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Kurzzusammenfassung
Anwender, die Inhalte im Web verö�entlichen wollen, müssen entweder eigene Server aufsetzen
oder auf fremde Infrastruktur zurückgreifen. Die zunehmende Nutzung des Webs als Content-
Sharing-Plattform verlangt jedoch nach Lösungen, die den Nachteilen zentralisierter oder
restriktiver Plattformen entgegentreten. Seit einiger Zeit arbeiten die IETF und das W3C
gemeinsam am WebRTC-Standard, um eine direkte Browser-zu-Browser-Kommunikation zu
ermöglichen. Die vorliegende Arbeit präsentiert Browser-based Open Publishing (BOPlish),
eine Infrastruktur-unabhängige Namens- und Inhaltezugri�s-Architektur für das Content-
sharing in User Networks. Wir zeigen, wie BOPlish WebRTC verwendet, um eine einfach zu
verwendende, sichere Verö�entlichungslösung für Inhalte zu ermöglichen. Ein eigenes URI-
Schema dient als Lokations-unabhängiger Adressierungsmechanismus, um das Verö�entlichen
und Beziehen von Inhalten von der zugrundeliegenden Infrastruktur zu trennen.
Christian Vogt, Max Jonas Werner
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Abstract
Users eager to publish content on the Web need to either set up a server or use third-party
infrastructure. However, the increasing desire to use the Web as a sharing platform for content
demands solutions that counter disadvantages of centralized or restricted platforms. Recent
e�orts are underway at the IETF and W3C to standardize WebRTC for direct browser-to-
browser communication. This paper introduces Browser-based Open Publishing (BOPlish), an
infrastructure-independent naming and content access architecture for sharing information in
User Networks. We demonstrate how BOPlish leverages WebRTC for an easy to use, secure
content publishing solution. A custom URI scheme serves as a location-independent addressing
mechanism to separate publishing and content retrieval from the underlying infrastructure.
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1 Introduction

With the uprise of Web 2.0 technologies over the past ten years, Web platforms have shifted
from pure content silos to services for publishing user-generated content. Today, users also see
the Web as a platform to share media, documents and exchange individual information among
each other. Currently, perceiving user-generated content on the Web follows the client/server
paradigm. Examples for such central content sharing community platforms are Facebook,
Flickr and Youtube.

WebRTC is a new technology that enables Web applications to establish direct connections
and data transmission between two browsers. This ressembles a major paradigmic change in
the client/server dominated world of the current Web. Browser vendors such as Mozilla and
Google already ship working implementations of the current speci�cation status and a further
deployment of WebRTC-enabled browsers from other vendors can be expected shortly.

Information-centric Networking (ICN) describes the idea of moving from a host-centric to
a data-centric networking paradigm. It abstracts publishing and accessing content from the
underlying infrastructure facilitated by a location-independent naming scheme. ICN potentially
fosters the decoupling of user-generated publishing from a dedicated distribution system.

In this work, we introduce a decentralized, name-based publishing architecture called
Browser-based Open Publishing (BOPlish) that pursues a similar objective. A BOPlish appli-
cation runs in the Web browser and connects participating peers directly via WebRTC Data
Channels, forming a virtual content-centric infrastructure where each user can publish and
retrieve content. The system does not rely on additional external infrastructure and naturally
prevents common privacy issues present in centralized architectures.

Similar to ICN, the accessed content is addressed employing a user-centric naming scheme
decoupled from the delivering host. Our approach enables Web developers to plug-in custom
application protocols that easily integrate into the BOPlish architecture. WebRTC acts as an
enabler for BOPlish. Any device that has a WebRTC-enabled browser installed can join the
overlay without requiring additional software. Encryption and secure transport of arbitrary
data is directly provided by WebRTC.

This paper is structured as follows. We start our investigation with a wide range of back-

1
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ground and related work that accumulated over the project lifespan in Sec. 2 before introducing
our concept in Sec. 3. In Sec. 4, we describe the implementation of the name resolution mecha-
nism used to resolve location-independent names based on the BOPlish URI scheme. Moreover,
a user-facing API allows for easy development of applications running on top of BOPlish while
hiding the complexity of the P2P system underneath. To verify our concept, we introduce
demo applications and an emulation component to evaluate the core BOPlish system in Sec. 5.
We continue by implementing an Application Layer Multicast (ALM) system in BOPlish (Sec.
6) and showcase how we include Flow Control in Sec. 7 before concluding in Sec. 8.

2



2 Background and Related Work

In this section, we introduce the fundamentals that our research is based on. Sec. 2.1 gives an
overview of di�erent P2P networking concepts while Sec. 2.2 outlines current Web technology
achievements. In Sec. 2.3 we introduce WebRTC and the underlying technologies. We conclude
this chapter with an introduction to Information-centric Networking (ICN) in Sec. 2.4 and a
selection of related research activities in Sec. 2.5.

2.1 Peer-to-peer Networking

To de�ne a Peer-to-Peer (P2P) system, thinking about the meaning of the word peer is helpful.
In its original meaning, a peer is a person that is of the same rank or standing as another peer.
In a computer-based P2P system, peers refer to the participating nodes in the system. The
autonomous peers aim for a shared usage of distributed resources like computing power or
bandwidth. Central entities are avoided and the system should be capable of self-organization.
This implies that, instead of relying on a central entity as in a client-server system, every node
acts as client and server to add its resources to the system.

Many Peer-To-Peer algorithms for Internet-based applications were originally designed for
�le sharing applications. As of now, the algorithms are used in many systems that depend on
distributed resources like Content Distribution Networks (CDNs) or Internet telephony. [86,
pp. 35–56] identi�ed three main requirements of future Internet-based applications:

• Scalability allows a system to scale by several orders of magnitude without the loss of
e�ciency by eliminating bottlenecks caused by the systems design.

• Security and Reliability are of high importance for Internet-based applications where
they are facing DDoS1 attacks and consumer frustration when not constantly available.

• Flexibility and Quality of Service requirements form core criteria for modern Internet-
based applications to accommodate features they were not conceived for.

1Distributed Denial of Service (DDoS) attacks aim at rendering a remote service unusable by overloading it
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2.1 Peer-to-peer Networking

As of today, most services on the Web are based on the classic client-server paradigm which
can currently handle the above-mentioned requirements su�ciently. However, vast amounts of
centralized resources are needed. Thus, prominent services on the Web are typically operated
by big companies. P2P systems try to provide alternative solutions and aim at avoiding the
imposed centralization. P2P systems are typically classi�ed as belonging to one of two main
categories (see Fig. 2.1): Unstructured and structured approaches.

Peer-To-Peer systems

��
��

�
��

HH
HH

H
HH

Unstructured (1st gen.)

��
��

HH
HH

Centralized Flooding-based

Structured (2nd gen.)

Figure 2.1: Overview of �rst/second generation Peer-To-Peer systems [86, pp. 35–56]

Napster2 was one of the �rst applications that employed a large-scale centralized P2P system.
These systems use a server-based, central entity for lookup and management purposes. The
server acts as an indexer that keeps track of the available resources at all participating peers.
When a peer issues a lookup to the server, it responds with a pointer to a peer (or a list of peers)
that holds the requested content. The requester can then download the content directly from
the other peer without involving the indexer. Lookups are simple requests to the server (O(1))
which has to keep track of all participating peers. This results in increasing state complexity
at the indexer when the network grows (O(N), where N is the number of participating peers).
If the central entity fails due to attacks, overload etc., the whole system is rendered unusable.
Moreover, it can be targeted by authorities to shut the system down (as happened to Napster).

Flooding-based approaches (e.g., early versions of Gnutella3) are completely decentralized
as they do not rely on any central entity. State information is distributed in a mesh built
from the participating peers. Every peer only knows about its neighbors in the mesh (O(1)).
This allows for a high fault-tolerance of the network as peer outtakes only have a small
impact. Instead of querying a central entity, lookup requests are sent to neighboring peers
which relay them to their neighboring peers (�ooding). Apparently, this becomes increasingly
ine�cient for growing networks due to the high communication overhead every lookup
generates (≥ O(N2)). As many requests can easily overload the system, the maximum hop
count is typically restricted. Lookups are not thus not guaranteed to succeed when the content

2http://www.napster.com/
3http://rfc-gnutella.sourceforge.net/developer/stable/index.html
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2.1 Peer-to-peer Networking

is rare among the participating peers.
Another form of P2P systems are hybrid P2P systems which combine classic client/server and

the introduced P2P paradigms. Typically, the architecture is centered around a server-based
system that additionally acts as a mediator. Peers get to know each other with the help of
the mediator and form small-scale mesh networks. Content can then be accessed via both,
the server and the neighboring peers. Such systems are used by, e.g., Akamai, one of the
largest CDN providers via the NetSession Interface [62]. The software uses home computers
as caching peers to aid in distributing content. Spotify, a large music streaming service, uses a
similar approach to aid in delivering music to their customers [55]. Hybrid P2P systems are
not decentralized as they rely on a mediator but o�er promising performance enhancements
and cost reduction for the service provider due to the reduced server load.

System Per Node State Communication Overhead

Centralized Server O(N) O(1)
Flooding-based O(1) ≥ O(N2)

Distributed Hash Table O(log N) O(log N)

Table 2.1: Complexity comparison of the di�erent P2P approaches [86, pp. 79–93]

The above-mentioned approaches have in common that they do not employ a structured
relation between the participating peers (the peers are unstructured). Both systems su�er from
complexity issues, either communication overhead or the required node state information.
Structured P2P systems aim at providing a scalable solution in between huge communication
overhead and exploding node state information.

2.1.1 Structured P2P Systems

The idea of decentralized, self-organizing applications that do not rely on central entities
sparked interest in the research community and the second generation P2P systems were
developed in response to that. Such systems are structured in the sense that the participating
peers are arranged according to some identi�er space. Data that is to be stored in the system is
then mapped to the same identi�er space and assigned to a speci�c peer using a mathematical
relation. The resulting topology can be e�ciently queried and ensures that even rare content
is guaranteed to be found. Logarithmic behavior can be assured for communication overhead
and node state complexity [86, pp. 79–93].

Prominent applications incorporating a structured P2P system depend on Distributed Hash
Tables (DHTs). In a DHT, queries are directed to a speci�c piece of content (i.e., the content’s
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2.1 Peer-to-peer Networking

key) instead of a location. They o�er an interface similar to traditional hash tables. This
abstraction makes it easy for the developer to interact with the P2P system without in-depth
knowledge about the underlying P2P protocol. While being transparent to the application, the
DHT-layer is responsible for e�ciently routing the request to the corresponding peer. Figure
2.2 illustrates the DHT interface. To store a value, the put() operation is used in conjunction
with a hash function that calculates the corresponding key for the value. This value is stored
at a corresponding peer that is in charge for a speci�c key space. The get() operation is used
to look up a value.

Distributed structured P2P overlay application

Distributed hash table

put(key, value) remove(key) value = get(key) value

Peer Peer Peer

Figure 2.2: Application interface for structured DHT-based Peer-To-Peer overlay systems [86,
pp. 79–93]

A DHT maps participating peers onto a large uniform identi�er space. Content is then
mapped to the same identi�er space by consistently assigning keys to each data object. Every
peer is assigned a range of content identi�ers for which it is responsible, according to the
DHT protocol. Peers maintain a routing table consisting of selected peer identi�ers. When
a traversing lookup arrives, the protocol chooses a peer numerical closer to the requested
key out of its routing table to send the request to. This is possible because of the consistent
mapping of content and peers to the same identi�er space and the resulting mathematical
relation between them.

DHT-based systems can make assurances about the number of overlay hops it takes to reach
the peer that holds the content, typically O(log N). Such lookups are guaranteed to succeed
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if the requested key exists in the system. Moreover, every peer only has to store O(log N)

states. This combination of properties allow DHTs to scale to extremely large numbers of
peers [86, pp. 79–93].

Besides the usage as a basis for structured overlays, so-called one-hop DHTs also �nd a use in
other systems such as the Amazon Dynamo NoSQL-Database [24], or the GlusterFS distributed
�lesystem4. These system scale with O(1) at the cost of greatly increased maintenance tra�c
as every peer maintains a routing table that contains all other peers in the system. Thus, they
are only applicable for reliable, server-based systems or very small groups.

2.1.2 DHT Design Challenges

DHT implementations are typically based on geometries like rings (e.g., Chord [89]), trees
(e.g., Pastry [79]) or tori (e.g., Content Addressable Networks [70]). The di�erence between the
approaches are the search and management strategies, as well as topology-based enhancements
for routing decisions [57].

DHTs leverage the �at identi�er space to structure the participating peers. As an example,
the Chord algorithm uses a ring structure where the numeric identi�ers are placed upon. Every
peer knows the peers that are numerically closest to him in each direction of the ring. A speci�c
content range is associated with every peer ranging from the peer’s ID to the predecessor’s
ID. In the event of peers joining or leaving, the associated identi�er space has to be changed
accordingly. This is achieved by triggering a repair mechanism that maintains the list of
connected peers. The keys associated to the departing client are lost; as such applications
building on top of a DHT typically use replication to spread the keys throughout the system.

A problem that occurs when mapping peers to an uncorrelated overlay is that the overlay
topology does not re�ect the real topology (see Fig. 2.3). This can lead to long network routes
for overlay hops, commonly expressed as the Delay Stretch. Delay Stretch is a metric that is
de�ned as the ratio between the resulting path and a unicast-like communication between
these peers using a distance metric like round-trip delay. It is possible to lower the Delay
Stretch using Proximity Neighbor Selection (PNS). PNS enables a DHT peer to in�uence the
choice of peers in its peer table. A search algorithm is used to �nd nearby peers whereas
the crucial part of this algorithm is an e�cient latency prediction between peers that only
consumes minor peer resources (such as Vivaldi [21]). PNS can signi�cantly reduce delay
stretch.

When the overlay topology has been established, lookups can be issued against the DHT. Such
lookups are directed against a speci�c piece of data using its identi�er. The DHT transparently

4http://www.gluster.org/
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Figure 2.3: The mapping between overlay and underlay topology may lead to disadvantageous
paths [86, pp. 79–93]

routes the request to a corresponding peer (this is called Content-based Routing). In Chord
[89], this can be achieved by traversing the ring topology until the associated peer is reached.
While this approach is simple to implement it would take an averageO(12N) steps to reach the
peer. Chord therefore maintains a routing table that stores links to other neighbors to shortcut
the route. The distance to the neighbors exponentially increases such that the ith routing table
entry points to successor n+ 2i. This allows any lookup to �nish in a maximum of O(log N)

steps.
Data storage is managed by the application building on top of the DHT. The application

might not store actual data but use a separate layer of indirection, i.e., the values might only
consist of a link to the actual data (such as a URL). Generally speaking, integrating lookup and
storage functionality in the DHT bene�ts latency because the data can be piggybacked on the
fetch response instead of triggering a new request to the indirection layer.

Applications that store data have to decide on the size of the data units. A data unit might
refer to a disk sector-like fragment of a �le, a whole �le or even an entire �le system image. In
general, large unit sizes lead to a inferior number of lookups while splitting large �les into
smaller units distributes the load over more peers.
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2.2 Browser APIs and Networking Functionality

In order to transfer the principles of P2P networks to web applications, developers have to
leverage at least one of the networking technologies that browsers o�er. Additionally, the
understanding of fundamental concepts of the Web is key to making applications responsive
and provide a decent user experience. Those concepts can be broken down into three parts:
Identi�cation of resources via Uniform Resource Identi�ers (URIs) [8]; transfer of the application
via Hypertext Transfer Protocol (HTTP) [32] and presentation of information using Hypertext
Markup Language (HTML) [46]. Besides the named three standards further technologies exist
such as CSS (for layout/design), JavaScript (for programmatic interaction with documents),
HTTPS (for secure transfer using HTTP over SSL/TLS) and the Document Object Model (DOM
[48], used to interact with the presentation programmatically, e.g., via JavaScript).

These technologies gained importance over the last 15 years. Until the beginning of the
21st century, Web pages were mostly static (or dynamically rendered on the server) and
users could barely interact with the content. New technologies like the XMLHttpRequest
object and improved JavaScript performance in the browsers served the transformation of
Web pages into Web applications that could be used interactively (see Fig. 2.4); applications
such as Google Maps gained popularity. Certain workarounds for enabling push events from
server to client like HTTP long-polling5 were introduced for real-time use cases such as Web
chats. Standardization e�orts of such workarounds have spawned three major networking
technologies that programmers can leverage to build highly interactive real-time applications:
XMLHttpRequest, WebSocket and Server-sent Events. These are described in more detail in
the following sections.

2.2.1 XMLH�pRequest

On simple web pages that use traditional HTTP, every user interaction – such as the submission
of a form or the click of an anchor – results in a complete page reload. The XMLHttpRequest
(XHR) object as speci�ed in [96] makes it possible to asynchronously (i.e., in the background)
open a connection to a remote server using JavaScript, without reloading the page, as outlined
in Fig. 2.5. This technique is known as Ajax which initially stood for “Asynchronous JavaScript
and XML” because in the beginnings of Ajax, it was used to transfer mainly XML documents;
nowadays most applications transfer data using a more lightweight approach, e.g., JSON. The
bene�t of using Ajax is that certain actions conducted by the user (e.g., clicking a button) do
not result in a full page refresh anymore. This way the overhead of retrieving new data from

5http://en.wikipedia.org/wiki/Push_technology#Long_polling
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Figure 2.4: In the early days, the Web consisted of static pages containing mostly text, images
and hyperlinks (left). Modern Web applications such as Google Maps (right) are
highly interactive single-page applications.

the server is kept to a minimum and the Web application becomes more responsive.

HTML/DOM JavaScript

HTTP-Request

HTML/XML/JSON/…

Browser Server

Figure 2.5: Schematic view of an Ajax request

2.2.2 WebSocket

The concept of WebSockets [44] extends the use cases enabled by XMLHttpRequest (unidirec-
tional communication) with the possibility to establish a bidirectional channel between client
and server, as depicted in Fig. 2.6. The WebSocket standard introduces two new URI schemes,
ws: and wss:, for unencrypted and encrypted connections, respectively. The WebSocket
protocol uses the HTTP Upgrade mechanism in the initial handshake (a simple HTTP GET-like
request) to switch from HTTP to WebSocket. After a successful establishment, browser and
server are capable of communicating in a bidirectional way. A main di�erence between Web-
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Socket and XMLHttpRequest is that the former is not dependent on HTTP. Rather, WebSocket
enables a developer to run a custom protocol on top of a WebSocket. In a way, this is the
equivalent of a raw network socket, just in the browser.

HTTP-Request: Upgrade
to WebSocket

OK, go ahead

Browser

WebSocket Channel

Server

HTML/DOM JavaScript

Figure 2.6: Schematic view of a WebSocket connection

2.2.3 Server-sent Events

The third networking mechanism mentioned here is used to push data from the server to the
client. For this, the W3C speci�cation [43] adds an additional DOM interface to browsers:
EventSource. A programmer may instantiate an EventSource object providing a URL. The
browser opens a connection to the URL (by adhering to the same-origin policy) that is held
open. This way the server may push data to the client when it becomes available. Server-sent
Events (SSE) qualify as a lightweight alternative to WebSockets while enabling similar use cases
such as a push-based updating of news feeds. Fig. 2.7 outlines the mechanism of Server-sent
Events.

2.3 WebRTC

WebRTC is a standardized protocol suite that enables two endpoints to communicate directly
over a UDP-channel, paired with a JavaScript API for Web applications [7]. It enables real-
time audio, video and data sharing between two endpoints. Instead of relying on third-party
plug-ins, WebRTC is supposed to be built into Web browsers, thus instantly enabling a huge
user base while keeping a simple-to-use API. Under the hood, though, WebRTC includes a
multitude of functionality previously not available to Web browsers. This includes a signaling
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HTTP-GET-Request

Browser

Event Channel

Server

HTML/DOM JavaScript

Figure 2.7: Schematic view of a Server-sent Event connection

infrastructure, connection negotiation functionality and the implementation of many new
protocols that are required to match the new requirements which we are going to discuss now.

