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Agenda

 The Internet of Things 

 Motivation and Use Cases

 IoT on Wireless Link Layers 

 IP in the Internet of Things
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What is the Internet of Things?

A system in which objects in the physical world 
can be connected to the Internet by sensors 
and actuators (coined 1999 by Kevin Ashton)

Key aspects:

−E2E communication via Internet standards 

−Machine-to-machine communication

−Embedded devices, often constrained and 
on battery

−Typically without user interface

−Very large multiplicities, w/o manual 
maintenance

Prof. Dr. Thomas C. Schmidt
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IoT: Connecting the Physical World to the Internet 
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IoT: Connecting the Physical World to the Internet 
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Use Case: Security in Harsh Industrial Environments
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Smart DOM Hamburg
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‚Smart‘ Heating

Prof. Dr. Thomas C. Schmidt



18

‚Smart‘ Heating

Prof. Dr. Thomas C. Schmidt



19

‚Smart‘ Heating

Prof. Dr. Thomas C. Schmidt



20

‚Smart‘ Heating
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Evolution Towards an IoT

Embedded 
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This is not yet an 

Internet 

of Things!
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No Internet without Open Speech and Open Standards

BLE

OSPF

LoRa

DHCP

SLAACOLSR
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Evolution towards an Internet oT
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The many faces of the IoT

Prof. Dr. Thomas C. Schmidt

Processor: GHz, 32/64 Bit
Memory: M/Gbytes
Energy: Watt
Network access: 5G, WLAN

High-end IoT
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The many faces of the IoT

Prof. Dr. Thomas C. Schmidt

Processor: GHz, 32/64 Bit
Memory: M/Gbytes
Energy: Watt
Network access: 5G, WLAN

Processor: MHz, 8/16/32 Bit
Memory: kbytes
Energy: MWatt
Network access: 802.15.4, BLE

High-end IoT Low-end (or constrained) IoT



34

The Internet (as we know it)

Various hardware, but more importantly:
- Open access specs 

- interoperability
- Open source: 

OS + protocol implementations
- Share dev load, accelerate innovation

Various hardware, but more importantly:
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- Open source: 
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The Internet of Things (IoT)

Constrained + Wireless!

Prof. Dr. Thomas C. Schmidt
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IoT Devices:
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IoT Devices:                  High-end vs Low-end

C.Bormann et al. ’’RFC 7228:
Terminology for Constrained-Node
Networks,’’ IETF, May 2014.
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IoT Requirements

Interoperability

Security

Reliability

AutonomyScalability
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IoT Requirements: Constraints 

Interoperability

Energy Efficiency

Security

Reliability

Autonomy

Low-cost

Scalability

Limited CPU power

Low Memory
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IoT Key Challenges

Five key areas according to ISOC:

1. Security

2. Privacy

3. Interoperability and standards

4. Legal, regulatory, and rights

5. Emerging economies and development

Prof. Dr. Thomas C. Schmidt
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The IoT is Very Heterogeneous

Various boards

A zoo of components

Broad range of radios

Different Link-layers

Competing network layers

Diverging interests and technologies

A lot of experimentation …

Prof. Dr. Thomas C. Schmidt
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IoT Applications

Facility, Building and Home Automation

SmartCities & SmartGrids

Personal Sports & Entertainment

Healthcare and Wellbeing

Asset Management

Advanced Metering Infrastructures

Environmental Monitoring

Security and Safety

Industrial Automation

Prof. Dr. Thomas C. Schmidt
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IoT Use Cases

Nature Monitoring Industry 4.0 Micro Satellites
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Use Case Safety Monitoring

Workers in industrial process plants

− Perform maintenance in safety-critical environments

− Dangerous events may occur at any time

− exposure to toxic/combustible gases

− oxygen depletion in confined spaces

− gas leaks/sudden outbursts of fire

− Continuous recording of sensor data required

Prof. Dr. Thomas C. Schmidt
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Technical Setting
Body sensors

− IoT controller 

Protocols

−Alarm

−Mission log

−Configuration

−Management

Communication via border 
gateway to cloud

−Mobility

− Intermittent connectivity

Prof. Dr. Thomas C. Schmidt
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Current Research Project

