DNS over CoAP: draft-ietf-core-dns-over-coap

Things Description: loT Semantics
Widely implemented: Contiki y I 0 .I.
q-\
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