Opposed to all other browser technologies (XHR, WebSocket etc.), WebRTC tunnels all
data over UDP (except for signaling messages), running custom application-level transport
protocols through this tunnel. Despite all the new functionality it introduces, WebRTC is
also limited in the way that it allows two browsers to interconnect and exchange data. The
standards neither include topology- nor routing-related topics. Currently, the speci�cation of
WebRTC is in active development and the API as well as the underlying protocols are still in
heavy �ux. It is not yet clear which functionalities (besides audio, video and data channels) will
be included in the �nal speci�cation (e.g., real-time text). This section details how the di�erent
protocols work together to cope with real-time communication, connection establishment and
signaling requirements.

2.3.1 API Overview

A typical WebRTC session (as shown in Fig. 2.8) starts with a user visiting a website by
entering a URL into her Web browser. The URL contains the server to connect to (i.e., the DNS
name). The requested server delivers the application (consisting of HTML, CSS and JavaScript
code as well as resources such as images) to the client’s browser using traditional HTTP. The
browser now initiates a WebRTC connection triggered by executing JavaScript code received
from the server. In Fig. 2.8, the server also handles the signaling of a WebRTC connection
between two peers, serving as a central connection establishment entity. While this is a typical
scenario, using any arbitrary channel is also possible. When the signaling is done, any further
communication is handled merely by the browsers.

Three main interfaces are exposed to WebRTC-enabled Web applications. That is, the

12



2.3 WebRTC

HTML/DOM

JavaScript

Browser

HTML/DOM

JavaScript

Browser

WebRTC Channel

Server

HTTPHTTP

Figure 2.8: Schematic view of a WebRTC connection

RTCPeerConnection, getUserMedia and the RTCDataChannel. The �rst one is re-
sponsible for connection establishment and maintenance using the Interactive Connectiv-
ity Establishment [75] (ICE) mechanism. Moreover, it provides connection status informa-
tion and, despite the complexity of WebRTC, serves as a single entry point for the applica-
tion. getUserMedia is used to gain access to audio/video devices on the peer while the
RTCDataChannel interface enables exchanging arbitrary data between endpoints.

2.3.2 Entities in a WebRTC-based System

We’ll now focus on the di�erent participants acting in WebRTC communication. As a starting
point, Fig. 2.9 shows a stacked view of the complete protocol suite that is investigated in this
section.
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IP

XHR SSEWeb-
Socket

HTTP

TLS (optional)

TCP UDP

STUN/TURN/ICE

DTLS

SRTP SCTP

MediaStream DataChannel

Figure 2.9: The protocol stack of WebRTC consists of a connection management component for
establishing and maintaining connections, an A/V component and a Data Channel
component. Communication is always encrypted end-to-end [36].

Server

The server as outlined in Fig. 2.8 has two purposes: Deliver the application that makes use of
the WebRTC JavaScript API and enable signaling between two browsers. Technically, these
two purposes may be handled by two di�erent servers, while typically both functions are
conducted by one server entity.

Browser

The browser acts as the runtime environment of all WebRTC code and therefore is a critical
component in the WebRTC infrastructure. To enable use cases such as an audio/video confer-
ence, the WebRTC application must be granted access to a microphone and/or camera attached
to the user’s computer (via getUserMedia).

Figure 2.10: When a web application indicates the desire to access the computer’s camera
and/or microphone, browser’s must ask the user for consent. The consent prompts
shown here are those of Chrome (left) and Firefox (right).

The speci�cation states that “allowing arbitrary sites to initiate calls violates the core Web
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security guarantee; without some access restrictions on local devices, any malicious site could
simply bug a user.” [72] Because of this, browsers are obliged by the speci�cation to “obtain
explicit user consent prior to providing access to the camera and/or microphone”. Fig. 2.10
shows two implementations of such a consent prompt; one for Chrome and one for Firefox.

Apart from the consent mechanism, the user must have the means of determining that
a call is in progress. Current browser implementations use indicators as show in Fig. 2.11.
A topic of recent discussion among browser developers is that of usability and general user
experience with these consent mechanisms on mobile devices. There currently seems to be
no �nal agreement on best practices, e.g., what the browser should do when it is sent to the
background on a mobile phone (options discussed right now are to completely stop sending
data or to indicate hardware access in a noti�cation area of the phone).

Both mechanisms – consent, “call in progress” indicator – are currently only speci�ed for
media streams and not for Data Channels. The latter can be initiated by an application at will
and without the user noticing. In future versions of the WebRTC speci�cation, though, it may
be possible that such mechanisms are established for Data Channels, too.

Figure 2.11: Browsers show an indicator of an on-going call so that the user knows of a possible
A/V transfer to another peer. Chrome (left) puts this indicator on the top of the
tab, Firefox (right) shows it in the address bar and permanently in the menu bar.

Signaling Path

Connecting two peers using the WebRTC handshake involves a negotiation sequence [93] as
shown in Fig. 2.12. WebRTC uses the SDP O�er/Answer described in [77]. It allows the peers to
learn about each other (e.g., NAT traversal options, supported codecs) and agree on parameters
for the connection (e.g., IP/port combination). Lst. 2.1 shows a Session Description Protocol
[41] (SDP) message as created by the connection initiator (Alice) by calling createOffer().
The o�er is then sent to the remote peer using the arbitrary signaling channel (sendOffer).
The callee (Bob) processes the o�er, creates the answer message and sends it back over the
signaling channel (sendAnswer). Alice then uses the information contained in the SDP to
initiate the PeerConnection, therefore �nalizing the handshake procedure. Signaling in
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WebRTC is done out-of-band, meaning that every application has to provide its own signaling
channel. Common methods are XHR, SSE and WebSockets, which come in both, encrypted
and unencrypted variants.

1 v=0 // protocol version
2 o=Mozilla-SIPUA-33.0 14557 0 IN IP4 0.0.0.0 // origin

identifier
3 s=SIP Call // session name
4 t=0 0 // may indicate start/stop times; not used in WebRTC
5 a=ice-ufrag:c43d936f // ICE parameter
6 a=ice-pwd:0a0435ce7407bfc0ec43a953278916c7 // ICE parameter
7 a=fingerprint:sha-256 <omitted> // DTLS parameter
8 m=application 49687 DTLS/SCTP 5000 // Request for Data Channel
9 c=IN IP4 84.130.199.184 // Connection Endpoint (overwritten by

ICE)
10 a=sctpmap:5000 webrtc-datachannel 16 // Data Channel parameter
11 a=setup:actpass // Identifies the offerer, wait for answer
12 // ICE candidates following:
13 a=candidate:0 1 UDP 2130379007 192.168.0.20 49687 typ host
14 a=candidate:1 1 UDP 1694236671 84.130.199.184 49687 typ srflx

raddr 192.168.0.20 rport 49687

Listing 2.1: SDP o�er message (created by a caller) used for a WebRTC Data Channel session
negotiation.

As the SDP information is a simple string (Lst. 2.1), it can easily be transmitted over any
signaling channel as a text blob or transcoded to other formats (e.g., XML). The string consists
of multiple lines, each starting with a single case-sensitive character that describes the attribute
usage [41]. Notable properties are “m=”-lines which specify the di�erent media endpoints.
In Lst. 2.1, a single Data Channel is requested by the caller. Moreover, “a=”-lines specify
extensions to the original SDP speci�cation. WebRTC uses the ICE mechanism to allow
NAT traversal between two endpoints. An ICE agent gathers tuples of IP/port combinations
(candidates) by querying the operating system as well as an external Session Traversal Utilities
for NAT [76] (STUN) server. This allows to gather both, local and public IP addresses even in
the case of a NAT environments. If explicitly con�gured, ICE can also use a Traversal Using
Relays around NAT [66] (TURN) server which acts as a proxy when all other attempts fail (as
in the case of both peers being behind symmetrical NATs).
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Alice

Alice
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Bob

createoffer()

setLocalDescription()

sendOffer

setRemoteDescription()

createAnswer()

setLocalDescription()

sendAnswer

setRemoteDescription()

PeerConnection established

Figure 2.12: Alice establishes a WebRTC connection to Bob by following the JSEP signaling
sequence using an arbitrary channel to transmit the o�er/answer messages.

Media Path

After two endpoints successfully �nished the handshake procedure as described above, content
can be transferred. WebRTC distinguishes between media and other arbitrary data content.
Media is sent using Secure Real-time Transport Protocol [5] (SRTP) while Stream Control
Transmission Protocol [87] (SCTP) is used for any other data. The solution concept described in
this thesis is built upon Data Channels, which are further elaborated on here. More information
on the media part of WebRTC can be found in the corresponding drafts ([4] contains an overview
of all protocols used by WebRTC implementations). To describe the WebRTC Data Channel
implementation, the requirements speci�ed by the IETF in [53] serve as a starting point:

• Support for multiple, simultaneous data channels 1©

– Reliable and unreliable transmission modes for each channel 2©
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– In-order and out-of-order message delivery for each channel 3©

– Support for prioritization between channels 4©

• Message-oriented API 5©

• Support for congestion and �ow control mechanisms 6©

• Security considerations (con�dentiality, integrity and source authentication) 7©

To satisfy all these requirements, the IETF agreed on a layering of Data Channels over
SCTP over Datagram Transport Layer Security [71] (DTLS) over ICE over UDP. SCTP was
designed as a message-oriented transport layer protocol but can also be used on top of DTLS
as described in [92]. SCTP features both, reliable and unreliable transmission of messages
and can be con�gured for ordered or unordered delivery. An SCTP connection between two
participants is called an association which can carry multiple independent streams at once
while only consuming a single port at either side of the connection. Streams are unidirectional
channels between endpoints that transport the actual messages (thus, a Data Channel consists
of two streams, one in either direction). By con�guring the message properties, SCTP can thus
satisfy 1©, 2©, 3©, 5© and 6©. DTLS provides the mechanisms for the security requirements
( 7©). Inter-channel prioritization ( 4©) is implemented in the Data Channel layer itself (i.e., by
the browser). Because most browsers are expected to operate behind a NAT, ICE is natively
provided to aid during connection establishment. ICE uses STUN and its extension TURN to
circumvent connectivity problems in NAT environments.

2.4 Information-centric Networking

The Internet revolution started after the World Wide Web had introduced a uniform, simple
architecture of separating content publication and provisioning from content retrieval. The
decoupling of publishing information from its consumption in space and time is a core element
of the rich publish/subscribe paradigm [30]. In recent years, (proprietary) Content Delivery
Networks (CDNs) have shifted this server-centric approach to the network that mirrors one-
to-many communication for which the initial Internet architecture has not been built [40].

The ideas of Information-centric Networking (ICN) have taken up the well-established CDN
concept of in-network storage and replication towards end-user communities, while adding the
core objective of an open future Internet design [105]. The latter requires resolution of the three
major challenges: naming, security and routing [56]. In ICN, the underlying network layer
must be capable of directing a named data request to a location completely transparent to the
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requesting client, and it must provide an independent veri�cation of the supplied content. As a
result the location of data becomes irrelevant, making it simple to introduce caches distributed
throughout the network. Many such architectures have been introduced, prominent examples
being TRIAD [37], DONA [54] and NDN [50]. These and further solutions di�er in naming,
security, and routing, but all show a high interdependency among these three [35].

Unlike the Web URL-scheme, ICN uses names that are independent of a location or server
instance. An explicit identi�er is assigned to each data object. Two competing approaches
exist, hierarchical and �at (e.g., hashed) naming. ICN implementations like DONA and NDN
use �avors derived from either of the two approaches (Lst. 2.2):

1 ndn://alice/images/image.png
2 dona://134(...)0f6:dfe(...)164

Listing 2.2: Example for hierarchical identi�ers (NDN) and �at identi�ers (DONA)

Hierarchical names have the bene�t that they can be aggregated, provided name pre�xes and
content locations coincide. When routing on the names itself, routing table sizes can be reduced
by aggregating names. NDN uses such hierarchical names. Aggregation could be performed at
the ISP level (with ISPs assigning pre�xes to their customers), but this reintroduces a binding
to location. The existence of the location-identity binding is the main argument for �at names
(as used in DONA), which allow for a complete decoupling of location and identity but cannot
easily be aggregated. Coping with a huge amount of unaggregated identi�ers requires either
huge routing tables or external infrastructure. As a reference, the Google index holds O(1012)
entries which is a lower bound for any ICN approach. For comparison, DNS (O(108)) and
BPG (O(105)) not only cope with much lower amounts of entries but also with a low update
frequency compared to ICN (where every object publication results in a new entry). Finding a
scheme that allows for both, e�ective aggregation and location-independence of the system
without bloating routing tables is still subject to research activities [35].

Another aspect of the debate how to design content identi�ers is the decision between
human-readableness and cryptographic expressions for self-certi�cation. DONA, for example,
uses a cryptographic hash of the content as its identi�er which can be used to verify the
contents integrity. With NDN, this does not work as no natural linkage exists between identi�er
and content. To provide content veri�cation, NDN requires an external trust mechanism as
described in [85].

Each content request in ICN should be directed to a nearby surrogate in the network. When
a location of the content is found, it has to be transferred to the requester. Di�erent routing
approaches exist to �nd a path over which the actual content is transferred. Depending on
the ICN implementation, routing is performed directly on names (e.g., NDN) or decoupled by
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an external resolution service (e.g., DONA). In a coupled approach, data forwarding follows a
reverse path (Reverse Path Forwarding (RPF)) identi�ed by the name resolution. In a decoupled
approach, data is forwarded independently of content routing paths using regular IP/BGP
routing [105].

Coupling the data routing means to either a) store routing states in the intermediate hops
traveled by the name resolution query or b) integrate this information into the content query
packets on the way. Decoupled approaches allow for more �exibility, as control and data �ows
can be separated. On an Internet scale, both approaches must be seen as a severe challenge
[56].

2.5 Prior Work on the Thesis Subject

Our concept of user-centric content networks revolves around the idea that every participant of
a community is able to name and publish content. All of the (static or dynamic) content a user
wishes to publish is assigned a URI that is derived from the user’s unique name. The concept of
user-centric naming has been explored by other authors. In [2], Allman describes the concept
of a “personal namespace”. The author lays out several problems with current naming systems
such as DNS and URLs: Names are location-bound as is the case with URLs, where the host
name is resolved to a speci�c location on the network. Additionally, e.g., domain names are
mentioned as ambiguous so that users do not actually know by the domain name who the
owner of the domain might actually be. The author distinguishes three di�erent parties that
are involved in creating and accessing a name for a content item: the consumer, the content
provider (e.g., a user who shares a �le) as well as the service provider (e.g., Flickr or Facebook).

The “pnames” system proposed in [2] acts as an indirection between personal names assigned
to a speci�c user and actual names like URLs or host aliases. This enables users to reference,
e.g., Bob’s e-mail address as Bob:mail. For sharing such pnames the author proposes the
usage of a DHT to resolve the �at pname identi�ers.

In a follow-up to “pnames” the authors provide the outline and a prototypical implementation
of a more abstract idea that is based on the concept of storing and referencing meta data of
arbitrary content [13]. That system is called Meta-Information Storage System (MISS). MISS is
meant to be operated on a global scale at ISP level. All MISS servers are interconnected in a
global DHT that is used to �nd the MISS server that holds a speci�c information item. The
authors thus introduce a lookup layer for retrieving meta-information of content.

A high-level description of user-centric networking is presented in [58]. The authors start
with the idea that each user in a speci�c interest group o�ers a set of services to the group. For
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interconnecting users the authors propose to leverage existing social networks such as Twitter
or Facebook and retrieve unique user identi�ers from there. This way it is possible to leverage
existing relationships between persons. A tuple of (user name, service name) is
proposed to address services o�ered by a speci�c user. This makes it possible to decouple the
service name from the host that o�ers the service while at the same time coupling the service
with the user o�ering it (e.g., to ensure authenticity).

The IETF is currently working on an Internet Draft for a user-centric SIP (Session Initiation
Protocol) approach [52] that is based on RELOAD speci�ed in [51]. RELOAD de�nes a powerful
framework for P2P storage and messaging, including a security model, NAT traversal and a
pluggable topology mechanism (with a Chord variant as default topology plug-in). RELOAD
is designed so that speci�c overlay applications are to be implemented on top of a RELOAD
network. One such application is the SIP usage speci�ed in [52]. This usage employs RELOAD
to establish SIP sessions via the P2P overlay and de�nes a naming scheme, eventually de�ning
a completely user-centric distributed telephony service. The RELOAD DHT stores a mapping
from their AOR (e.g., alice@dht.example.org) to their node ID in the P2P network.
This mapping is then used by other users to retrieve the node to connect to.

Research on leveraging native browser technologies – each achieving a di�erent set of goals –
is already being conducted: [60] examines a way to distribute the load and stream video content
between browsers using WebRTC, thus reducing the bandwidth cost of content providers. The
author uses a BitTorrent-like architecture involving a tracking server for discovering content.
However, most current implementations and demos leveraging WebRTC are currently focusing
on audio/video communication using SIP, like sipML56.

Many large-scale P2P systems have been deployed. Spotify, one of the leading music
streaming services, uses a peer-assisted P2P system to distribute content between users of their
desktop application and therefore reduce the load on servers [55]. Besides the unstructured,
peer-assisted content distribution mechanism, they created a DHT overlay that employs
the popular Publish/Subscribe communication paradigm. The DHT overlay allows users to
exchange noti�cations and they claim to handle billions of publications per day [82].

Ownership of personal data in Web applications is a matter of ongoing passionate discussion.
The main problem is that data resides on the providers’ servers. A peer-to-peer architecture
has the potential to mitigate the impacts of storing data on foreign servers since it can be
distributed and encrypted. [38] investigates the possibilities of a censorship-resistant peer-to-
peer collaboration architecture, but without focusing on Web technologies. [33] show a way
to evade censorship by making every browser a proxy using WebSockets.

6http://sipml5.org/
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Currently, publishing content on the Web requires access to infrastructure such as Web servers,
whose names are coupled to the DNS system. The Web centers arounds hosts with perpetual
connectivity to the Internet. If a Web servers is disconnected, all content – addressed via URLs
– is inaccessible because its name is (via DNS) bound to the (now disconnected) host. ICN
approaches this problem and elevates the meaning of content by assigning explicit identi�ers
to data rather than referring to the location of content, as is done with HTTP URLs. Content
can be stored directly in the network, making the network itself content-aware. Eventually, the
network provides functionality to store, cache and (to a limited degree) search for it. The ICN
approach, however, su�ers from conceptual shortcomings as Wählisch et al. [100] have pointed
out. Besides unresolved security issues, control over the infrastructure is shifted towards end
users. This paradigm opens up the control plane and requires modi�cation of routing states at
every user-generated publishing act.

In our contribution, we introduce a bottom-up approach that enables use cases similar to
ICN but without replacing existing infrastructure. A content-centric network is established
between end user’s browsers and data is addressed using location-independent identi�ers.
We call this approach Browser-based Open Publishing (BOPlish). It focuses on distributing
user-generated content within interest groups that we call User Communities. Web application
providers could potentially bene�t from such a system by reducing the server’s bandwidth
consumption and transfer delay. The clients in turn are not required to rely on a server for
sharing content with other users. As we will show further on, BOPlish also enables e�cient
group communication through overlay multicast. As the browser is the natural application
platform for the Web, we want to leverage its broad deployment and OS independence. It
enables users to directly participate in a BOPlish community without installing additional
software.

A User Community consists of a number of peers (typically browsers) that are connected
to each other via a P2P network. A Web server delivering a BOPlish application serves as
rendezvous component for joining one speci�c community. A user can join the P2P network
and may close the connection to the Web server without losing any functionality provided by
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BOPlish. Prior to joining a User Community, a peer has to acquire a unique peer ID (its overlay
address) and the user has to authenticate at an identity provider. The combination of peer
ID and username is then used to join the community and stored in a Distributed Hash Table
(DHT) with the username as key and the peer ID as value. From then on, BOPlish provides a
service for naming (using URIs), publishing and retrieving content between all participants.