RESCUE-MATE
Surveillance and Rescue of Floodings in Hamburg
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Agenda

 The Internet of Things 

 IoT on Wireless Link Layers 

 Excursion to the World of Wireless

 Low Power Lossy Links 

 IP in the Internet of Things
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Mobile Wireless Networks

Two scenarios:

1. Mobile users with 

roaming infrastructure

→ Mobile IP(v6)

2. Spontaneous networks

of (autonomous) 

edge devices

→ the IoT scenario

Prof. Dr. Thomas C. Schmidt
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The Global View:

Overlay Network Layers

regional

metropolitan area

local infrastructure

IoT edge domain 

vertical

handover

horizontal

handover

integration of heterogeneous fixed and

mobile networks with varying

transmission characteristics

Prof. Dr. Thomas C. Schmidt
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Mobile Ad Hoc Networks

Formed by wireless hosts which may be mobile

Without (necessarily) using a pre-existing infrastructure

Routes between nodes may potentially contain multiple hops

Motivations:

−Ease of deployment, low costs

−Speed of deployment

−Decreased dependence on infrastructure

Prof. Dr. Thomas C. Schmidt
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Hidden and exposed terminals

Hidden terminals

− A sends to B, C cannot receive A 

− C wants to send to B, C senses a “free” medium (CS fails)

− collision at B, A cannot receive the collision (CD fails)

− A is “hidden” for C

Exposed terminals

− B sends to A, C wants to send to another terminal (not A or B)

− C has to wait, CS signals a medium in use

− but A is outside the radio range of C, therefore waiting is not necessary

− C is “exposed” to B

BA C

Prof. Dr. Thomas C. Schmidt
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Near and far terminals

Terminals A and B send, C receives

− signal strength decreases proportional to the square of the distance

− the signal of terminal B therefore drowns out A’s signal

− C cannot receive A

If C for example was an arbiter for sending rights, terminal B 

would drown out terminal A already on the physical layer

Also severe problem for CDMA-networks - precise power control 

needed!

A B C

Prof. Dr. Thomas C. Schmidt
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Multi-hop Topologies

May need to traverse multiple wireless links to reach a destination

A

B

Prof. Dr. Thomas C. Schmidt
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Two Solution Spaces 

IP on the single link

−Single-hop solution

−Adaptation to constraints 

IP for multi-hop traversal

−Routing protocol

−Changing topologies due to 

link degradation and mobility 

Prof. Dr. Thomas C. Schmidt
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Low Power Lossy Wireless 

Default networking for the constrained IoT

Typically battery operated

Key problem: energy consumption

Low power leads to loss

Transmission capabilities

are weak 

Prof. Dr. Thomas C. Schmidt
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How to Reduce the Radio Energy Consumption?
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Always on Radio Duty Cycling Goal

How to Reduce the Radio Energy Consumption?
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Protocols

Content Aware

Medium Access

Transport

Routing

Network

Physical

UDP

CoAP

RPL

IPv6 / 6LoWPAN

802.15.4, BLE, LoRA…

ISM band

Mechanisms

--

Pre-determined proxy

Reduced state & trickle

Compressed pkt headers

Minimized idle listening

Low-power radio

Energy Savings along the IoT Protocol Stack
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Physical Aspect: Duty Cycling

• Switch peripherals to sleep between cycles 

of duty

• Different levels of sleep (board-dependent), 

some can handle interrupts

• Deep sleep in networking may lead to 

packet loss in unsynchronized scenarios
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System Aspect: Dynamic Voltage and Frequency Scaling

• DVFS adapts clock speed to task demands

• Voltage may then be reduced for slower clock ticks

Prof. Dr. Thomas C. Schmidt
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Michel Rottleuthner, Thomas C. Schmidt, Matthias Wählisch, 
Dynamic Clock Reconfiguration for the Constrained IoT and its Application to Energy-efficient Networking, 
In: Proc. of Embedded Wireless Systems and Networks (EWSN'22), p. 168–179, ACM : New York, USA, October 2022.
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Link Layer Aspects