On top of the described mechanisms, ensuring users’ privacy is an important goal for BOPlish.
After the revelation of world-wide spying programs like Bullrun or PRISM, privacy in Internet
applications has become a mainstream topic. As a result, there is increasing demand for privacy
by many Internet users. Classic Web applications based on client/server paradigms pose the
risk of users exposing all their data (chat communication, documents, friendship relations)
to a single entity like Facebook, Google or Apple. Thus, the increasing sensitivity of Web
users cannot be satis�ed by these applications, anymore. WebRTC transports, on the other
hand, are always encrypted end-to-end and the browser-to-browser communication paradigm
enables the creation of pure P2P Web applications. These two properties make it less likely for
eavesdroppers with access to transport routes or community infrastructure (the P2P network)
to reveal sensitive data.

This chapter proceeds with a description of use cases BOPlish should enable in Sec. 3.1.
After gathering the use cases we continue with a description of the requirements that our
solution shall ful�ll in Sec. 3.2. Sec. 3.3 dives into the details of our solution concept and in
Sec. 3.4 we close this chapter with a high-level description of the resulting architecture.

3.1 Use Cases

We now present use cases that are inspired either by the current Web or explicitly outlined for
ICN (e.g., in [65]).

Document Sharing And Search Current �le sharing applications can be divided into two
main groups: Server-based and P2P-based. On the Web, �le sharing is implemented
using the server-based approach. The drawback here is the reliance on a centralized
service or the requirement to setup a custom server. Moreover, users have to trust
the service provider with regards to content integrity and privacy concerns. A user-
centric approach would counter these disadvantages in the following ways: Users share
documents directly from one browser to another. The publication of a document does
not rely on setting up a Web server, uploading the document to a central instance or
changing DNS entries. Similarly, it shall be possible for users to search for content on
other peers.
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To share a document, a user registers for an account, uploads a speci�c document from
the �lesystem to ‘the Web’ and grants either public access or to a group of collaborators.
Typically, this is done by sharing an identi�er via an external channel or by using a front
end to invite other registered platform members.

Conversational Apps Real-time text or audio/video chats are of growing popularity. The
increasing usage of social collaboration tools in the private as well as the enterprise
context serve as a ground for conversational apps. On the Web, users employ centralized
applications provided by service operators.

In a group chat context, all users of a community need to call and establish sessions.
A single user must be able to open a chat room and invite other users (in some way
connected to this user, e.g., via a friendship relation). The network transport must
provide appropriate real-time services.

Group Collaboration and Gaming In group collaboration applications and multiplayer
games users collaborate in self-de�ned groups. Such applications allow for the creation
of groups, varying memberships and the invitation of participants. In addition, the
application state (e.g., the position of players in a game or the content of documents in a
groupware) must be transparently accessible for all members of a group.

Mobility and O�loading More and more people use Internet services from mobile devices
like smartphones or tablets. Under mobility, the user network must be able to cope with
frequent network address changes. Publishers can accomplish this goal by o�oading
content to (stationary) third parties that promise better connectivity. Consumers can
partially mitigate rapid address changes by pre-fetching content.

Replication and Synchronization Users generally demand high content availability and
fast access. Replication accomplishes this by storing multiple copies of the content
(replicas) on di�erent, independent systems. Synchronization implies that the content is
being kept up-to-date between the replicas at a reasonable time-scale and logic.

Privacy There are increasing demands for privacy by Internet users. The bene�ts of these
applications are that they only use encrypted transports and encrypt the data that is
stored at third parties. This makes it more unlikely that eavesdroppers with access to
transport routes or community infrastructure are able to reveal sensitive data.

24



3.2 Requirements

3.2 Requirements

Based on the given use cases, we now can identify a set of requirements that a user-centric
solution should ful�ll.

Unique User Identity Every user of a community must be uniquely identi�able so that
identity names can be employed to identify content.

Verifiable Identity Also, user identities must be veri�able so that others are able to verify
the alleged identity of the remote peer they are communicating with.

Multi-presence It should be possible for a user to stay online in the community with several
clients at the same time (multiple presence), so that content can be served from di�erent
hosts belonging to one user.

Unique Content Identifier Content must be uniquely identi�able in the sense that a docu-
ment must get a unique, persistent handle to be shared between users. Such an identi�er
must be uniformly constructed and generic enough to support the use cases described
here as well as future usages.

Location-independent Identifier The identi�er must be constructed in a way that is not
tied to a speci�c host. It should rather be host-independent to be able to shift content
between hosts and decouple the content names from the underlying infrastructure as
introduced by ICN. Content can then be published independently of the actual peer
serving it, thus enabling �exible o�oading approaches.

Seamless Handover A solution is required to take into account peers changing networks
quickly. Web applications need to implement transparent and quick handovers. Since the
identi�ers are host-independent, the host resolution must be �exible enough to support
quick updates to host locations.

Content Replication Content may be shared among peers but must be available through
one identi�er, which shall be resolvable to more than one host address.
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3.3 Solution Concept

After laying out typical use cases on the Web and specifying the requirements for our concept,
we now continue by presenting our solution concept.

3.3.1 ID Assignment

in BOPlish, every peer has two unique IDs: The peer ID is a location-dependent identi�er for
the peer used similar to an IP address for routing purposes. It is temporary in the sense that a
re-connect of the peer (e.g., after losing network connectivity) may result in the peer being
assigned a di�erent peer ID. The peer ID has three purposes [51]:

1. To address the node itself.

2. To determine the node’s position in the DHT and to route data to that destination.

3. To determine the data set for which the node is responsible.

The BOPlish ID, on the other hand, is a permanent unique identi�er tied to a user’s identity
and not to a peer. It is location-independent and resembles a DNS name. This ID is user-friendly
so that it may be shared between users without misunderstandings (such as an e-mail address
or a domain name).

The assignment process for either of the two IDs needs to be secure in the sense that no
user can (intentionally or unintentionally) be assigned to an ID that already refers to another
user. Approaches to secure ID assignment and identity veri�cation in structured P2P networks
have been previously proposed, e.g., in RELOAD [51]. Assigning identi�ers to peers in a secure
way is discussed in several publications ([94] gives a survey) and bears the di�culty that no
host shall be able to (intentionally or unintentionally) be assigned an ID that already refers
to another host. Castro et al. describe the problem space as such: “Secure nodeId assignment
ensures that an attacker cannot choose the value of nodeIds assigned to the nodes that the
attacker controls. Without it, the attacker could arrange to control all replicas of a given object,
or to mediate all tra�c to and from a victim node.” [14] Attacks, in which an adversary achieves
to be assigned a multitude of IDs, are called Sybil attacks [27].

Three possibilities are most commonly suggested:

1. Peers self-assign IDs randomly (no security).

2. Ids are assigned to peers by a central authority (trust anchor).
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3. An implementation of Identity-based Cryptography is employed.

While the �rst option provides no security at all, the remaining two alternatives let other
peers verify the ID of the peer they are communicating with. BOPlish does not demand one
speci�c mechanism. Rather, we leave the speci�cs of ID assignment up to the implementation,
depending on the security needs of the users as well as the complexity of the software archi-
tecture. It has to be noted, though, that centralized approaches such as the usage of a trust
anchor may contradict the goal of as much decentralization as possible.

3.3.2 The BOPlish URI Scheme

For the purpose of sharing and accessing content, the design of content identi�ers is a key
ingredient. We start from URIs, the common meta-scheme for Web resources. For the further
speci�cation, we follow three steps. First, we build on the recent Common API for (multicast)
publish/subscribe [99]. RFC 7046 provides a standard syntax for an identi�er of the form
id@instantiation along with security credentials. Second, we center IDs around users
that are ‘instantiated’ by identity providers. Third and last, we add the name of the application-
layer protocol (instead of ports) to facilitate a transparent communication context.

In summary, our proposal for a uniform content naming reads:

bop:username@idp:protocol[/path[?parameters]]

These content URIs are comprised of the scheme bop and a hierarchical component further
built from a unique username veri�ed by an identity provider idp, followed by a protocol

and path speci�er and optional parameters that can include security credentials. The
protocol speci�er is used for setting di�erent usages in one community, e.g., a chat service and
a document sharing service. A peer uses that identi�er to pass the URI to di�erent modules
of the application. This puts part of the application-speci�c semantics into the URI, with the
consequence that not every BOPlish application may be able to serve every URI. The advantage
of this design is that BOPlish URIs are �exible and extensible enough to easily re�ect future
use cases. Such a URI is generated for every published item and is shared to other users. The
sharing itself is done as with HTTP URLs, e.g., via XMPP, e-mail or by publishing URIs on a
website. These are some examples of BOPlish URIs:

bop:bob@example.org:document/picard.png?sha-256;1234abc...
bop:alice@example.com:search/Music/*tomte*
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BOPlish URIs guarantee a location-independence by employing the username instead of a
speci�c host identi�er. The actual address of a peer responsible for a speci�c user is resolved
via the User Community itself (using the DHT). A query for one key in the DHT may result in
a list of peer addresses, re�ecting the currently available content publishers.

3.3.3 Name Resolution and Data Routing

Since our URIs must be location-independent, a mechanism is needed to unbind the relation
between a current location (peer ID) and the content identi�er (URI). ICN features such a
mechanism but operates on the network layer and therefore requires deep changes to the
network infrastructure. The process of content retrieval in BOPlish, on the other hand, is
comprised of three steps that involve the overlay only: Resolve the authority part of a URI
to a peer ID, establish a connection to the resulting peer and then transfer the data from the
source to the receiver. The BOPlish overlay provides a distributed hash table (DHT) which
uses a hash of the user identi�er as key and a reference to the node that holds the content (the
peer ID) as value. This indirection allows the system to handle names and locations separately
which we identi�ed as a requirement for a content-centric architecture above.

One problem with DHTs is that they tend to be fragile when peers join/leave the network
in a high frequency [74]. The grave reason for this is the need to re-organize the key space
which requires to move the DHT content from one peer to another. Our approach stores only
light-weight data structures in the DHT to prevent re-organizing from having a big impact on
the system. Peers only store the identi�er-location linkage (BOPlish ID => peer ID), not the
content itself. As a result, the DHT can be designed to be highly churn-resistant and redundant,
because the transfer of key/value pairs from one peer to another requires little bandwidth.

The name resolving mechanism scales with the number of identi�ers stored. Instead of
spanning the Web as a whole and hold all BOPlish IDenti�ers in one DHT, we de�ne a group
of users as a BOPlish User Community. Such a community consists of users with interest in
speci�c content. E.g., if the BOPlish application is a social network, the community is de�ned
as all users of the social network.

After the name resolution mechanism found a location for the requested URI, the data has
to be routed between the communicating peers. Data routing in the BOPlish architecture is
decoupled from the name resolution overlay. Instead of using the reverse path of the name
resolution, BOPlish opens a direct WebRTC connection between the content receiver and one
or more of the publishers. Coupling the data routing with the name resolution is also possible
but routing the content through the DHT would impose unnecessary load, leading to poor
performance regarding the name lookup. Moreover, depending on the DHT implementation, the
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overlay path can be disadvantageous because it is not aware of geographical and performance
properties of the overlay hops. If the connection to the publisher fails, the content receiver can
always re-query the DHT to �nd the updated location information. This allows for mobility
of both, the content receiver and the publisher because the DHT entry can easily be updated
without requiring a name change of the content’s identi�er.

3.4 BOPlish High-Level Overview

After introducing our motivation, outlining use cases/requirements and describing our solution
concept, we exemplify a common situation using a high-level view of our BOPlish approach.
The elements of our solution concept are composed into an integrated architecture depicted in
Fig. 3.1. In the example, a BOPlish User Community containing four peers has been established
(with BOPlish IDs: alice@example.org, bob@example.com, ...) using the Bootstrap Server in
the upper right corner.

A DHT is formed and every BOPlish ID is mapped to a Peer ID (1, 3, 6, 9) using the ID
assignment process. This mapping is stored in the DHT and accessible to all peers via the
Name Resolver API. Optionally, every peer can validate other peers using the identity provider
denoted in the authority part of the remote peer’s address (e.g., example.org).

Alice publishes BOPlish URIs which Bob can use to gain access (e.g., chat/room1) by �rst
resolving Alice’s BOPlish ID to a peer ID (alice@example.org 7→ 3). Afterwards, a Data Channel
connection is established between the two peers by routing the corresponding o�er/answer
messages through the DHT. Bob can now communicate with Alice using the chat protocol via
the protocol-speci�c API. This API is de�ned by the application building on top of BOPlish
(e.g., a chat application). The remainder of the URI’s path is passed to the application as a list
of parameters.
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Figure 3.1: High-level view of a BOPlish User Community
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4 Implementation

After laying out the concepts that make up BOPlish in Sec. 3 we now proceed to describe
the reference implementation. BOPlish is supposed to be run in Web browsers. As such, our
implementation is bound to JavaScript. Apart from the core library that runs on each peer,
other components are needed:

• A Bootstrap Server acting as rendezvous point

• An emulation/test environment

• Demo applications that leverage the BOPlish infrastructure

The JavaScript client library (further referred to as core library) can be included in Web
applications either by running directly in the browser or potentially on a server using a
JavaScript runtime environment like Node.js1. A user navigates to a Web page and automatically
joins the User Community. After the user has joined the overlay network, he can request
content or publish content himself. This overlay could even span across Web sites so that a user
that joined from example.org can communicate with a user from example.com, given
that both bootstrap servers cooperate. This allows for a decentralized, domain independent
content distribution which is not tied to central services. BOPlish uses WebRTC as its transport
mechanism, allowing for direct peer-to-peer connections between the clients’ browsers.

We developed our BOPlish implementation from the bottom-up, with each step allowing us to
gain more insight into how WebRTC speci�cs hinder or enable our attempts. The �rst milestone
enabled us to build P2P applications like a chat and a simple game [103]. We built a server
component for bootstrapping each peer and connecting new peers to existing ones. On the
client-side we implemented a Connection Manager for abstracting the process of establishing
new WebRTC connections in a P2P network as well as a Router component that forwards
messages to the correct peers by spanning a full mesh network. Then we performed the next
steps in order to implement our vision of a generic user-centric, infrastructure-independent
content-sharing facility. We exchanged the full mesh Router component with a Chord DHT

1https://js-platform.github.io/node-webrtc/
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implementation, added the functionality to handle BOPlish URIs and established a baseline for
automatic testing of our code.

4.1 Code Organization

All of the BOPlish source code is published on Github2 under the BSD 2-clause license3. We
have organized the code base into �ve di�erent projects:

BOPlish Github Repositories

core

bootstrap-server

node-client

emulation-mediator

demos

Figure 4.1: Directory tree of the main projects

The core project contains the code that is to be run on each peer. It is distributed as a single
mini�ed JavaScript �le which can easily be included in any Web application. As browsers are
the main entities in BOPlish, the core library contains the crucial components that form a User
Community.

Every User Community is centered around a bootstrap server instance which can be found in
the bootstrap-server project. We created two independent implementations, one written
in JavaScript using Node.js, and the other written in Python using Flask4. Sec. 4.6 dives into
the details of the server.

The repository node-client contains a module for running BOPlish peers inside of
Node.js. It provides an HTTP API for creating and deleting peers as well as gathering statistics
about running peers. This API is used by the fourth project, the emulation-mediator. It
can be used to emulate large User Communities and gathers statistics about throughput, delay,
bandwidth and further performance characteristics (see Sec. 4.7).

Throughout the development of BOPlish, we created a multitude of demo applications to
showcase the capabilities of BOPlish. These demos are supposed to give guidance to developers
that want to use BOPlish in their own projects and demonstrate the feasibility of our approach.

2https://github.com/boplish
3http://opensource.org/licenses/BSD-2-Clause
4http://flask.pocoo.org/
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A selection of these applications is described in 4.8 while the source code resides in the demos

repository.

4.2 Build Environment

JavaScript code is compiled just-in-time by the browser that executes it. Still, the source code
needs to go through a series of tasks before being usable for which we used a multitude of
third-party software. The most important components will be discussed now.

Source Code Management We used a shared git repository for revision control purposes.
The �rst iterations of our code were stored on a private server and after releasing the
code on GitHub, we now work on a public git repository all the time.

Build Process For automating tasks such as generating HTML documentation from the
annotated source code, running unit tests or building a mini�ed version of the JavaScript
library we opted for the Grunt JavaScript task runner5. A single �le named Grunt�le.js
serves as con�guration for the di�erent tasks. This makes it very convenient to run
tests by calling grunt test or to build a distribution JavaScript �le by calling grunt

dist.

Testing Strategy Since the very beginning of the BOPlish project, we created unit-tests
alongside the code that helps to reach a certain level of code quality. We opted for the
mocha testing framework6 which is running on Node.js. Additionally, we are using the
sinon.js7 framework that allows for stubs and mocks in an asynchronous context. We
also created a Grunt task to run the tests during the build process.

Documentation Strategy We started to document our code from the very beginning using
JSDoc8. This works similar to the well-known Javadoc documentation format where
comments in the source code are augmented with annotations so that classes, methods,
members and callbacks are recognized as such. A Grunt task integrates JSDoc into our
build environment so that grunt jsdoc builds the documentation.

Deployment Strategy Currently, we are deploying BOPlish by updating the code repository
and using the build process on the deployment target server manually. When the project
is more mature, we are planning to automate this task.

5http://gruntjs.com/
6http://visionmedia.github.io/mocha/
7http://sinonjs.org/
8http://usejsdoc.org/
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4.3 So�ware Architecture

The design of our architecture is presented in Fig. 4.2. At the very top sits the BOPlish
application which provides a simple interface for developers building their applications on top
of BOPlish. The developer facing part uses the BOPlish Core API to send and receive data and
controls the bootstrap process. Moreover, it instantiates a Router and a Connection Manager
which handles WebRTC-speci�c connection establishment and management.

Connection Manager

WebRTC

Bootstrap

onmessage()

send()

bootstrap()connect()

Router

send()
registerDeli-

      veryCallback()

addPeer()
registerDeliveryCallback()

route()

BOPlish Application
send()

onmessage()

registerProtocol()

BOPlish Core API

route()
get()

onmessage()

Figure 4.2: Overview of the BOPlish software architecture

The Router component is responsible for deciding where to forward messages to and
thus maintains a routing table. It exposes a KBR API as de�ned in [22] that hides the DHT
implementation introduced in Sec. 4.5. The API allows us to easily exchange the underlying P2P
protocol. Our �rst approach included a full mesh which is still usable for small communities
[103]. The Router encapsulates messages into the routing format (see Sec. 4.3.3) and maintains
the connection to the bootstrap server to recover in case of failures and during bootstrap.

The Connection Manager component is responsible for handling WebRTC speci�cs like
connection establishment and maintenance. Contrary to our previous work, it does not
maintain a list of open connections alongside the Routers peer table. Instead, the Router is the
only component keeping track of open connections thus reducing complexity. To be able to
join a P2P network, a node has to know at least one other node already part of that network.
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The Bootstrap component encapsulates the functionality for discovering an initial node to
connect to. Since this process is tightly bound to the generic connection establishment in our
WebRTC-based implementation, we included this component into the Connection Manager.

4.3.1 Related Work

When outlining the components of our library and their interaction with one another, we
explored several approaches previously proposed that dealt with the implementation of P2P
overlay networks. The �rst one is proposed by Dabek et al. in [22]. The authors put forward a
uni�ed API for the implementation of structured P2P networks. As a part of this work, they
analyzed common patterns of di�erent structured P2P systems and abstracted them so that
every overlay implementation can expose the suggested API without losing capabilities. This
common API is called the key-based routing API (KBR). On top of the KBR layer, Dabek et al.
identi�ed additional abstractions that are only marginally elaborated on in the given paper.

The main idea behind the KBR API (or Dabek API) is that every structured overlay maps
IDs from an ID space to every node employing a function speci�c to the implementation
(Chord, Pastry etc.). This abstraction is then used to de�ne KBR-speci�c API calls such as
route(), forward() and deliver() for passing messages between nodes. Additionally
the Dabek API de�nes methods for accessing the routing state on a node. In their evaluation
the authors suggest implementation schemes for di�erent applications on top of the KBR API.
These include DHTs, group communication applications, and data replication mechanisms.

The proposed approach of exposing a handful of methods to establish a key-based routing
and thus abstract away the actual routing implementation is promising. Hints on how software
applications leveraging this approach are to be structured, however, are out of scope of the
paper. Especially in the context of WebRTC, connection establishment and maintenance require
a great deal of e�ort because of the o�er/answer mechanism of JSEP. The paper does not give
recommendations of how the KBR implementation shall interact with the underlying network,
be it IP or – as in our case – WebRTC Data Channels. Still, the BOPlish approach complies to
the API proposed by Dabek et al.

A more implementation-speci�c paper is OverArch [6]. The authors propose a detailed
architecture for structured and unstructured overlay networks. Building on top of Dabek’s
work of de�ning a set of APIs, the OverArch authors have �eshed out a detailed description of
the required components of a P2P application implementation. These include a component
for underlay and overlay connection management, a bootstrapping component as well as the
services known from the Dabek API such as KBR, DHT and application-layer multicast (ALM).
Each component encapsulates a certain functionality and exposes an API for leveraging this
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functionality to every other component.
This division into modular building blocks makes it easy to orchestrate the components

in di�erent scenarios while maintaining exchangeability via a common API like Dabek et al.
suggested. The authors mention the possibility of reusing one instance of a component in
di�erent applications. In our scenario of WebRTC connections this helps in that an application
is able to provide the KBR layer with a custom bootstrap component (e.g., using a WebSocket
connection to a dedicated server). Moreover, an application could choose from a speci�c
routing implementation. OverArch speci�es even the inner workings of the KBR module which
helped us putting our implementation to work.

4.3.2 Data Transport Topology

The transport of data in BOPlish is comprised of two layers: an upper generic layer used
for passing application-speci�c messages and a lower routing layer speci�c to the Router
implementation. The messages on the routing layer are exchanged either via WebSockets
through the bootstrap server or via WebRTC Data Channels in a hop-by-hop manner. The
messages on the application-speci�c layer transparently facilitate the routing layer to reach
the receiving peer (possibly passing a number of other peers used as intermediate hops).

Due to the nature of WebRTC, a permanent rendezvous instance is needed that maintains
connections to at least one active peer. That instance must be constantly reachable (online) and
uniquely addressable (e.g., via a known URI/URL). We call this instance the bootstrap server. It
is used to transfer the initial signaling messages from a newly joined peer to a chosen existing
peer. Since BOPlish applications are served from a Web server we chose to use a Web server
together with the WebSocket protocol as bootstrap server. Furthermore, on the routing layer
that manages the overlay, a bootstrap node has to be chosen to initialize the joining procedure.
Thus, from here on we di�erentiate between a “bootstrap server” and a “bootstrap peer”, where
the former is used to open a WebRTC data channel to the latter.

4.3.3 Message Format

As described above, BOPlish consists of two layers. The Router communicates with other
Router components of remote peers and the bootstrap server. The format of routing layer
messages looks as follows:

1 {
2 to: "<Peer ID receiver>",
3 from: "<Peer ID sender>",
4 type: "ROUTE",
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5 seq: "<seq nr>",
6 payload: {
7 <JSON-formatted payload>
8 }
9 }

Listing 4.1: BOPlish JSON-encoded message format on the routing layer

Such a message consists of to and from �elds which denote the sender’s and receiver’s Peer
ID. Moreover, a message that shall be routed to other peers has its type �eld set to ROUTE.
Depending on the router implementation, other semantics for this �eld may be de�ned. The
message also carries a sequence number used as a transactional ID because of the asynchronous
nature of the communication channel. At last, the message contains a payload set by the upper
layer.

Messages on the upper layer can be divided into two main categories: messages that are
used for WebRTC signaling (we call this the signaling-protocol) and other messages
send by the application-layer protocols de�ned on top of BOPlish. The signaling-layer

messages are further de�ned in Sec. 4.3.4. Generic messages passed through the BOPlish API
look like this:

1 {
2 to: "<bop ID receiver>",
3 from: "<bop ID sender>",
4 type: "<protocol-identifier>",
5 payload: {
6 <JSON-formatted payload>
7 }
8 }

Instead of denoting the Peer IDs, application-layer messages contain BOPlish IDs and a
type �eld that maps the message to the appropriate protocol (as described in 4.4.1). Again,
every protocol can set a custom payload using the payload �eld.

4.3.4 Bootstrap Procedure

Every peer in a BOPlish user network �rst acquires a unique ID (the Peer ID) using one of the
mechanisms stated in Sec. 3.3.1 and establishes a WebSocket connection to the chosen bootstrap
server using that id. Afterwards, a new peer sends a bootstrap message to the bootstrap server
(Fig. 4.3 shows the complete process). The generation of that message is triggered by the
API call ConnectionManager.bootstrap() which gets called automatically once the
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WebSocket transits to an open state. In the current state, the peer does not know any other
peer in the system. Thus, the bootstrap message can not contain a recipient. Such messages
are denoted by the “to” �eld set to the value “*” and the “type” �eld set to “signaling-protocol”.
This message instructs the bootstrap server to choose the bootstrap peer. The payload contains
the o�er generated by the WebRTC API call PeerConnection.createOffer() (which is
a standardized RFC-3264 o�er [77]). The �rst message sent by a new peer thus looks like this:

1 {
2 to: "*",
3 from: "<Peer ID sender>",
4 type: "signaling-protocol",
5 payload: {
6 type: "offer",
7 offer: "<offer SDP>"
8 }
9 }

Listing 4.2: BOPlish bootstrap message

If there is no other peer connected to the bootstrap server, the server answers with a message
where the “type” �eld is set to “denied”. In this case the peer has to wait for an initial connection
establishment by a second peer (indicated by an incoming o�er; this procedure is described
in detail in our PJ1 report [103]). When joining an existing network (with at least one peer),
the initial o�er is routed through the bootstrap server to one of the peers. The algorithm
employed to choose which peer receives the initial o�er is up to the server and may range
from pure random selection to more re�ned algorithms which take into account the online
time or authorization credentials. We currently use a plain random approach.

The chosen peer, after receiving the initial o�er, answers with a signaling message of type
“answer” and the corresponding answer SDP [77]. This answer is routed through the bootstrap
server and the two peers establish a Data Channel connection. From then on, the Data Channel
is the only transport channel used by the new peer for exchanging messages with other peers.
The bootstrap server (and thus the WebSocket connection) does not have an active role anymore
(besides connecting newly joined peers to existing ones). The new Data Channel object is
passed from the Connection Manager to the Router component. The Router now uses that
Data Channel to initiate the bootstrapping of the routing protocol, in our case Chord.
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Figure 4.3: Sequence diagram of the bootstrap process in BOPlish. Peer 1 generates an o�er,
sends it through a WebSocket connection to the bootstrap server which then selects
a candidate used for bootstrapping, in this case, peer 2. Then, peer 2 generates an
answer, sends it back through the bootstrap server, eventually resulting in a Data
Channel between the two peers.
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4.4 Main Building Blocks

After describing the general software architecture, we can dive deeper into the speci�cs of
the BOPlish implementation. To do so, we start by giving an introduction to the application
developer-facing API before diving into each component more thoroughly. These components
include the Peer, Connection Manager and Router classes.

4.4.1 Client API & Protocols

A developer leveraging a BOPlish User Network has to implement its own application speci�c
protocol on top of the core library to communicate with other peers. In this section, the
skeleton of a simple request/response ping-protocol is elaborated on in detail to show how
this procedure works. As described above, the client API consists of only one main function,
namely registerProtocol().

A client protocol has to have a distinct name (in the scope of the code base) with which it is
identi�ed in the Routing-Component. In our example, the protocol is called ping-protocol.
The application developer registers the ping-protocol in the BOPlish core by calling the factory-
method registerProtocol() with the protocol name as its argument as shown below.
This call returns a protocol object with prede�ned functionality for sending and receiving
messages. This ensures that the di�erent developer-de�ned protocols cannot accidentally send
messages directed to other protocols.

1 var bopclient = new BOPlishclient(’wss://example.org/’);
2 var pingProto = bopclient.registerProtocol(’ping-protocol’);
3
4 pingProto.onmessage = function(msg) {
5 if (msg.type === ’ping’) {
6 pingProto.send(msg.from, {
7 type: ’pong’,
8 date: msg.date
9 });

10 } else if (msg.type === ’pong’) {
11 console.log(’ping took’, new Date() - msg.date, ’ms’);
12 }
13 };

Listing 4.3: De�ning an application-layer protocol in BOPlish

This code registers the ping-protocol in the Router which can then identify incoming
messages by the protocol name and call the corresponding onmessage-callback. The protocol
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de�nes the subtypes ping and pong by setting the type-attribute accordingly. The Routing
component is agnostic over these subtypes and only uses the distinct name of the protocol to
identify message. This allows for extendable, yet simple-to-use client protocols.

Whenever the peer receives a ping-message, the onmessageHandler is called by the
Router and (in this case) answers with a pong-message by calling the send()-method on
the protocol-instance with the recipient ID and the payload. The ping-protocol is started
by sending a ping-message to the remote peer that is to be pinged:

1 pingProto.send(’bop@id.org’, {
2 type: ’ping’,
3 date: new Date()
4 });

The ping-protocol described above is a simpli�ed version of the implementation found
in the demo repository (see protocols.ping.js). Other protocols we implemented that are used
by either the demo applications described in 4.8 or the core library itself are described below:

Topology Protocol

The topology protocol is used to query neighboring peers for topology information (i.e., the
IDs of their neighbors). To start the gathering process, the method sendRequest() is called
which sends a request message to all peers in this peer’s routing table. Upon receiving a
topo-protocol-request, the protocol answers with a list of peers it is connected to.

When receiving the answer containing the connected peers, the application can decide
whether to traverse deeper and send requests to the IDs of the peers contained in the answer.
Contrary to a �ooding-based approach, this behavior prevents the requesting peer from being
overwhelmed by answers as the application can always decide to stop sending new requests.

The protocol is registered in the Router component (4.4.4) using the identi�er topo-
protocol. It de�nes the subtypes request and response.

Bopcast Protocol

The bopcast protocol is a communication protocol that handles group management and creates
a full mesh data distribution graph. Using this protocol, a simple application-layer multicast
can be implemented. Fig. 4.4 shows a sequence diagram outlining the steps to form a group
of three participants. First up, Bob sends a register-request to Alice. She adds Bob to
her list of receivers and acknowledges with a register-response. When Bob receives the
response, he also adds Alice to his list of receivers. At this point, Carol wants to join the group.
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She sends a register-request to one of the peers in the group (Bob, in this case). Bob
adds Carol to his list of receivers, acknowledges the request and propagates it to all existing
members of the group (Alice, in this case). Alice receives the propagated request and also adds
Carol to the group. Alice then sends an acknowledge to Carol which makes Carol add Alice
too.

Carol

Carol

Bob

Bob

Alice

Alice

register-request

addReceiver(Bob)

register-response

addReceiver(Alice)

register-request

addReceiver(Carol)

register-response

addReceiver(Bob)

register-propagate

addReceiver(Carol)

register-response

addReceiver(Alice)

Figure 4.4: Bopcast sequence diagram showing the process of forming a group of peers

Bob, Alice and Carol can now communicate over the bopcast protocol using the send-
method which delivers the message to every peer in the list of receivers. The protocol is
registered in the Router component (4.4.4) using the identi�er bopcast-
protocol. It carries the subtypes register-request, register-propagate,
register-response and deliver.

4.4.2 Peer

A Peer models a remote BOPlish node in the system. Every peer holds a list of other Peers
that have open Data Channel connections between each other. Once the Data Channel closes,
the Peer-instance is deleted. Such Peers are instantiated by a Connection Manager and
stored in the routing table of the Router. To keep the implementation simple, the Peer is
kept as slim as possible. Along with the WebRTC channel references it contains an id that
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identi�es the remote peer and send as well as onmessage methods.
Along with this basic wrapper functionality the Peer-class employs an heartbeat mechanism

to check whether the connection to the remote peer is still alive. This is necessary as we
found the current Data Channel implementation to be unable to show the correct state of the
connection. As an example, it is not possible for a Chrome browser to detect whether the
connection to a Firefox browser has been closed or not using the WebRTC API even though
this is speci�ed in the speci�cation9. The heartbeat mechanism is con�gurable in both, the
timeout threshold before the connection is marked unavailable and the interval in which
heartbeat messages are sent. We plan on disabling this functionality as soon as the browser
implementations mature, further reducing the introduced overhead.

4.4.3 Connection Manager

The Connection Manager (residing in connectionmanager.js) is responsible for estab-
lishing WebRTC Data Channels between peers. Every peer holds a single instance of the
ConnectionManager class. To establish a connection to the P2P network, this class exposes
the bootstrap() method that takes a Router instance as argument, creates an o�er and
lets the router forward this o�er to another peer (see Sec. 4.4.4 for details of how messages are
forwarded). Upon receiving an appropriate answer (again through the router), the Data Chan-
nel is established, a Peer instance created and passed on to the router for further processing
(e.g., adding it to the peer table, depending on the routing protocol).

The Connection Manager can be used to actively initiate a connection (create o�er, send
o�er to other peer, receive answer, accept answer, wait for connection establishment) or
accept incoming connection requests (accept o�er, create answer, send answer to peer, wait for
connection establishment). Since all connection establishment in WebRTC is asynchronous,
the Connection Manager must store the state of every connection and act appropriately on
situations like connection loss, no answer received, glare (simultaneous o�er from two peers).

4.4.4 Router

The Router component constitutes the heart of the core BOPlish library. It is responsible for
disseminating messages through the network. Additionally, it maintains the connection to the
bootstrap server and maintains a routing table consisting of Peer instances. These methods
make up the public API of the Router:

• addPeer(peer)

9http://www.w3.org/TR/webrtc/#widl-RTCDataChannel-onclose
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• removePeer(peer)

• route(to, message, callback)

• forward(to, message, callback)

• put(key, value, callback)

• get(key, callback)

• registerDeliveryCallback(protocol-type, callback)

Since the other components don’t make any further assumptions about the router it can be
exchanged quickly and easily. Our current implementation is capable of creating a fully meshed
network as well as an DHT implementation depending on the used router implementation.
The DHT implementation is described more thoroughly in Sec. 4.5.

All messages that enter and leave the router component are simple JSON objects that have
the properties type, from, to and payload. The payload designates the application-layer
data that is delivered to the registered callback. An example routing-layer message looks like
this:

1 {
2 to: "f9c89ceb726436bb0d7074c08788d08e0e974dbf",
3 from: "48142a86bd1dc7c2be81df1c5ca6d0a98c328f4b",
4 type: "ping-protocol",
5 payload: {
6 "date": "Mon Nov 11 2013 17:44:05 GMT+0100 (CET)",
7 "type": "pong"
8 }
9 }

Listing 4.4: Example for a ping-protocol message

4.5 DHT Implementation

As described in Sec. 3, we use a Distributed Hash Table (DHT) as a name resolving mechanism.
In this section, we provide a detailed look into our JavaScript DHT implementation. We opted
for the Chord protocol [90] since it is straight forward to implement and the paper provides
detailed implementation information and pseudo-code. Also, Chord has been selected for
RELOAD [51], which suggests its quali�cation even in large-scale deployments. Exchanging
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Chord with another protocol is unproblematic due to the standardized KBR API that BOPlish
uses. In the future, developers may wish to implement, e.g., Kademlia, which is known for its
implementation-friendliness, too [59].

BOPlish di�ers from typical implementations due to the underlying browser environment.
All existing Chord implementations we know about (such as the widely known OpenChord10)
use a socket-based API (based on TCP or UDP) or Remote Procedure Calls (RPC). Peers are
addressed directly, provided the target IP/port combination is known. BOPlish uses WebRTC,
which does not allow such a direct connection establishment. Instead, signaling information
has to be exchanged using an external channel prior to any data transmission. Standard
WebRTC use cases are intended to use a centralized signaling server for that task. BOPlish
applications shall not rely on such central infrastructure. Therefore, instead of reintroducing
centralized components, we shifted the signaling functionality to the DHT layer, using that
layer for connection establishment itself. Other changes compared to the original Chord
implementation were made to adapt to the environment:

• BOPlish uses recursive instead of iterative routing due to the cost of connection estab-
lishments (i.e., the exchange of signaling messages).

• The Chord �nger table (comparable to a routing table) consists of 160 entries (given, SHA-
1 is used), each containing a peer identi�er (a hash) and an IP/port combination. BOPlish
uses a dynamically sized �nger table (to minimize the number of open connections,
which is a constraint imposed by current browsers) and stores peer IDs instead of IP/port
combinations.

As a future addition to BOPlish, we plan to extend the single predecessor and successor
entries proposed in the original paper to include a list of entries. In the remainder of this
chapter we provide a detailed look into the BOPlish Chord implementation while focusing on
the changes made to the original Chord protocol.

4.5.1 So�ware Overview

As pictured in Figure 4.5, every Chord node that is known to a local Chord instance is repre-
sented by a Node object. When a Chord instance is created, it instantiates a Node and stores
it as local_node. This local node object stores the direct successor and predecessor of the
Chord instance and is used to �nd its entry point in the Chord ring. Another specialty of the

10http://www.uni-bamberg.de/en/fakultaeten/wiai/faecher/informatik/lspi/
bereich/research/software_projects/openchord/
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Figure 4.5: Class diagram of the BOPlish Chord implementation
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local node object is that it does not carry a WebRTC Data Channel but the WebSocket channel
to the bootstrap server. This has two purposes:

1. For joining an existing Chord ring, the bootstrap server is the only known rendezvous
instance.

2. New nodes joining the ring send their initial o�er through the bootstrap server, using
this Chord instance’s local node as end point.

The fact that the local node carries a WebSocket instead of a Data Channel does not have
any e�ect on the generic implementation of our node class because both expose the same
interface (i.e., onmessage and send()).

For every node in the �nger table, such a Node instance is created, encapsulating the
transport channel (a WebRTC Data Channel) and exposing RPC-style methods for �nding its
successor and predecessor, updating the �nger table etc. In our implementation, nodes put
together the speci�c JSON message for every method call and send this message to the remote
node which then handles the speci�c request (e.g., answering with its successor). This way
we have achieved an easy-to-use abstraction between transport messaging and Chord logic,
which makes it easy to implement the various Chord semantics.

Due to the nature of the asynchronous WebRTC Data Channel interface, we had to cope
with the fact that responses to requests sent to a remote node can arrive at any point in time.
This leads to a situation where multiple requests are waiting for a response. One solution to
this would be to always have only one outstanding request waiting for a reply. However, this
introduces the problem commonly known as head-of-line block: One long-lasting request may
block the whole communication process, blocking all other requests in the queue. Thus, we
implemented a way to map responses that arrive through the Data Channel to the requests
sent earlier. We introduced a mechanism that uses sequence numbers for marking transactions
(consisting of a request and a response). This technique is similar to SIP transactions [78].
Every Chord message carries a seqnr �eld and the corresponding request callback is saved in
a local map. When the remote node eventually sends its response carrying that same sequence
number, the callback is retrieved and removed from the map and then called. This makes it
easy to issue multiple requests in a row without blocking the application �ow.

It is possible that other Chord nodes choose the current local Chord instance as bootstrap or
otherwise would like to establish a connection (e.g., for issuing a “PUT” or “GET”). In this case,
such node instances are stored in a map carrying the remote node’s ID as key and the node
object as value. This remote reference list is checked frequently and cleaned, so that it does
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not grow to an unbearable size over time. This is especially important because the number of
open WebRTC Peer Connections is constrained by the browser.