Inherently unreliable due to wireless medium

Small frame size: ~100 Bytes

Low bandwidth: ~100 kbit/s 

Topologies include star and mesh

Networks are ad hoc & devices have limited accessibility 

Typical radios

− Short range: IEEE 802.15.4, Bluetooth Low Energy (BLE)

− Long range: NB-IoT, LoRA

Prof. Dr. Thomas C. Schmidt
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IEEE 802.15.4

Common low-power radio

− Lower layer of Zigbee and (some) Xbee

− IP convergence layer: 6LoWPAN

Characteristics of 802.15.4:

− Frequencies: 868 MHz, 915 MHz, 2.4 GHz

− 16-bit short or IEEE 64-bit extended MAC addresses

− Entire 802.15.4 frame size is 127 bytes, 25 bytes frame overhead

− Bandwidth ranges from 20 to 250 kbit/s

− Outreach ranges from 1 to 100 m

− 802.15.4 subnets may utilize multiple radio hops

Prof. Dr. Thomas C. Schmidt
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IEEE 802.15.4: Different Types of MAC Operations

Prof. Dr. Thomas C. Schmidt
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LoRa

Long range radio communication technology

− typical transmission range 5 – 15 km

Frequency (ISM) band depends on region

Duty cycle of 1% / channel

Modulation robust and configurable 

−adjusts Range, Time on Air, energy consumption

Semi-proprietary technology by SEMTECH

−LoRa Alliance with ~ 200 members

Prof. Dr. Thomas C. Schmidt
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Three LoRa Device Classes

Class A

Only receive 

after send

Very low power 

consumption

Class C

Always listen

Highest power 

consumption

Class B

Receive windows 

scheduled

Prof. Dr. Thomas C. Schmidt
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LoRa: IP-Embedding by LoRaWAN

End nodes: Transmit to Gateways

Gateways: Transparently relay (tunnel)

Network Server: De-duplicates and routes to application

Application: Holds 

security association

Prof. Dr. Thomas C. Schmidt
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UNLOCKING LORA
Low power long range IPv6 networking

Prof. Dr. Thomas C. Schmidt
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LoRa vers. LoRaWAN

LoRa wireless modulation: 

• Long range transmission (up to 15 kms)

• Low power consumption (mJ)

• Low data rate (bytes/s)

LoRaWAN cloud-based network emulation:

• Centralized

• Uplink-oriented, no P2P

• Unbound transmission delays

Prof. Dr. Thomas C. Schmidt
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LoRa: Client-to-Client Communication?

Prof. Dr. Thomas C. Schmidt
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DSME MAC

Prof. Dr. Thomas C. Schmidt

• Deterministic Synchronous 

Multichannel Extensions 

• Standard MAC-Layer from 

IEEE 802.15.4

• Configurably combines

• Contention access (CAP)

• Contention free access (CFP)

DSME Multiframe Structure
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DSME-LoRa

Prof. Dr. Thomas C. Schmidt
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6LoRa: Transmission of IPv6 Packets over LoRa

Prof. Dr. Thomas C. Schmidt
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6LoRa Performance: Packet Reception

Prof. Dr. Thomas C. Schmidt
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Energy Consumption

Prof. Dr. Thomas C. Schmidt
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Jose Alamos, Peter Kietzmann, Thomas C. Schmidt, Matthias Wählisch, 
DSME-LoRa: Seamless Long Range Communication Between Arbitrary Nodes in the Constrained IoT, 
Transactions on Sensor Networks (TOSN), Vol. 18, No. 4, p. 1–43, ACM : New York, USA, November 2022.
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Agenda

 The Internet of Things 

 IoT on Wireless Link Layers 

 IP in the Internet of Things

 Architectural Challenges

 6LoWPAN Adaptation Layer

 Application-Layer Protocols
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The IoT today looks mostly like this

Prof. Dr. Thomas C. Schmidt
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The IoT we want looks more like that

Prof. Dr. Thomas C. Schmidt
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The IoT we want is… the Internet!