The decision between recursive and iterative routing (as explained in Sec. 2.1.2) fell for
recursive routing for the following reasons: In an iterative routing scenario, a Chord instance
would have to open a transport channel to every peer on the path to the target peer. In our
scenario, where we use WebRTC Data Channels, opening connections to another peer is a
very costly operation due to the o�er/answer model (as, e.g., opposed to IP. See Sec. 5 for a
quantitative analysis). Thus, we implemented recursive routing so that a peer asks one of the
known peers in its �nger table (to which it ideally has already an open Data Channel) to route
the message. The next peer then uses its open Data Channel to the next hop for further routing
and so on. The answers are then passed on the exact reverse path through the already open
Data Channels. In this way, we minimized the overhead for opening new transport channels.
This, though, comes at the cost of having to maintain timeouts, e.g., when an intermediate
peer disappears.

4.5.2 Application Programming Interface

As shown in the class diagram of Figure 4.5, our Chord implementation provides four distinct
interfaces: First, there are the Chord-speci�c API calls for creating, joining and leaving a
Chord network. Second and third, a Key-based Routing (KBR) interface as well as a Dis-
tributed Hash Table Interface for storing and querying for key/value pairs are provided; both
APIs are compatible to the API proposed by Dabek et al. in [22]. The fourth interface is
speci�c to our usage in BOPlish and is called the BOPlishRouter which exposes the method
register_delivery_callback(). The usage of this method is explained in [103], where
it is called setOnMessageHandler(). A sample usage of the DHT API is illustrated in the
following code snippet:

1 var chord = new Chord();
2 chord.join(42, function(err) {
3 if(err) {
4 throw new Error("Error joining");
5 }
6 chord.put(12345, {
7 name: "Hans Blix",
8 profession: "politician"
9 },

10 function(err) {
11 chord.get(54321, function(obj) {
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12 console.log(obj);
13 });
14 });
15 });

Here, a Chord instance is created and then this instance is added to an existing Chord
network using the Peer with ID 42. Since we built all our interfaces in an asynchronous way,
the join() call is passed a callback function which is called after the joining has (successfully
or unsuccessfully) ended.

When the peer has joined, a simple JSON object is stored in the DHT with the key “12345”
using the asynchronous DHT call put(). When this call has succeeded, the value is retrieved
from the DHT using get() and then printed on the console.

4.5.3 Chord bootstrapping

For joining an existing Chord network, three operations have to be undertaken:

1. Initialize new node’s successor with the help of the bootstrap node

2. Start stabilization interval, keeping new node’s successor up-to-date

3. Start �nger table �xing interval, �lling �nger table

First, the new peer sends the following message to the bootstrap node to retrieve its own
successor:

1 {
2 type: "FIND_SUCCESSOR",
3 id:"<peer_id_sender>",
4 seqnr: "<sequence_number>",
5 from:"<peer_id_sender>"
6 }

The type “FIND_SUCCESSOR” denotes that the message is to be handled by the Chord
instance (and not, e.g., by the Connection Manager). The �eld “seqnr” must be present on all
Chord messages. Its purpose is for every Chord instance to be able to map responses (e.g., a
successor ID) to requests (e.g., “FIND_SUCCESSOR”) as described in Sec. 4.5.1. The “id” �eld
contains the ID of the �rst �nger table entry’s start (which, when bootstrapping is the sender’s
peer ID).

The bootstrap node eventually answers with a message of the following form, providing the
requester with the successor’s node id:
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1 {
2 type: "SUCCESSOR",
3 successor: "<successor_id>",
4 seqnr: "<sequence_number>",
5 from: "<peer_id_receiver>"
6 }

In the stabilization phase of the new node, these messages are exchanged until the �nger
table of the new node is completely updated. For every node in the �nger table, a Chord
instance now carries the node’s ID as well as an open Data Channel. For a detailed explanation
of the Chord joining procedure see [90].

4.6 Bootstrap Server

The Bootstrap Server has two distinct tasks: Deliver the application and act as a fallback
signaling channel using WebSockets. For delivering the application, no special functionality
must be implemented because the HTML, JavaScript and CSS �les are simply statically delivered
to clients. For fallback signaling, the server must handle WebSocket connections to URLs of
the form ’/ws/PEERID’ where ’PEERID’ denotes the Peer’s self-assigned ID. O�ers and answers
must be forwarded via the appropriate WebSocket connection using the ’to’ �eld from the
routing message. Initial o�ers that contain a ’to’ �eld of value ’*’ must be forwarded to a
random peer that is di�erent from the one in the ’from’ �eld. The speci�ed message format
and behavior for signaling allowed us to implement two independent servers using Python
and JavaScript, respectively, which are described further below.

4.6.1 Python

The Python implementation using the Flask Web micro framework11 is very simple and consists
of roughly 80 lines of code. For bootstrapping the environment, the well-established tools
virtualenv and pip are used that ship with most Linux distributions and are available
for MacOS X, too. Using these tools all necessary libraries are installed to the local environ-
ment with the command pip install -r requirements.txt. Starting the server is
as simple as calling python run.py which causes the server to listen on TCP port 5000 at
0.0.0.0.

11http://flask.pocoo.org
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4.6.2 Node.js

Node.js is a server-side runtime environment for JavaScript applications. It o�ers a built-in
Web server that is used to deliver the static �les to the browser along with a server-side
WebSocket implementation to handle the fallback signaling tra�c. npm, the standard Node.js
packet manager is used to install the dependencies via a single npm install command in
the bootstrap server’s path. Starting the server is done similar to the python implementation
by calling node run.js 0.0.0.0 5000. As the test framework is also using Node.js, this
module can be conveniently used for unit testing (Sec. 4.2).

4.7 Emulation Environment

We identi�ed emulation support as a crucial requirement to measure system performance
characteristics and run integration tests with large numbers of participants. A headless runtime
has been created that is able to execute the BOPlish core components without the need of a
browser instance. The runtime allows mixing emulated (command-line) with actual (browser-
based) peers. It was initially built for unit-testing purposes but also serves as a basic building
block for the emulation component.

________________________ ____________
| Emulation Host | | Emu. Host |
| __________ __________ | | __________ |
|| Head.Run || Head.Run || || Head.Run ||
|| ________ || ________ || || ________ ||
||| App Pr.|||| App Pr.||| ||| App Pr.|||
||| _____ |||| _____ ||| ||| _____ |||
|||| Bop.| ||||| Bop.| ||| |||| Bop.| |||
|||| Core| ||||| Core| ||| |||| Core| |||
||||_____| |||||_____| ||| ||||_____| |||
|||________||||________||| |||________|||
||__________||__________|| ||__________||
|________________________| |____________|

| |
____________|____________________|______

| Emulation Mediator |
|________________________________________|

Figure 4.6: Emulation Environment Architecture

The actual emulation environment can be separated into two components: the emulation

host is a wrapper around the headless runtime environment and the emulation mediator. The
latter is a component that connects to the emulation hosts and centralizes logging and control.
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Fig. 4.6 shows the system architecture.
Hosts participating in the emulation start an instance of the emulation host. The host can

then spawn multiple workers each representing a BOPlish peer. The host connects to a mediator
and sends status information from its running peers. The mediator instance communicates
with all participating hosts and condenses the transmitted information in a central location.
The mediator supervises the logs and noti�es the user in case of errors. The user can interact
with the mediator node using a administrative Web site to control the emulation hosts (e.g,
spawning more workers).

4.7.1 Headless Runtime

During the evolution and growth of the project’s code base it became increasingly important to
test the code in an automated way. The browser platform being the main development target
does not provide for a typical unit-testing environment. Code is compiled just-in-time (JIT)
by the browser leading to a tedious debug process with errors occurring during runtime. To
counteract these issues, a headless runtime has been developed to enable traditional unit-testing
from the command-line and provide the necessary foundation for the emulation component.

Di�erent solutions to executing code supposed to run in browsers exist. These approaches
can be broadly separated into two categories: browser automation frameworks and headless

JavaScript runtimes. Solutions like Selenium12 fall into the �rst category of a browser automa-
tion framework. The idea is to use existing browser environments like the Mozilla Firefox
or Google Chrome browser and interact with them using a pre-recorded script. The script
can easily be conducted by using a browser-plugin. Approaches like Selenium work best for
interaction-intensive applications that are supposed to be controlled manually by a human
being. The main focus lies in the analysis of work�ows from the users perspective. Even
though it is possible to directly invoke JavaScript code, unit-testing abilities are limited. More-
over, using such a browser automation framework as the basis for an emulation component is
problematic. Running multiple instances introduces a lot of overhead due to the entire browser
environment being started for every test.

Headless JavaScript runtimes, on the other hand, aim for a di�erent goal. Instead of relying
on a stand-alone browser application, the runtime driving the browser is extracted to run on its
own. The Node.js platform is an example of such a headless runtime. It is able to compile and
execute JavaScript using the command line interface. On top of Node.js, test frameworks can
be used to simulate interaction with the application in a generic way by using code to describe

12http://seleniumhq.org/
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test cases. Mocha13 is a widely adopted example of such a framework. Tests are written in
JavaScript code and executed by using a Node.js-based test runner. This enables running
tests written in code from the command line and seamless integration into JavaScript-heavy
development environments.

A crucial requirement for running the same code base in a browser and in a headless
environment is the support of both environments for the included third-party components.
As an example, Node.js does not natively include the WebRTC technology. Instead, it can be
added as a third-party addon14. Code changes were needed throughout the code to support
cross-platform awareness. These included the introduction of a compatible module dependency
system, the integration into the development environment as well as diverse code changes to
rule out variation between the third-party modules on di�erent platforms.

4.7.2 Emulation Host

The emulation host can spawn instances of the headless runtime and provides a REST API
for external supervision. Messages directed to the running BOPlish hosts can be proxied to a
emulation mediator via a WebSocket channel. To start an emulation host, a listen port and a
BOPlish bootstrap instance have to be speci�ed:

$ ./boplish-emulation-host.js --port 9000 --bootstrap\
ws://chris.ac:5000

The host will then allow connections on the speci�ed port, e.g., from a mediator instance. The
REST API used to control the host is designed as shown in Tab. 4.1.

# Method Path Comment
1 POST /peer Start new peer; returns {id}
2 DELETE /peer/{id} Shutdown/abort peer by ID
3 GET /peer/{id} Returns peer information
4 GET /peers Returns a list of all peer IDs
5 DELETE /killAll Shutdown/abort all peers
6 GET /status Return logging handler

Table 4.1: Emulation Host REST API

Peers can be started and stopped by using the API calls 1 and 2. When starting a peer, the
call returns the id assigned to this instance. Call 3 returns information using the assigned

13http://visionmedia.github.io/mocha/
14https://github.com/js-platform/node-webrtc
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id, while call 4 returns a list of all the peers currently running on this host. The returned
ids can then be used to stop the peers or gather status information. It is also possible to abort
all running peers at once by issuing call 5. Call 6 is a special call that upgrades the HTTP
connection to a bi-directional WebSocket channel. After the connection has been established,
all messages returned from the underlying BOPlish peers are sent through that channel. A
Mediator, as described in Sec. 4.7.3, can therefore gather all messages in a central place. During
the WebSocket initialization, a �lter can be speci�ed to prevent overloading from happening.

4.7.3 Emulation Mediator

The mediator acts as a central component in an emulation test run. It condenses the log
information and supervises all participating emulated peers. The mediator consists of two
parts: a backend and a frontend. The backend establishes and maintains connections to BOPlish
hosts and uses a NoSQL database to store messages received from them. The mediator itself
also exposes a REST-API. Interaction with that API can be automated by using a scripting
language and a suitable tool like curl15 or the frontend interface described below.

The frontend interface shown in Fig. 4.7 has been developed to simplify interaction with
the mediator. The built-in chart engine can be used for custom plot generation from the
gathered data. It consists of three pages: host overview, host detail and peer detail which will
now be further elaborated on. Buttons allow a user to register emulation hosts by entering the
corresponding IP and port as described in Sec. 4.7.2.

When a host is registered at the mediator, it will be shown in the host navigation menu
along with the running peers on that host. More details can be gathered by clicking on the host
address respectively the peer ID as described below. All the gathered data can be downloaded
in JSON-encoded format for later analysis.

Host Overview

The host overview page (Fig. 4.7) gives a summary of the current overall emulation status. All
the gathered data is available to the chart engine16 which can render a multitude of di�erent
chart types and tables. Depending on the required evaluation data, the charts are supposed to
quickly display information which can later be analyzed thoroughly using the gathered log
�les. The data available to the host overview page include:

• Current bandwidth/sec of all running hosts

15http://curl.haxx.se/
16based on Google Charts (https://developers.google.com/chart)
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Figure 4.7: Emulation Overview Page

• Number of running hosts

• Debug info/warning/error of running hosts

• Uptime of all running hosts

Host Detail

The host detail page is revealed when clicked on a host from the navigation menu as shown
in Fig. 4.8. Just as with the host detail page, the charting engine can be used to display any
information available to the mediator instance. The data available to the host detail page
include:

• Current bandwidth/sec of running host

• Number of running peers

• Debug info/warning/error of running peers

• Total number of received BOPlish messages
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Figure 4.8: Emulation Host Detail Page

• Host uptime

Peer Detail

Clicking on a peer ID in the menu opens the peer detail page. It is supposed to show in-depth
information about the running peer and help debugging if a peer fails (using the log �les that
still persist on the mediator). The data available to the host detail page include:

• Peer ID

• Peer uptime

• Current bandwidth/sec of running peer

• All received BOPlish messages

As stated above, all BOPlish messages occurring at every peer are stored in a NoSQL database.
The database can be queried for later analysis. Every message contains a timestamp written
by the host the peer is running on. It is therefore crucial to keep the time in sync among the
participating hosts to keep the messages in their absolute order. For that task, NTP can be
used to reduce the time di�erence to a acceptable level (lower than the hop-by-hop delay).

4.7.4 Issues in WebRTC Emulation

During our work with the BOPlish emulation component, we initially tried to build a generic
WebRTC emulation environment that could also be used with other projects. Such an emulation
component could either rely on the availability of a server-based WebRTC library or implement
its own WebRTC stack. The later is considered hard, the user-space WebRTC stack contains
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Figure 4.9: Emulation Peer Detail Page

SCTP, ICE, SRTP just to name a few. The other possibility is to rely on a third-party library. This
is what we have done with our approach to the BOPlish emulation component. Unfortunately,
the library revealed limitations. Bugs in the Data Channel implementation might lead to abrupt
dropouts without any error messages and general system resource utilization was very high.
As an example, it was only possible to start about 60 (idling) peers with a Quad-Core CPU and
12 GB RAM. Adding this to the spontaneous dropouts of the library, the emulation component
is currently only usable in a limited scale. We remain with the hope that implementations
stabilize after the WebRTC speci�cation is �nalized. Until then, bugs and incompatibilities
hinder large-scale WebRTC emulation.
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4.8 Demo Applications

During the work on the BOPlish core, we implemented several demo applications that assisted
in showcasing our work. The applications are used to present the concepts of BOPlish in an
accessible way. For us, this is an important aspect as developers shall be motivated to leverage
BOPlish for their own applications.Moreover, the demos allow to prematurely �nd problems
related to the user-facing BOPlish API for an overview on the API). The time fence of this
work does not allow for very sophisticated applications but should give a glimpse into how a
User Community operates. To separate the core BOPlish library from the application code, the
demos reside in its own repository17.

Figure 4.10: BOPlish demo client interface in a Firefox Browser

The demo applications use the Bootstrap CSS Framework18 that allows for cross-browser
Web frontend development. Even though all major browsers are capable of displaying the
frontend, only Firefox and Chrome have currently implemented the mandatory WebRTC
components to run BOPlish. The demo is reachable by pointing a user’s browser to a HTTP
URL where a standard Web server (e.g., Apache) serves the �les to the browser. When loaded,
the application shows a header and menu bar with entries for the various demo applications
as well as a �eld that contains the randomly chosen ID of this peer (see Fig. 4.10).

Upon startup, the demo application establishes a WebSocket connection to a BOPlish boot-
strap server and instantiates a BOPlish client that uses the signaling-protocol to connect
to the network (see Sec. 4.3.4).

17https://github.com/boplish/demos
18http://getbootstrap.com
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4.8.1 Message Inspector

The purpose of the Message Inspector app is to showcase the communication between the
peer and the network and an simple, real-time debugging interface for the BOPlish protocols.
The applications view (see Fig. 4.11) is separated into three columns. The �rst column shows a
list of peers this peer is connected to (ids are shortened to 8 characters). The functionality of
the two buttons next to the peer ID is described below:

• Ping: sends a ping-protocol request to the corresponding peer (see 4.4.1)

• Bopcast Registration: sends a bopcast-protocol register-request to the correspond-
ing peer (see 4.4.1)

Figure 4.11: BOPlish Message Inspector demo application

The second column shows all messages that are handled by this peers Router instance.
Incoming messages are marked green, outgoing messages are marked yellow. Blue markings
indicate a message that is forwarded to another peer in the routing table as the receiver is not
this peer. The messages are inserted on top of the list in real time. Upon clicking a message in
the list, the third column shows the messages content.
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4.8.2 Topology Viewer

This demo application showcases the topology of a BOPlish User Community by displaying a
graph of the network (see Fig. 4.12). Nodes in the graph re�ect the di�erent peers while a dark
blue colored node mirrors the peer that is running the topology viewer. Links between the
nodes show a Data Channel connection between the corresponding peers.

Figure 4.12: BOPlish Topology Viewer demo application

Buttons allow the user to interact with the topo-protocol that is used to gather the
needed information (see Sec. 4.4.1). Send Request sends a single topo-protcol request to
all connected peers. Upon reception of the answers, the response is fed into a module that
renders the graph using the d3.js library19. Start and Stop Interval can be used to start/stop a
sequential dispatching of topo-protocol requests to automatically update the graph when
new peers join the network. Finally, Reset resets the graph and makes the application forget
all the node and link information learned.

19http://d3js.org/
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4.8.3 Game

The game is a simple application that uses the bopcast-protocol to showcase multi-user group
communication. After registering other peers using the bopcast-protocol procedure, all
peers in the registered group can use the controls to move the red “player” on the black grid.
All changes to the position are synchronized to the whole group. This application resembles
our �rst attempt of an application leveraging BOPlish for group communication without any
central server component.

Figure 4.13: BOPlish Game demo application

4.8.4 Chat

The chat application allows BOPlish users to create chat rooms under the namespace of the
user. Fig. 4.14 shows the administrative interface on the left and the actual chat communication
interface on the right. Here, the user with BOPlish ID dqbtvcqkwsi@id.com creates
a chat room called star-trek-chat. Two users join the room by using the generated
BOPlish URI. After joining the room, messages can be published by sending them to the creator
of the room. The creator keeps track of the memberships and relays messages to the other
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users in the room.
Despite being a quite simple use case, this chat application is fundamentally di�erent when

compared to current applications on the Web. After the application has been downloaded from
the Web server and the BOPlish User Community has been established, any user can act as a
“server” for other peers, thus hosting an application for other users just by opening a browser
window. The user that creates the room as well as the participants in the chat room do not in
any way communicate with a server after the bootstrap procedure. Moreover, communication
is naturally private as data is transmitted directly from one peer to another using end-to-end
encrypted Data Channel.

Figure 4.14: BOPlish Chat demo application
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BOPlish is an approach to build user-centric applications on the Web. After laying out the
included concepts and our implementation, as well as describing the peripheral components
like the emulation environment, we can now continue to evaluate the system. To do so, we
decided to take three perspectives with each covering a di�erent angle of the evaluation. The
perspectives are: Application, System and Security which we now de�ne one-by-one.

In Sec. 5.1 we derive application contexts from typical use cases and thereby name examples
of current Web applications. Using these applications, we �rst factor out important building
blocks and examine how these can be mapped to BOPlish. Afterwards, composition rules
showcase how a BOPlish application compares to the identi�ed application contexts.

Afterwards, we conduct performance measurements using the emulation environment
introduced in Sec. 5.2. This evaluation perspective shows response times and stability tests
in both, normal and high load scenarios. Moreover, we measure bootstrap performance and
compare it to current Web applications.

We end the section with the presentation of our security perspective in Sec. 5.3. Apart from
a general WebRTC security assessment, it showcases new attack vectors resulting from the
combination of WebRTC and a P2P layer directly in the browser.