Prof. Dr. Thomas C. Schmidt
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The Difference

Network level interoperability

−End-to-end connectivity per default

−Device-to-device connectivity

=> No more walls!

System level interoperability

−Efficient hardware-independent software

−No device lock-down

=> No more waste!

Prof. Dr. Thomas C. Schmidt
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IP in the Internet of Things

100+ Billion microcontrollers exist worldwide
(in contrast to several hundred million Internet devices) 

− Rapid growths and demands for scalable connectivity

− Integrate into the global Internet with E2E data flows

− Interoperable, long-lived, reliable standards required: IP++

Link-layers are different

− All wireless, dedicated technologies

Constraint Communication: Low Power Lossy Networks (LLN)

− Measures of Bytes … instead of Megabytes

Constraint Devices: Microcontrollers 

− Measures of kHz and kByte

− Often on batteries

Prof. Dr. Thomas C. Schmidt
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What is 6LoWPAN

IPv6 over Low-Power ( Personal) wireless Area Networks

−Declare IPv6 a distinct network layer

A transparent way to integrate embedded devices into the global Internet

−Global addressing

−E2E transport between embedded and core devices

IPv6 adaptation to LLNs

−Stateless and stateful header compression

−Optimized neighbor discovery

−Standard Socket API

Prof. Dr. Thomas C. Schmidt
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Challenges of LoWPAN

Impact 

Analysis

Addressing Routing Security Network 

management

Low power

(1-2 years lifetime on 

batteries)

Storage 

limitations, low 

overhead

Periodic sleep 

aware routing, 

low overhead

Simplicity (CPU 

usage), low 

overhead

Periodic sleep aware 

management, low 

overhead

Low cost

(<$10/unit)

Stateless address 

generation

Small or no 

routing tables

Ease of Use, 

simple 

bootstrapping

Space constraints

Low bandwidth 

(<300kbps)

Compressed 

addresses

Low routing 

overhead

Low packet 

overhead

Low network 

overhead

High density

(<2-4? units/sq ft)

Large address 

space – IPv6

Scalable and 

routable to *a 

node*

Robust Easy to use and 

scalable

IP network interaction Address routable 

from IP world

Seamless IP 

routing

Work end to end 

from IP network

Compatible with 

SNMP, etc

Source: Kushalnagar/Montenegro@IETF62  
Prof. Dr. Thomas C. Schmidt
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Protocol Stack

Source: Shelby & Bormann – 6LoWPAN, Wiley 2011
Prof. Dr. Thomas C. Schmidt
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Architecture

Source: Shelby & Bormann – 6LoWPAN, Wiley 2011

Wireless network is 

one IPv6 subnet

Prof. Dr. Thomas C. Schmidt
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Architecture

LoWPANs are stub networks
Simple LoWPAN

− Single Edge Router
Extended LoWPAN

− Multiple Edge Routers with common backbone link
Ad-hoc LoWPAN

− No route outside the LoWPAN
Internet integration issues

− Maximum transmission unit
− Application protocols
− IPv4 interconnectivity
− Firewalls and NATs
− Security

IPv6-LoWPAN Router Stack

Prof. Dr. Thomas C. Schmidt
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Key Problems

Efficient use of available bits in a packet

− Frame: 127 bytes – 25 bytes L2 header

− IPv6 header: 40 bytes, UDP header: 8 bytes 
…

IPv6 MTU size  1280 

− IP packets need transparent fragmentation on 
frames

− Lost fragments cause retransmission of entire 
packet 

Wireless ad hoc networks can be multihop

− No direct router link  Router Advertisement

− Multicast is only local  Neighbor Discovery

Prof. Dr. Thomas C. Schmidt
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Base Solution: RFC 4944

Makes 802.15.4 look like an IPv6 link:

Efficient encapsulation

−Stateless IP/UDP header compression of intra-packet redundancy

−Unicast + Multicast address mapping

Adaptation layer for fragmentation (1280 MTU on ~100 bytes packets)