5.1 Sketching BOPlish Applications

How do I implement my application on top of BOPlish? This is a valid question that arises after
demonstrating the abstract capabilities of BOPlish. Obviously, the answer very much depends
on the application characteristics that are to be implemented. We aim at partly answering this
question by selecting examples of today’s Web applications and sketching how these can be
implemented on BOPlish.

In contrast to Sec. 4.8 where we presented simple demo applications and protocols to verify
general functionality, we hereby give a glimpse at what application developers can expect from
using BOPlish as compared to a centralized platform. This part of the evaluation is entirely
theoretical as implementing the proposed applications goes beyond the constraints of this
thesis.
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To choose �tting applications, we recommence the use cases introduced in 3.1 that are
initially inspired by current applications running on the Web. We choose two typical, wide-
spread Web applications that ful�ll these use cases, namely a �le storage service that allows
sharing between users (Dropbox) and a real-time chat (Facebook Chat) with group features.
The applications are intentionally contrary in their usage and their imposed requirements to
cover a greater range of functionality.

Dropbox is a Web-based, centralized platform where users upload arbitrary content which is
then stored on and accessible from the centralized Dropbox server. The signi�cant requirements
for such applications lie in the availability of content as well as performance of �le up/download.
Real-time applications like the Facebook Chat, on the other hand, have a very di�erent focus.
Here, the focus is shifted towards a timely delivery of rather small messages, namely the user
chat conversation.

5.1.1 Building Blocks

We break down the chosen applications into a list of building blocks. This list is not meant to
be complete in the sense that it covers all functionality of the chosen application. Rather, it
showcases important components, brie�y outlines how these can be implemented in BOPlish
and what restrictions apply.

URI-based Interaction

Web applications typically use URL identi�ers to address objects in the system or provide
access to speci�c functionality. Identi�ers can be hidden behind UI components for improved
user convenience. For example, a user may click a button that redirects the browser to a speci�c
page or executes a prede�ned functionality. When a Dropbox user wants to share a �le, a
unique URL is created (Lst. 5.1 a)). Other users can get access simply by having knowledge of
the identi�er. Facebook also uses globally unique identi�ers to address chat groups as shown
in Lst. 5.1 b) but requires users to explicitly authorize themselves before gaining access to the
chat room.

1 a) https://www.dropbox.com/s/[unique-id]/[file-name]
2 b) https://www.facebook.com/messages/conversation-[unique-id]

Listing 5.1: Examples of URL-usage from Facebook and Dropbox

BOPlish protocols can leverage the location- and application-independent identi�ers to
accomplish the same level of URI interaction. A �le sharing application could provide a sharing
functionality using identi�ers derived from the application protocol in use. Lst. 5.2 a) shows
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an identi�er that might be used to call a get functionality on a speci�c �le. It is also possible
to create identi�ers with unique ids as shown in Lst. 5.2 b). Addressing a chat room follows
the same principle (Lst. 5.2 c)).

As such, BOPlish protocols are equally free in the design of identi�ers as compared to current
Web applications while still being location- and provider-independent.

1 a) bop:alice@example.org:file/get/[file-path[?parameters]]
2 b) bop:alice@example.org:file/get-unique/[unique-id[?

parameters]]
3 c) bop:alice@example.org:chat/[chat-room-id]

Listing 5.2: Examples of URI-usage in BOPlish

Filesystem Content Access

JavaScript code running in the browser does not have direct access to the �le system. Instead,
user interaction is required for this task. This is reasonable because browsers run applications
by simply visiting a web site instead of requiring the user to explicitly install a piece of software.
The user can drag and drop the �le to the browser window or the application might request a
�le upload window as an interface to the �le system. Once the application gains access to the
�le it can read its contents and meta data just like a OS-level application can. Dropbox heavy
relies on �le system access and using the built-in browser technologies would be cumbersome
for the user. Therefore, a OS-level client application is used that synchronizes �les to the
Dropbox back end.

BOPlish applications depending on data from the user �le system underly the same signi�cant
restrictions as any Web application does. To gain convenient access to the �le system, an
OS-level application is required. BOPlish provides such a client through the Node.js-based
headless runtime described in Sec. 4.7.1. Without such a client, each �le access requires explicit
user interaction.

Content Persistence

Dropbox and Facebook use a server-based, proprietary back end to persist content. Retrieval is
only available for authenticated users. Browsers are currently not equipped with functionality
to store large amounts of data. In-memory data is lost as soon as the user refreshes or navigates
to another page. Small amounts of data (∼ 5 MB) can be stored using the browser Web Storage
interface (i.e., localStorage).
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When a peer closes the browser or the tab that runs a BOPlish application, the WebRTC
connection to the User Community is lost. As a result, the shared content from this peer is
not available anymore. Content persistence cannot happen on central entities as there are
none. A DHT is used to persist name resolution information by spreading content through-
out the network. However, this mechanism is used for identi�er resolution only and is not
accessible to BOPlish application protocols. Persisting content beyond in-memory capacities
or LocalStorage again requires the headless runtime. Moreover, content in BOPlish is by
default only accessible when the user is actually available in the network. To keep content
highly available, a user may want to run a stationary device (such as a home NAS server) that
is always connected to the User Community.

Real-time Interaction

Real-time Interaction happens when two end points communicate directly, as occuring in
a Facebook chat where users expect fast message delivery times (typically in the range of
a few 100ms). Facebook uses a central server to relay messages between users. Proxying
the messages over a server obviously results in higher delays as compared to connecting the
communication endpoints directly.

BOPlish directly connects users and therefore allows for lower end-to-end delays compared
to current centralized Web applications. The SCTP transport allows for high-bandwidth and
low-latency connections. Moreover, the server is relieved from the load imposed by routing
messages. Due to the underlying P2P paradigm, central control is not easily possible.

Group Interaction

Facebook users can create, join and leave chat groups. Messages in the groups are disseminated
in a broadcast manor. Due to the centralized server that aggregates all messages, group
maintenance and message distribution is trivial.

In BOPlish, group interaction in small User Communities can be implemented by directly
connecting all participating peers to a full mesh (e.g., by using the bopcast protocol introduced
in Sec. 4.4.1). Once the group size increases, the full-mesh approach does not scale. We
leave this question open for now and dedicate Sec. 6 for an in-depth discussion of a group
communication mechanism for BOPlish applications.
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5.1.2 Application Composition Résumé

We discussed main building blocks that make up the Dropbox �le-sharing and Facebook group
chat applications while pointing out the distinctions when compared to a BOPlish approach. By
implementing and combining these building blocks in BOPlish, applications can be composed.

We now factor out peculiarities occurring in BOPlish-based applications that arise when
combining the building blocks to give the reader a deeper understanding of how BOPlish
applications have to be designed. This includes routing policies that are speci�c to the P2P
layer and mobility capabilities for peers changing location that deeply di�er from the current
Web.

Content transfer in BOPlish is encrypted end-to-end due to the underlying DTLS connection
between the endpoints. This is something that centralized Web services typically cannot
o�er because the application itself runs on the central Web server and requires access to
the unencrypted content. In BOPlish, peers stay in full control over the content. As such,
applications trying to provide a certain level of privacy for their users bene�t from the P2P
paradigm used in BOPlish.

Current centralized Web platforms face attacks from malicious crackers and lawsuits from
governmental institutions. Once gained access, all users are endangered. In BOPlish, on the
other hand, particular peers have to be attacked, making it harder to perform attacks on many
users.

Another di�erentiating factor in BOPlish is the binding to user identity instead of location.
BOPlish inherently provides mobility functionality by tying any content to a user-centric
instead of a location-centric identi�er. When a host changes location, the name-resolution
mechanism keeps track of this change by updating the corresponding DHT value. The protocol
itself does not have to handle a location change as the user identi�er stays intact even if the
IP address changes. Current Web applications are typically running in �xed locations and
changing the location requires updating the DNS entry.

After presenting how a BOPlish approach of typical use cases compares to the traditional
understanding of Web application, we conclude that some of the typical building blocks have
to be implemented very di�erently. Not every use case can be easily implemented, content
persistence requires a stable connection to the User Community and a headless runtime because
the browser environment is not yet ready for such usages. Improved privacy is a plus for
BOPlish applications due to the missing central content aggregation, as well as the URI scheme
in use that releases of the tight coupling of content and service provider.
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5.2 System Performance Evaluation

We now continue to test the system for its functionality using the emulation component
introduced in Sec. 4.7. Currently, existing WebRTC implementations are neither feature
complete nor do the performance characteristics match the �nalized product. For example, the
Chrome implementation currently does not allow setting options for the SCTP stream that
is used for the Data Channel connections. As such, only reliable transmission can be tested.
As a result, we did not observe any packet loss during the tests at all. Another limiting factor
is the number of open Peer Connections a browser can cope with. Again depending on the
implementation, we observed that number range from 8 (Android smartphone with Firefox) to
30 (PC with Chrome x64).

Because of the implementation di�erences and the prematurity of some parts of WebRTC,
we do not give detailed insight on performance characteristics at this point as they are likely
to change. We rather test our system for functionality and conceptional correctness.

User Communities rely on a DHT for name resolution purposes. It is the main bottleneck
for performance as any content distribution only occurs one-to-one between the peers. In
BOPlish, we implemented the Chord DHT but other protocols like Pastry or CAN are certainly
possible, too. The logarithmic scalability of DHTs allows for large numbers of peers even under
the imposed implementation restrictions (limited number of PeerConnections per browser).
In our tests, we compare one-hop as well as two-hop and 10-hop performance. The one- and
two-hop measurements shall give an idea of the scaling behavior when compared to a 10-hop
routing. Chord uses O(12 log2(N)) hops in average to route to a key. 10 hops thus equal about
106 nodes in the system with a fully populated �nger table:

1/2 ∗ log2(N) = 10

log2(N) = 20

N = 220 ≈ 106

We do not expect such large group sizes but our implementation uses a dynamically sized �nger
table that depends on the number of Peer Connections the respective browser can handle. A
smaller �nger table leads to a greater hop count. Still, 10-hops map to long distances even with
small �nger tables and should give a realistic upper bound. As such, we chose it as a reference
value.

68



5.2 System Performance Evaluation / Christian Vogt

5.2.1 Configuration

To evaluate BOPlish, we used a total of 4 hosts. All machines use Intel QuadCore CPU with
2,33 GHz to 3 GHz and a total of 40 GB RAM. One of the hosts runs both, the bootstrap server
and the emulation mediator. The three other hosts start an instance of the emulation host
instance that in turn spawns BOPlish peers. During the measurements, the emulation hosts
were monitored for CPU and RAM usage which did not exceed 80% at any time.

The hosts are interconnected using Gigabit Ethernet (GigE) and use public IP addresses. The
public addresses turned out to be a problem with the STUN implementation of the Chrome
Browser as it apparently expects to operate in a NATed environment (this is a bug). With the
current implementation the initial STUN connection establishment takes a long time (about 10
seconds), signi�cantly distorting the delay measurements. As a work around, we used a locally
started STUN server1.

Our emulation con�guration does not re�ect the actual Internet environment. Delays will
be higher in the wild due to longer routes and bandwidth between peers will be way below the
GigE speed we achieve in our test setup. As a future work, we plan to deploy the emulation
environment to an environment which more closely re�ects the Internet like PlanetLab2.

For our tests, we disabled BOPlish lookup caching to not disturb the analysis. This mechanism
caches resolved identi�ers such that subsequent queries to that user identity can be served
locally instead of again resolving it through the DHT. Thus, every request to a BOPlish ID gets
resolved to a corresponding peer ID prior to the actual content transmission.

Achieving 10 hops in a Chord DHT would require a huge number of nodes. Our computing
capabilities as well as the central emulation mediator are not geared up for that task. Instead,
we decided to alter the �nger tables of the peers so that every peer only knows its direct
successor and predecessor. Thus, every request strictly follows the ring topology constructed
by the Chord algorithm.

5.2.2 DHT Stability Boundaries

Our �rst test is supposed to be a smoke-test. We want to �nd the upper bound of message per
second the DHT can cope with. We learned that the results di�er depending on the WebRTC
implementation respectively the browser we used in our tests. Lst. 5.3 shows the code that has
been used to conduct the measurements.

1https://launchpad.net/ubuntu/trusty/+package/stun
2https://www.planet-lab.org/
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1 var hostBopId = ’drnlbbnzs@id.com’,
2 start = new Date(),
3 j = i = 1000;
4 while (i--) { // send i messages to bop id
5 bopclient._get(hostBopId, function(err, msg) {
6 if (!--j) calculate(start); // wait for j callbacks
7 });
8 }
9 function calculate(start) {

10 var took = new Date() - start; // [ms]
11 var msgPerSec = 1000*1000/took; // normalize to msg/sec
12 console.log(’msg/sec:’, msgPerSec);
13 }

Listing 5.3: BOPlish DHT performance testing code
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Figure 5.1: BOPlish DHT performance behaves di�erently according to the underlying Web
browser

The results are shown in Fig. 5.1. Chrome one-hop performance tops at 1270 msg
sec and

declines to 130 msg
sec when the messages are routed over ten hops. Firefox performance is

superior throughout the test and it is able to push 1640 msg
sec through the BOPlish infrastructure.

10-hop performance is more than doubled compared to Chrome with 330 msg
sec . Even though

we saturated the number of messages that the implementation can handle, we experienced no
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break downs. During the processing, the Web application was unresponsive and thus unusable.
Though, it came back to a stable state once all messages were processed.

It has to be noted that other peers might mark a peer as failed when it is stuck processing
messages. The proactive DHT maintenance mechanism that periodically checks neighbors
would then issue the DHT maintenance mechanism, leading to further increased DHT load.
Application developers might want to adjust the periodic timeout for failure detection to
accommodate to the message load or use some sort of multi-hop �ow control.

The results leave us con�dent that our solution can sustain even high amounts of messages
and does not break down in case of overloading. We hope to see increasing stability with
maturing implementations.

5.2.3 Bootstrap Delay

To o�er competitive user experience, applications that rely on BOPlish must be usable as soon
as possible after the initial Web application has been loaded. A crucial factor to minimize the
time between page load and application initialization on the client is the bootstrap delay. This
factor depends mainly on the time for the new peer to join the DHT, i.e., initialize �nger tables,
�nd its place in the Chord ring and update successor and predecessor. To measure the delays,
we had to intervene into the insides of BOPlish, making it impractical to show the actual code
we used.
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Figure 5.2: Gross BOPlish bootstrapping performance
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Fig. 5.2 outlines the bootstrap delay in the environment described above and indicates the
total time from instantiating the BOPlish client object until the peer has joined the DHT. We
conducted the numbers by subsequently joining additional peers, thus increasing the hop
count that is necessary to route messages from one peer to another. We expected a linear trend
from the results but the results show a di�erent picture. They can roughly be divided into two
stages: The �rst stage is the one where only two peers have joined the DHT, the second stage
is the one displaying the delay with three and more hops on the x-axis.

It can be seen that, in the second stage, the maximum delay for bootstrapping remains more
or less constant with increasing hop count which seems odd. The grave reason for our results
are the very high delays introduced by the WebRTC connection establishment. The connection
establishment delay is so high that all other operations on the resulting Data Channels (the
routing of the messages) are negligible with regards to delay measurements. We therefore
conducted a second measurement that leaves out WebRTC connection establishment: the net
bootstrap delay.
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Figure 5.3: Net BOPlish bootstrapping performance shows near-linear behavior with increasing
hop counts

These numbers provide for a better evaluation of our actual implementation. Fig. 5.3
displays the time from instantiating the BOPlish client until the join operation has succeeded
as a function of the hop count used to route the join messages. Here the bootstrap delay
increases with more peers joining the DHT, just as we expected.
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5.2.4 DHT Lookup Performance

We continue our evaluation by determining average lookup delays that occur when issuing GET
requests against the DHT under little load. Such a lookup closely resembles the name resolving
procedure. The code is shown in Lst. 5.4. Due to the stable, low-delay LAN environment, the
majority of the measured results mirror the actual delay introduced by the BOPlish overlay
and the WebRTC stack.

1 var counter = 100,
2 getDelays = [],
3 hostBopId = ’bwjllzqiitpgb@id.com’;
4 (function () {
5 var timeStart = new Date();
6 bopclient._get(hostBopId, function(err, msg) {
7 getDelays.push(new Date() - timeStart);
8 if (--counter) getDelay();
9 else calculate(getDelays);

10 });
11 })();
12 function calculate(values) {
13 var min = Math.min.apply(null, values);
14 var max = Math.max.apply(null, values);
15 var sum = values.reduce(function(pv, cv) {
16 return pv+cv;
17 }, 0);
18 var avg = sum / values.length;
19 console.log(’avg, min, max:’, avg, min, max);
20 }

Listing 5.4: DHT Lookup Delay

Fig. 5.4 shows the results of our tests. One-hop performance shows a minimum of 4 ms

and a maximum of 43ms. As expected, two-hop delays are roughly doubled. 10-hop delays
show a big span between minimum and maximum values. This result might seem unexpected
in a stable LAN environment but can be explained by the heavy-weight WebRTC stack (the
browser runs a full-�edged SCTP and DTLS stack) and the multitude of components working
together.

Overall, we are satis�ed with the results as the added delay from the name resolving
mechanism is not very high and mostly ranges below 50ms. Moreover, we expect the average
delays to decrease when WebRTC implementations mature over time.
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Figure 5.4: BOPlish Lookup Performance

5.3 Security Analysis and A�ack Scenarios

The combination of WebRTC and a Web-based P2P network potentially creates new attack
vectors. Since one goal of BOPlish is to improve users privacy in communication scenarios, we
focus especially on attacks on privacy. We outline the general attack surface, de�ne security
objectives and give an overview over selected attack scenarios.

5.3.1 A�ack Surface

The attack surface of applications or protocols describes the various ways an attacker could
circumvent the security measures of a system. Every input/output (e.g., a user interface or data
transport channel) of an application is a potential entry point for malicious activity, either
speci�cally harming targeted users or system stability as a whole. Today’s Web applications
typically have a well-known attack surface and can be analyzed systematically. The Open Web
Application Security Project (OWASP) o�ers insights into such analysis3. Classic P2P systems
that are based on standalone applications on top of UDP or TCP have also been broadly studied.
Sit and Morris provide a general overview and categorization of attacks on DHTs in [84].

The combination of Web applications and P2P functionality (via WebRTC), though, creates a
completely new playing �eld, possibly opening up applications to as-yet-unknown attacks. To
model the attack surface of P2P Web applications (such as BOPlish), we categorize malicious

3https://www.owasp.org/index.php/Attack_Surface_Analysis_Cheat_Sheet
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entities as either insiders or outsiders. Insiders are attackers that act as legitimate, authorized
members of the P2P community whereas outsiders harm the system by, e.g., eavesdropping
on wireless communication or injecting malicious messages into the underlying network
infrastructure. The degree to which an attacker may carry out certain attacks heavily depends
on the resources available. A single attacker with only access to a private laptop connected to
the Internet may, e.g., not be able to intercept arbitrary network communication. On the other
hand, government agencies such as the NSA have deep access into Internet infrastructure and
can thus carry out much more sophisticated attacks. As such, the countermeasures heavily
depend on the amount of resources available.

Fig. 5.5 illustrates the components involved in a WebRTC connection. We categorized
these into trustable (green), possibly-trustable (yellow) and untrustable (red) components.
Components such as the browser and the hardware are assumed to be trustable in our model.
These presumptions narrow down the attack vectors to be analyzed. The Web application
running inside the browser as well as the Web server delivering it are deemed possibly-trusted.
This means that there may be applications/servers that are malicious and others that can be
trusted. The current Web architecture has measures in place to decide on the trustability
of applications and servers. These include server authenticity via TLS certi�cates, runtime
sandboxes for JavaScript code and Same-origin Policy (SOP). The same assumptions apply to
the identity provider. Other peers in the WebRTC communication model are per default not
trustable. Every application (and thus, every programmer) must put in place mechanisms that
help users decide whether the remote peer is malicious or not. This is a major di�erence to the
attack surface of ordinary Web applications.