−Fragmentation: Datagram tag + offset

−No dedicated fragment recovery

Mesh forwarding 

−Link generated by „mesh-under“ (L2) routing

− Identify originator and final destination

Prof. Dr. Thomas C. Schmidt
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Adaptive Neighbor Discovery  RFC 6775

Includes „route-over“ (L3 routing)

Multihop forwarding of Router Advertisements

(GW and prefix dissemination)

Address Registration and

Confirmation at Router

Router keeps track of 

wireless nodes (incl. DAD)

Prof. Dr. Thomas C. Schmidt
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Typical 6LowPAN-ND Exchange

Authoritative Border Router Option (ABRO) to distribute prefix and 

context across a route-over network

Address registration
- removes multicast needs
- supports sleeping nodes

Solicited router advertisement only
- removes periodic Router Advertisements
- includes 6LowPAN context option

Prof. Dr. Thomas C. Schmidt
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Improved Header Compression RFC 6282

Router Advertisements distribute a well-known area context

−Common prefix – LoWPAN is a flat network

−6LoWPAN-HC – header compression methods

No addresses – Interface Identifiers derived from MAC addresses

−Optional unicast and multicast address fields (compressed)

Remaining IPv6 header fields compressed or elided

−Length derived from frame, ToS and Flow Label elided

Stateless UDP header compression including short ports and 

selected checksum removal

−Length derived from frame length

Prof. Dr. Thomas C. Schmidt
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LoWPAN UDP/IPv6 Headers

0                   1                   2                   3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|   Dispatch with LOWPAN_IPHC   |   LOWPAN_NHC  |  Src  |  Dst  |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|          UDP Checksum         |          UDP Payload        ... 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

IPv6 UDP

Payload

6 Bytes!

LoWPAN

Prof. Dr. Thomas C. Schmidt
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6LoWPAN Headers

Orthogonal header format for efficiency

Stateless header compression

Source: Shelby & Bormann – 6LoWPAN, Wiley 2011
Prof. Dr. Thomas C. Schmidt
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CoAP: Constrained Application Protocol 

Constrained machine-to-machine Web protocol

Representational State Transfer (REST) 

architecture

Simple proxy and caching capabilities

Asynchronous transaction support

Low header overhead and parsing complexity

URI and content-type support

UDP binding (may use IPsec or DTLS)

Reliable unicast and best-effort multicast support

Built-in resource discovery

Prof. Dr. Thomas C. Schmidt
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COAP Message Semantic

Four messages:

− Confirmable (CON)

− Non-Confirmable (NON)

− Acknowledgement (ACK)

− Un-processing (RST)

REST Request/Response 
piggybacked on CoAP Messages

Methods: Get, Put, Post, Delete

− Several extensions defined

Prof. Dr. Thomas C. Schmidt
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Message Transactions, Packet Loss

Each message carries an ID (transactional processing) and 
an optional token (for asynchronous matching)

Stop and Wait approach

Repeat a request in case ACK (or RST) is not coming back 

Prof. Dr. Thomas C. Schmidt
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CoAP Operational Modes

Prof. Dr. Thomas C. Schmidt
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MQTT: Message Queuing Telemetry Transport

Publish-subscribe protocol  (IBM 1999)

Lightweight & simple on top of TCP/IP

MQTT-SN – UDP-based variant for the IoT

Publishers and subscribers exchange data 

via a Broker 

Different quality levels: 

−Q0 – unreliable

−Q1 – reliable (at least once)

−Q2 – reliable (exactly once)

Prof. Dr. Thomas C. Schmidt
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MQTT-SN Operational Modes

Prof. Dr. Thomas C. Schmidt



103

Performance Comparison
Experiments in a Single Hop Testbed

Prof. Dr. Thomas C. Schmidt
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Further Aspects & Activities

6LoWPAN on Blue Tooth Low Energy & Lora

Application Layer Encoding: CBOR

− RFC 7049 Concise Binary Object Representation

− Minimal code size, small message sizes, no deflation

− Based on the JSON data model

DNS over CoAP: draft-ietf-core-dns-over-coap

Things Description: IoT Semantics

Widely implemented: Contiki

Prof. Dr. Thomas C. Schmidt
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