5.3.2 Security Objectives

Our analysis of WebRTC security and impacts on P2P networks is based on a set of safety
objectives generally known as the CIA triad. The acronym CIA denotes the three objectives
Con�dentiality, Integrity and Availability. The semantics of these three goals explained below
are inspired by [83].

Confidentiality

This objective ensures that data which is transferred between two trusted peers does not reach
an unauthorized third actor. An example of the need for con�dentiality is the submission of
credit card information from a buyer to a merchant. In an Internet system the credit card
number, name of the holder, expiration date, possibly a CVC check number and additional
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Figure 5.5: The WebRTC security architecture. Green color indicates entities that the user
can trust if all speci�cations are implemented correctly. Yellow components can
probably be trusted by user choice (e.g., depending on the origin domain). All other
components of a PeerConnection are by default untrusted.

information usually pass a number of routers that lie between the buyer and the merchant. To
make sure that no one on this way (e.g., with access to the intermediate routers) is able to read
out the sensitive data it is encrypted and thus con�dentiality is put in place.

Integrity

Data integrity in an IT infrastructure makes sure that data originating from one node is not
modi�ed on the way to the receiver or the receiver is enabled to check whether data has been
modi�ed. Referring to the credit card example above this means that no person with access to
intermediate routers can inject false credit card information. Since (deliberate or unintentional)
modi�cation of data in IP networks cannot be avoided, one has to make sure that modi�cations
are detected by the peers. In this scenario, the integrity of the data en route is ensured using
message authentication codes (MAC) and cryptographic signatures.

Additionally, integrity of data refers to the unmodi�ability of data stored in an IT system.
This can also be ensured using cryptographic signatures or checksums by using hash algorithms
like MD5, SHA-1/SHA-2/SHA-3 or RIPEMD and comparing the results. This is typically done
when downloading �les from a server.

As a part of integrity protection, the objective of authenticity implies the process of verifying
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the claim that data coming from a certain origin actually originated there. This is important in
various contexts: A web server sending HTML to a browser via HTTPS authenticates itself
using a TLS certi�cate that is cryptographically signed by a trusted certi�cate authority. On the
other side a user authenticates to a server using her credentials (e.g., user name and password
or TLS client certi�cate). More generally authentication may be applied by something a peer
knows (e.g., a password), owns (e.g., a key card) or is (e.g., a biometric attribute).

Again referring to the example of a customer buying goods in an online shopping system
the client authenticates itself to the shop provider by logging into the system. This ensures
that the purchase can securely be tracked back to the customer.

There are, however, use cases where authenticity – in the sense of being able to track informa-
tion down to a real person – is explicitly not desired. These include anonymous/pseudonymous
conversations between two peers to maintain a certain level of privacy.

Availability

The objective of availability guarantees that information stored in an IT system is accessible
when needed. In the context of P2P systems it has to be assured that, e.g., denial-of-service
attacks against certain peers do not lead to users not being able to access a certain piece of
information. It is especially important in the design of P2P systems to guarantee availability
since users may store content on peers that they do not control themselves.

5.3.3 General WebRTC Security Assessment

The IETF Rtcweb Working Group has devoted (and still is devoting) a vast amount of discussion
on the security of WebRTC entities. Thus, the speci�cations, as a result of the discussions,
include numerous security goals such as con�dentiality, source authentication and identity
assurance. The security aspects of WebRTC are speci�cally identi�ed in [72] and further
outlined in [73]. An overview of the trust architecture implied by WebRTC is given in Fig. 5.5.
The following sections provide insight into how each entity in WebRTC is supposed to comply
with our security objectives.

Server

Delivery of the application is done in the classical way via HTTP or HTTPS and thus the same
security considerations that apply to every Web application delivery also apply here. Therefore,
these are not WebRTC-speci�c and not further investigated. Implications derived from the
fact that using a central server may expose certain meta data about the users – which can be
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a threat to privacy – are outlined below. One important aspect to consider when deploying
the server is that delivery of the application can be a �rst entry for attackers, e.g., when the
transfer is conducted via unencrypted HTTP. If this is the case, a man in the middle may be
able to introduce malicious code to the user and perhaps fake a WebRTC connection. Thus,
application transfer should always be conducted using HTTPS with proper server certi�cates.

Browser

The WebRTC speci�cation demands several measures from browser implementors in order
to guarantee users’ security, as stated in Sec. 2.3.2. Still, especially in P2P scenarios, it may
be possible that random users start connecting to the client’s browser and other peers may
get access to the client’s IP address which poses threats to location privacy. Since any Web
application (malicious or not) a user points her browser to may be able to initiate WebRTC
connections, the browser must also restrict the applications’ access to certain information. The
WebRTC Security Architecture speci�cation [73] mentions several countermeasures to these
threats which are elaborated on in Sec. 2.3.2.

Currently, a consent is granted for the whole site and not individual incoming calls. This
may be convenient for the user but poses the threat that an arbitrary user uses the calling
service to call any other user currently connected to the service. One way to handle this would
be that the application code asks for consent when an incoming call is to be accepted. In
a VoIP application for example the user may be prompted by the application that another
user is calling. Since this is left to the application there may be applications that leave users
open to being tapped by other users. It shall be noted that the indicators are only used for
audio/video connections and not for WebRTC Data Channels. For the latter, there exists no
consent mechanism for outgoing or incoming connections.

The security drafts [72, 73] both contain a dedicated section dealing with location privacy
concerns. These arise when negotiating Interactive Connectivity Establishment (ICE) parame-
ters between two browsers prior to establishing a WebRTC connection which may leave the
user open to revealing her IP address to another peer without her having ways to suppress
this. The speci�cation documents therefore mandate implementations to supply JavaScript
applications with a means to suppress ICE negotiation until the user has explicitly granted
the connection initialization. Guaranteeing location privacy hence is a task left up to any
individual application.
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Identity

Handling user identities in the WebRTC context is discussed in detail in [73]. With regards to
the authenticity safety objective mentioned in Section 5.3.2 there are two general concepts
available to deal with identities:

1. Anonymity and Pseudonymity

2. Identity Providers

Anonymity and pseudonymity are useful when it is not desirable or necessary to identify
a peer. An example mentioned in the security architecture speci�cation is that of a “click to
call support” button on a company’s website. Here, the company’s call center agent must not
necessarily know the real identity of the caller only to deal with general product questions.

Identity providers are outlined in [73] as third entities that mutually ensure users’ identities
so that every user can be guaranteed that the identity she claims to obtain is proved by a
trusted third party (see Fig. 5.6). This implies that user A trusts the identity provider of user B
to securely prove her identity.

In detail, an application may ask an identity provider to generate a cryptographically secured
identity assertion that is then carried over the signaling layer together with the o�er/answer
packages needed for connection establishment. Such an assertion is then extracted from the
package by the peer on the other side and sent to the identity provider for validation.

A current concern with the identity provider approach laid out in the speci�cation is that no
browser has implemented even parts of that mechanism. Thus, usable implementations may
come to users rather late in the WebRTC rollout process. On top of that, Identity assertions
are only available for audio/video channels and not for Data Channels.

5.3.4 A�ack Scenarios

We now examine di�erent attack vectors based on four general scenarios and outline possible
countermeasures that are to be put in place by WebRTC P2P application developers. A current
shortcoming of browsers are missing functionality in public crypto. E.g., browsers lack signa-
ture veri�cation or encryption using an asymmetric key pair. The W3C is working on an API
to make these available to Web applications [23]. In the meantime, the missing functionality
can be included by incorporating JavaScript implementations of cryptography functions into
BOPlish. However, these cannot provide the same security as a native API because browsers
lack access to, e.g., a cryptographically secure random number generator. All the scenarios
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Figure 5.6: WebRTC identity providers (IdP) allow for the veri�cation of remote peers’ identity.
Here, two browsers A and B load an application (steps 1 and 2). Then browser A
requests an identity assertion from its IdP (where the user has already authenticated)
(step 3) and sends that assertion together with the WebRTC o�er to browser B (steps
4 and 5). In step 6, browser B asks the IdP of browser A to verify the assertion and
identify the user of browser A.
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mentioned below as well as possible countermeasures thus assume such functionality as being
present.

Outside Monitoring A�ack

WebRTC-based Content Communities are potential targets of pervasive as well as targeted
monitoring. Pervasive monitoring is the act of secretly (i.e., without the agreement of the
participating parties) recording a communication. The surveillance is not restricted to speci�c
targets but tries to span the network as a whole. The IETF has just recently acknowledged
pervasive monitoring as a �rst-class attack that should be mitigated [31]. In contrast, targeted
monitoring is speci�c to single hosts, e.g. a peer in the P2P network or the signaling server. Our
attacker in this scenario looks like this: Monitoring is conducted strictly passive, meaning that
no data is altered, dropped or inserted in the monitoring process. Due to the characteristics of
the WebRTC technology, data and signaling transmissions are handled separately. The attacker
is able to monitor packets of a WebRTC application on layer 3 and thus has access to a router
on the path between peers or between the signaling server and peers.

As the Data Channel speci�cation requires DTLS for all data connections, the transferred
data between peers can be considered safe from eavesdroppers that do not have access to the
DTLS keys (which are negotiated via Di�e Hellman key exchange and thus are not transferred).
Nevertheless, meta data can be collected and evaluated. When users connect end-to-end, the
IP headers reveal the communicating endpoints. Hop-by-hop routing can be used to disguise
network paths and therefore hamper passive monitoring. TOR, for example, uses onion routing
to hide the origin of a request4. In general, the routing mechanism of the P2P overlay dictates
the level of obfuscation.

In order to speci�cally monitor a WebRTC-based network, it is worthwhile to target the
signaling path. The signaling messages contain valuable information (Lst. 5.5) that allow an
attacker to learn about the network topology. The WebRTC speci�cation does not dictate
the type of channel to use for transmitting signaling messages. As such, implementers might
choose to use an unencrypted channel such as the non-TLS variant of WebSockets or HTTP.
While not directly apparent, this puts users privacy at risk when tra�c monitoring is in use.

The vast majority of current WebRTC applications share a central component: a server that
handles signaling between the users. Even if the signaling channel is encrypted, analyzing
incoming and outgoing packet header could allow an attacker to e�ectively gather information
about the network topology from a central vantage point. An approach to mitigate this problem
is in-band signaling. If a P2P overlay has already been established between the users, the

4http://www.onion-router.net/
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overlay can also be used to route signaling messages without the need for a central server. This
drastically reduces the possibilities to pervasively monitor tra�c in the P2P network, which
is a major bene�t of using a WebRTC P2P network for signaling. The next attack scenario,
though, focuses on monitoring attacks conducted by malicious peers inside of the P2P layer.

Inside Monitoring A�ack

In pure structured or unstructured P2P systems the P2P layer is used to route tra�c through a
number of peers between originator and destination. Thus, a peer may monitor all the tra�c
that passes through it. Based on that tra�c, malicious entities may be able to pro�le certain
users’ behavior and read unencrypted, possibly sensitive data. Adding to this the possibility
of Sybil attacks (i.e., one entity joining the network with a huge amount of identities, each
acting as a single peer) an attacker may be able to monitor complete tra�c �ows between
peers. By creating enough Sybil peers, an attacker has the ability to control most of the tra�c
and e�ectively in�uence the availability of the stored data.

We can assume that it is very hard to counter Sybil attacks without a central authority
[27], even though concepts exist to counter them by, e.g., employing social networks [106].
Knowing that, we only have the option to uncover as little information to intermediate peers
as possible. For routing tra�c in a P2P network there is certain meta information every routing
peer needs to be able to read, such as the address of the destination peer. In a DHT this is most
possibly the only information that intermediates need to access. All the rest (meta information
as well as payload) may be hidden from them and only be readable by the recipient. A form of
end-to-end encryption on this data may be applied in this case.

Coming back to the Web context of WebRTC applications this poses a speci�c problem:
There are still no standardized encryption APIs in today’s browsers. As a result, applications
using WebRTC for P2P networks would have to rely on third-party JavaScript libraries5 or
browser add-ons6.

An additional countermeasure would be to apply a kind of onion routing7 so that the
intermediate peers only know their direct neighbors when routing messages. This mechanism
hides the original sender and receiver from intermediates. More advanced techniques such as
trust-based routing [39] are also applicable but add to the complexity of the routing algorithm.

5https://github.com/bitwiseshiftleft/sjcl
6https://github.com/polycrypt/foxycrypt
7http://www.onion-router.net/
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Redirection A�ack

Instead of only passively monitoring the transmission, an attacker can also try to alter, drop or
inject messages to induce a speci�c behavior of the application. Here, we have two di�erent
attacker models: An outside attacker not taking part in the DHT and an inside attacker that acts
as a legitimate peer in the DHT. While the DTLS-protected Data Channel is naturally secured
against tampering attempts by outsiders, insiders can easily modify SDP messages routed
through the DHT. An insider that receives an SDP message for forwarding can change the
candidates contained in the SDP (Lst. 5.5) to e.g. make the remote peer establish a connection
to the attacker peer.

For outsiders, the signaling channel is the only target for this type of attack (assuming that
the attacker has no resources to crack the DTLS encryption between peers). If the attacker is
able to alter signaling messages, man-in-the-middle attacks are relatively easy to perform and
take the same form as insider redirection attacks. The attacker could alter the SDP information
such that both systems establish a Data Channel connection to him instead of each other. He
could then read and/or alter all content passed between the users.

1 v=0
2 o=Mozilla-SIPUA-29.0.1 1097 0 IN IP4 0.0.0.0
3 s=SIP Call
4 t=0 0
5 a=ice-ufrag:d9be6af0
6 a=ice-pwd:62fef8346f4b35cf0c9d073e41e52f27
7 a=fingerprint:sha-256 <omitted>
8 m=application 56116 DTLS/SCTP 5000
9 c=IN IP4 10.17.32.10

10 a=sctpmap:5000 webrtc-datachannel 16
11 a=setup:actpass
12 a=candidate:0 1 UDP 2130379007 10.17.32.10 56116 typ host
13 a=candidate:1 1 UDP 1694236671 93.198.223.40 56116 typ srflx

raddr 10.17.32.10 rport 56116
14 a=candidate:1 2 UDP 1694236670 93.198.223.40 60571 typ srflx

raddr 10.17.32.10 rport 60571

Listing 5.5: O�er information (SDP) generated by a Firefox browser

Write access to the signaling information is thus an e�ective way to get access to the
transmitted content. We can identify multiple attack vectors that can lead to such man-in-
the-middle attacks. Again, using a centralized server for signaling can be risky. Gaining
control over such a server (e.g. through a system vulnerability) would compromise the whole
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system. It is also assumable that an outside attacker redirects the signaling messages to a
server under his control. This could be achieved with, e.g., a DNS redirection attack where the
DNS falsely returns wrong IP addresses. Here, the attacker model assumes a quite powerful
attacker, capable of maliciously changing DNS entries (e.g. a government agency having access
to ISP-level DNS servers). As a result, the attacker redirects the signaling information to a
server under his control.

As WebRTC clients are expected to operate behind NATs, STUN is used to determine a
path through which the client is reachable. The STUN response is embedded in the signaling
information (see candidate lines in Lst. 5.5). A vicious STUN server could be used to fake these
candidates and reply with an address of a system under the attackers control. This, again,
assumes a powerful attacker, having access to resources to modify the behavior of the STUN
server in use.

Remote Code Execution A�ack

This attack stems from the fact that a Web application is combined with P2P capabilities:
Here, the attacker model assumes an attacker acting as a legitimate peer in the P2P network.
Additionally, the application is developed in the way that it does not treat every input coming
from remote peers to be potentially vulnerable. This opens the door for an attacker to execute
JavaScript code on other peers. In BOPlish, messages are exchanged in JSON format and
encoded for transfer via JSON.toString() and decoded on the receiving side via JSON.

parse(). If, for some reason, an application would treat part of the JSON object as executable,
e.g. via eval()8 calls, the peer is open to a remote code execution attack. Research on the
feasibility of attacks on WebRTC-based applications with a focus on P2P networks is already
being conducted. Gallersdörfer, for example, examines ways to hijack applications and convert
browsers them into peers of a browser-based botnet [34].

The outlined scenarios demonstrate that there is potential for new attack vectors in WebRTC-
based P2P networks. Application developers, even those making use of BOPlish for handling
network creation and maintenance, will have to acknowledge these new vectors in their security
assessment. On the other hand, WebRTC P2P networks can o�er better privacy, especially
when it comes to protecting against pervasive or targeted monitoring attacks. Further research
on the possibilities to maliciously make use of such networks has to be conducted to categorize
those new types of attacks and provide structured guidance, such as OWASP has conducted
for classic Web applications.

8https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global_Objects/eval
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6 Group Communication

BOPlish is our approach to a generic, user-centric publishing facility on the Web. Peers are
loosely coupled in a structured overlay and a name resolution indirection allows to dynamically
map identi�ers to peers that are currently available. The implementation presented until now
is able to exchange data between peers in a one-to-one fashion. A natural functionality that
arises in many possible application scenarios is a group communication mechanism to allow
e�cient many-to-many communication within User Communities. Such a mechanism would
be a valuable addition to the BOPlish ecosystem.

One example that showcases the need for such mechanisms is the group chat application
introduced in Sec. 4.8. In our current solution, data is transferred point-to-point between two
peers. While the name resolution is always using the DHT, data distribution occurs in a full
mesh between the participating clients (i.e., the group chat members) using the bopcast

protocol. Groups are bound to small sizes due to limited scalability of the full mesh data
distribution and browser constraints (due to the limited number of Peer Connections). We aim
at mitigating the imposed limitations by providing a mechanism that scales well beyond the
current limits of the full mesh.

Multicast fosters such group communication mechanism but e�cient IP-layer multicast
su�ers from deployment issues in the public Internet. Therefore, many ALM systems have
been introduced that promise high bandwidth, low delay characteristics while being deployable
on today’s Internet. While this seems like an interesting approach for BOPlish, the di�erent
solutions have to be carefully evaluated and compared to ascertain if they cope with the unique
constraints imposed by the BOPlish environment.

We begin this section by laying out prominent multicast techniques and related work in
Sec. 6.1. We thereby take a look at di�erent ALM system and characterize them to decide on
a �tting approach for BOPlish. Sec. 6.2 introduces a concept that aims at extending BOPlish
with pluggable group communication mechanisms. We continue by implementing a �tting
ALM approach in Sec. 6.3 to validate the concept and �nally evaluate the extended system in
Sec. 6.4.
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6.1 Background and Related Work

The Internet is built on top of a unicast, host-to-host communication model. However, todays
services exploit the �exibility of the Internet that easily adapts to new use cases. One of these
use cases is communication in groups. A lot of research has been done on group communication.
This section gives an introduction to the research �eld and a short historical outline of the
di�erent technologies that exist today. We start with a general overview and classic IP Multicast
approaches before digging into selected ALM protocols which operate on overlay networks.
At last, we introduce the Publish/Subscribe paradigm which forms the basis for our extended
protocol API.

Communication within a group can be done in multiple ways. A sender could send messages
to each receiver (unicast) or �ood the whole network with the information (broadcast). Both
approaches are problematic. A unicast-like group communication (see Fig. 6.1a) replicates
content in the network for every receiver. Senders and the network therefore have to cope
with increased load. With broadcast (see Fig. 6.1b), the sender has to send content only once.
This, though, imposes a high load on the network as the content is transmitted over every link
at least once to reach each and every node in the network (duplicates can occur if two entities
send the content to each other at the same time). This approach is highly ine�cient if only a
small group of receivers is interested in the content.

S

R

(a) Unicast
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(b) Broadcast

Figure 6.1: Unicast and broadcast network communication as occurring in IP networks

Multicast aims at providing a solution for e�cient group communication. Receivers explicitly
join a multicast group while they do not need knowledge about the actual location of the
content but only about a group identi�er. In a one-to-many communication scenario, this is
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achieved by constructing a distribution tree with the sender as its root. When multiple senders
are involved, a rendezvous point can be chosen that acts as the root of the distribution graph.
Every recipient of the multicast group eventually receives the content during the traversal (see
Fig. 6.2). Content dissemination in multicast is based on the push-paradigm. Thus, receivers
do not query for new content. Instead, it is delivered automatically as long as they do not leave
the multicast group.

S

R3

R2

R1

Figure 6.2: Multicast network communication as occurring in IP networks

6.1.1 IP Multicast

Multicast implemented on the IP layer promises e�cient one-to-many and many-to-many
communication while hiding the complexity of distribution graph generation and membership
management in the network itself. The traditional addressing scheme in IP is the IP address.
For multicast purposes, speci�c addresses have been reserved for IPv4[20] and IPv6[47]. The
semantics for multicast IP addresses change such that speci�c addresses map to a group of
receivers (a host group, as de�ned in the host-group model [25]) and not a single host.

Despite being around for a decade, IP Multicast su�ers from deployment issues in the
public Internet. BOPlish operates on the Internet. Thus, using IP Multicast is not feasible.
Nevertheless, many ALM techniques are built on top of the ideas of IP Multicast. As such, it is
an important building block for our ideas of group communication in BOPlish. IP Multicast
functionality can be split into two domains – group and topology management.

Group Management

Group management in IPv4 Multicast is handled by Internet Group Management Protocol
(IGMP) which was initially introduced in 1989 and allowed a client to negotiate a group join
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with a neighboring IP Multicast-enabled router (which has to support IGMP, too). IGMPv1 [26]
adds a method to the client’s IP stack, allowing applications to de/register the participation
interests in multicast groups:

JoinHostGroup ( group-address, interface )

IGMP-enabled routers send periodic Host Membership Queries to discover hosts
that have outstanding participation requests. The hosts then respond with aHost Membership
Report that denotes the multicast group name (the multicast IP address). Hosts can also
choose to send the Host Membership Report without a previous query in order for
a timely join without having to wait for the periodic request. There is no explicit way for
a receiver to unsubscribe from a group in IGMPv1. Instead, it has to wait for the router to
timeout the subscription. Therefore, explicit leave-functionality has been added in IGMPv2:

LeaveHostGroup ( group-address, interface )

RFC966 (1985) · · · · · ·• First steps in extending DARPA with a multicast
service; initial proposal of IGMPv1

RFC1112 (1989) · · · · · ·• IGMPv1

RFC2236 (1997) · · · · · ·• IGMPv2

RFC2710 (1999) · · · · · ·• MLDv1 (IPv6 equivalent to IGMPv2)

RFC3376 (2002) · · · · · ·• IGMPv3

RFC3810 (2004) · · · · · ·• MLDv2 (IPv6 equivalent to IGMPv3)

RFC4604 (2006) · · · · · ·• SSM extensions for IGMPv3 and MLDv2

Table 6.1: Important IP Multicast Group Management RFCs

Two multicast models exist: Any Source Multicast (ASM) and Source Speci�c Multicast
(SSM). In ASM, any member of the multicast group can send content. As such, the network
has to conduct a source discovery. In contrast, receivers in SSM groups are explicitly denoted
by the group members up front. This, though, also assumes that receivers know the source
address(es) in advance through another protocol or an external channel.

With IGMP v1 and v2, it is possible for clients to express the wish to participate in a multicast
group denoted only by the multicast IP address. This implies that the network discovers all
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multicast sources and routes these to registered recipient (ASM). As more sources are sending
to a group the source discovery increasingly burdens the network. IGMPv3 adds the possibility
to explicitly specify a list of senders to accommodate for SSM.

IGMP only operates on IPv4 networks. In IPv6, the group management protocol is called
Multicast Listener Discovery (MLD). MLD exists in two versions, with the �rst one correspond-
ing to IGMPv2 and the MLDv2 with IGMPv3. In contrast to IGMP, MLD is built into ICMPv6
which allows for a wide deployment of the group management protocol when the days of IPv6
come.

Topology Management

IPv4 Multicast uses IGMP to signal multicast interests between end nodes and routers. A routing
protocol is needed to construct an e�cient distribution graph consisting of the multicast-
enabled routers, as well as the sources and receivers. Several techniques have been around for
decades (e.g., DVMRP [102], MOSPF [61]) with new ones consistently surfacing (e.g., PIM-SM
[29], BIDIR-PIM [42]).

Tab. 6.2 gives an overview about important milestones in IP Multicast routing protocols.
These can be di�erentiated by taking a look at the distribution tree creation which can result in
shared trees or source-based trees. With source-based trees (e.g., DVMRP, PIM-DM, MOSPF), a
speci�c tree is constructed for every sender (denoted as (S,G)). The trees can be balanced and
�at, allowing for an even load distribution. On the other hand, this requires a per-source state
in every participating router. The costly construction and maintenance of source-based trees is
the main argument for shared trees (e.g., PIM-SM, BIDIR-PIM) which root at a rendezvous point
(denoted as (∗, G)). A per-group state su�ces for such trees which dramatically reduces state
complexity for large groups. On the other hand, the trees are not optimal for all sender/receiver
combinations.

Source-based tree approaches like PIM-DM assume that multicast group members are densely
populated in the network. This is important as the network is �ooded with state information
for each (S,G) tuple and routers have to explicitly opt-out of the multicast participation (push
model). Such algorithms lack e�ciency when the network is not densely populated with
participants. In the context of the global Internet, densely populated groups are unrealistic
and a pull model (as used in PIM-SM) seems to be a better �t. In PIM-SM, every receiver joins
a shared tree originating at a rendezvous point (RP) by sending a (∗, G)-join. Senders can now
send all tra�c to the RP which sends the content down the tree. To improve e�ciency, the
RP can send a source-speci�c join back to the sender ((S,G)-join) which results in a shortest
path from the source to the RP (thus, a concatenated tree is constructed). The sender can
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RFC1075 (1988) · · · · · ·• DVMRP - Source-based tree, Flooding/Pruning,
based on RIP

RFC1584 (1994) · · · · · ·• MOSPF - Source-based tree, Link State Flooding,
based on OSPF

RFC2117 (1997) · · · · · ·• PIM-SM - Shared tree, Rendezvous Point,
protocol-independent

RFC3973 (2005) · · · · · ·• PIM-DM - Source-based tree, Flooding/Pruning,
protocol-independent

RFC4607 (2006) · · · · · ·• PIM-SSM - Source-speci�c shortest path tree,
explicit senders, protocol-independent

RFC5015 (2007) · · · · · ·• BIDIR-PIM - Shared bidirectional tree, virtual
Rendezvous Point, protocol-independent

Table 6.2: Important IP Multicast Routing RFCs and their characteristics (note that
some of the RFCs have been obsoleted)

now use native multicast instead of the tunnel to the RP. In this state, all content originates
at the RP. To further optimize the tree structure, the end routers can choose to send further
(S,G)-joins directed to the original sender. This eventually shortcuts the shared distribution
tree and results in the optimal tree structure – the source-speci�c shortest path tree (SPT) at
the cost of increased state complexity.

More recent protocols (e.g., PIM-SSM) aim at directly building SPTs. PIM-SSM is a trimmed
down version of PIM-SM and does not allow for (∗, G) joins at all. Instead of joining at an
RP, routers send an (S,G) join directly to the source (similar to the PIM-SM shortcutting
mechanism). SSM approaches are optimal in regards to the path distance (resulting in a Shortest
Path Tree (SPT)) but only allow use cases where the sender is known up front (such as a radio
station multicast) and does not change. As a tree is built explicitly for every sender, it does not
scale well with many or moving senders.

PIM-SSM allows for static, small number of senders. In contrast, BIDIR-PIM tries to adapt
the distribution tree to a large number of senders and receivers. It builds a bidirectional
shared tree with a virtual RP. All senders route their packets up the tree using RPF instead
of tunneling them to the RP via unicast. BIDIR-PIM therefore relieves the RP from coping
with the tunneled tra�c as well as the network from the (S,G) states. On the other hand, the
explicitly constructed distribution tree is not optimal and no SPT can be built afterwards (like

90



6.1 Background and Related Work

in PIM-SM shortcutting).

6.1.2 Application-layer Multicast

According to the end-to-end design principles [81], functionality should be implemented
in higher layers of the system stack unless a large performance bene�t can be achieved
that outweighs the cost of additional complexity in the lower layer. IP Multicast has been
implemented in a lower layer due to the performance argument. In contrast to this and as an
response to the deployment issues of IP Multicast, ALM approaches have surfaced which shift
mulicast functionality to the application layer.

Instead of relying on the network, ALM approaches aim at embedding all the needed func-
tionality in the end systems by spanning an overlay network between end nodes. Construction
of the distribution tree lies in the hand of the application and is transparent to the underlying
network which only has to expose elementary unicast forwarding capabilities. ALM avoids
key shortcomings of IP Multicast: wide deployment is possible as no network support is
required. This, though, comes at the price of lower e�ciency due to the overlay network not
having direct knowledge about the underlying topology. Chu et al. [19] have shown that the
performance penalty introduced by overlay mechanisms that ALM system employ is low in
the case of small and medium sized groups.

In contrast to IP Multicast, ALM solution are typically application-speci�c. Application
designers run into trade-o� decision which make it unfeasible to build a generic multicast layer
that covers all use cases. Instead of one generic solution for many use cases, every application
fosters a group communication layer that adapts to the use case. Typically, a custom group
management protocol is employed instead of using a prede�ned standard like IGMP or MLD.
We broadly separate ALM use cases into generic categories and outline their characteristics
(Tab. 6.3).

Usage Group size Number of senders Amount of data

Audio/Video streaming high low high
Audio/Video conferencing low medium high
Generic data transfer medium high low-high
Event distribution high high low

Table 6.3: Di�erent usages require di�erent group communication approaches

We introduced unstructured and structured overlays in Sec. 2. ALM systems operate on such
overlay networks that do not rely on any support from the underlying network besides basic
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unicast forwarding capabilities. Instead of using IP routing to communicate between peers,
data forwarding is abstracted to the virtual links provided by the overlay [86, pp. 157–170].
ALMI [64] and ESM [19] are built on unstructured overlay topologies. Other approaches make
use of structured overlays by implementing source-speci�c network �ooding (CAN multicast
[69]) or use a shared tree approach (Scribe [80]). We now continue to elaborate on the di�erent
ALM systems.

ALM on Unstructured Overlays

ALMI [64] builds on top of an unstructured overlay (a mesh). It is characterized as a mesh-�rst
approach as the participating nodes establish a partially connected graph structure �rst and
then build the distribution tree on top of the mesh. ALMI uses a centralized session controller
that handles group management and tree creation/maintenance. Every peer is connected to
the session controller over a point-to-point unicast link. The session controller computes a
minimal spanning tree between all participating peers using a performance metric (e.g., delay).
Nodes continually probe other nodes using the metric and send results to the controller which
uses the information to improve the tree structure. This gets increasingly costly for large
groups (O(N2)). Therefore, ALMI limits the dissemination of the probe messages leading to a
sub-optimal graph. The constructed tree is a bidirectional shared tree which is sub-optimal �rst
but enhanced over time with the session controller evaluating the performance measurements
[86, pp. 157–170].

Due to the use of a centralized session controller, implementation is expected to be rather
straight-forward and a high degree of control over the tree structure is granted. The bidirec-
tional tree allows for e�cient any-source multicast. On the other hand, ALMI su�ers from the
scalability issues that occur in centralized system due to the session controller. Moreover, it
represents a single point of failure. Contrary to ALMI, ESM [19] does not rely on any central
component but is built solely from participating end hosts.

Group management and data replication in ESM is handled by the Narada protocol. Narada
employs a mesh-�rst approach by organizing nodes in a partially connected mesh structure.
Every group member keeps track of all other participants. Nodes joining the system announce
themselves via a �ooding mechanism that broadcasts the join to all peers. Periodic heartbeats
are then �ooded to detect failing/leaving peers via a maintenance mechanism. Scalability of
this approach is obviously limited. ESM is explicitly designed only for small to medium sized
groups that can cope with the high overhead of maintenance tra�c (the original paper [19]
speci�cally targets data center applications). After the mesh has been constructed, source-
speci�c multicast trees are built on top for every publishing entity using RPF (comparable to
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PIM-SSM) [86, pp. 157–170].

ALM on Structured Overlays

Various ALM approaches based on structured overlays have been developed, the most promi-
nent being CAN mulicast [69], Bayeux [108], Scribe [80] and SplitStream [15]. Two general
approaches exist, either maintain a group-speci�c sub-overlay (CAN) and �ood information or
build distribution trees from all members. A more recent approach is BIDIR-SAM [101] which
also constructs distribution trees.

CAN multicast is a �ooding-based approach where participants of a group build a per-group
“mini”-CAN. A group is identi�ed by an identi�er G concatenated with the user identi�er of
the creator. The node that is responsible for the hash value of the group identi�er acts as
a bootstrap node for a newly created mini-CAN. Content dissemination then happens in a
broadcast-manor along the mini-CAN. Due to the CAN mechanics, duplicates can not be ruled
out if the coordinate space is split unfavorable by the algorithm [86, pp. 157–170].

Scribe is a Publish/Subscribe (Pub/Sub) system that builds on the Pastry DHT [16], a struc-
tured overlay system similar to Chord. By using a DHT substrate, Scribe inherits the scalability,
self-organization and fault-tolerance properties. Subscribers can join groups and senders can
publish events to that group (topic-based Pub/Sub). A group is identi�ed by an identi�er topic
which is hashed to a key (topicId). Scribe uses Pastry to store the topidId in the DHT at
the numerical closest peer to that key. This peer is then used as a central rendezvous point
and the root of the distribution tree for the speci�ed topic. Distribution happens according
to a per-group shared tree that is built using reverse path forwarding. Scribe provides weak
reliability guarantees but can be extended to support reliable and ordered delivery [80].

The authors of the SplitStream [15] approach argue that single-tree-based multicast systems
(like Scribe) are not well-suited for highly cooperative environments. This is due to a relatively
small number of interior nodes of the tree carrying large responsibility for the rest of the
tree. An interior node with limited bandwidth capabilities thus a�ects all children nodes. The
authors propose a forest that is composed of multiple interior-node-disjoint multicast trees.
Content is split into k stripes and each stripe is distributed over an disjoint tree. Forwarding
load is thereby distributed among all participating peers. By overcoming the unbalanced
forwarding load, high-bandwidth applications like video distribution are possible. Moreover,
a tree dropout only a�ects a single stripe. Applications can choose to include redundancy
information in the other stripes to mask the e�ect of drop outs. SplitStream relies on Scribe
and uses a separate Scribe tree for each of the k stripes.

Bayeux [108] is an approach to source-speci�c ALM on structured overlays. It uses pre�x-
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routing-based Tapestry [107] as its DHT substrate and creates shortest-path distribution trees
centered around sources. In contrast to Scribe, distribution trees generation is not receiver-
initiated. Instead, forwarding states are set up from the source towards each receiver to create
a shortest path tree for each client subscription.

BIDIR-SAM [101] operates on the pre�x structure of an overlays key space. The authors
argue that the major de�cit of tree-based approaches lies in the limited reliability and increased
vulnerability in case of node or link failures. This weakness is overcome by creating virtual
distribution trees with vertices mapping to a pre�x (thus, a group of nodes). The pre�x is
variably bound to nodes in the system and no designated rendezvous point is required. The
resulting distribution tree is a bi-directional, shared tree and data is forwarded according to
source-speci�c shortest paths. Such a tree structure is particularly well suited for any source
multicast.

6.1.3 Common APIs for Group Communication

We presented a multitude of ALM approaches that typically use APIs speci�c to the technology
(e.g., the DHT underlay) in use. Comparing and evaluating di�erent approaches is tedious
because the application has to adapt to each API. Therefore, the research community expends
e�ort to �nd a common API that hides the technology-speci�c APIs from the application
[67, 99].

Many of the introduced approaches to overlay multicast are based on the Publish/Subscribe
paradigm. Entities in a system based on Pub/Sub are publishers, subscribers and an abstract
event noti�cation service [30]. Pub/Sub systems can be broadly classi�ed into into topic-based
or content-based systems based on their subscription model. Subscribers explicitly issue an
interest in a speci�c type of content or an explicit topic identi�er. Information related to the
content or topic is then distributed from publishers to subscribers using the event noti�cation
system. A decoupling of publishers and subscribers is achieved by leaving them ignorant
of one another (a decoupling in space). Thus, publishers do not have any knowledge about
the registered subscribers. Subscribers, on the other hand, do not need to know where the
content originates. Instead, only a group name is required that is not tied to the location of the
content. Additionally, Pub/Sub systems might also be decoupled in time which means that a
subscriber can be disconnected during the publishing of a message. The message is delivered
when the subscriber reconnects. Conversely, the publisher might already be disconnected
while the subscriber still receives the message [30] at a later time. Applications built on top of
the paradigm are naturally loosely coupled due to the introduced decoupling.

Pietzuch et. al [67] propose a light-weight Pub/Sub API with three goals: ease-of-use,
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interoperability and extensibility. The authors grade di�erent Pub/Sub approaches into com-
pliance levels. The �rst compliance level (L1) resembles an abstract Pub/Sub interface that
does not dictate implementation details in any way. The L1 API is accompanied by optional
calls that eventually re-introduce a binding to technology, e.g., renew_lease(). This is not
preventable as some Pub/Sub systems rely on, e.g., periodic re-subscription messages while
others do not. The proposed L2 compliance shares the same over-the-wire protocol based
on XML-RPC, specifying error reporting message types and authentication using an HTTP
mechanism. At last, the L3 API introduces a common model for event data and subscriptions.
The model is based on XML and allows multiple systems to use a common data structure. As
such, events and subscriptions can be formatted in the same way, independent of the Pub/Sub
system in use.

Waehlisch et. al [99] present an approach for transparent, hybrid multicast communication.
The included, application-facing API is not bound to Pub/Sub systems as in [67] but suitable
for any multicast-based system. The authors argue that application development should be
decoupled from the multicast �avor (such as ASM and SSM) as well as the layer it operates
on (e.g., IP or application layer). Further, the approach allows inter-technology transmission
transparent to the multicast �avor in use via Inter-Domain Multicast Gateways that connect
the di�erent multicast islands.

To achieve transparent communication spanning multicast technologies, a custom naming
scheme based on URIs is used. Groups are identi�ed by an identi�er that is unique within a
namespace. The namespace describes the syntax of the group which can be adapted to the
environment (e.g., a generic IP address or a SIP conference URI). The authors describe the
ability to add future namespaces using a public registry which allows easy extendability for
new applications.

A middleware hides the technology-speci�c APIs of the multicast technologies from the
application and in turn o�ers an application-facing API. This API is divided into four parts
that handle group management, data distribution and optional extensions for socket options
and service calls. The API is centered around the URI scheme. URIs are used to, e.g., join/leave
groups or send/receive data.
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6.2 A Generic ALM Layer on BOPlish

Today’s ALM systems are widespread but hidden in the application and proprietary (e.g.,
Spotify [55]). In contrast, BOPlish enables application developers to build provider-independent
applications using a common URI scheme. We aim for the same ambitions regarding the group
communication layer. In BOPlish, the targeted application domain is manifold. We foresee
applications ranging from typical source speci�c use cases such as central video distribution
to any source use cases with large proportions of sending entities such as social networks or
group chats.

A multicast solution has to be adopted to the actual application domain. Approaches to ALM
are trade-o� decisions, making it unfeasible to build a single generic multicast layer on top of
BOPlish due to the manifold use cases. Instead of covering all possible use cases or restricting
the architecture to a single generic multicast solution, we propose additions to the BOPlish
core that allow pluggable multicast systems. This includes additional group naming semantics
to the BOPlish URI scheme and a generic interface that is made available to the protocol facility.
Apart from the changes to the application core, we exemplify the implementation of an ALM
system. The implementation shows the general feasibility of a multicast layer on top of BOPlish
and veri�es the concept. This implementation is not supposed to �t all use cases. Rather, other
ALM implementation should be added in the future to accommodate to the speci�c application
requirements.

6.2.1 Generic Group Communication API

We introduced two approaches to common APIs for group communication [67, 99]. Using
a generic API that can adapt to multiple group communication technologies is vital when
requiring interchangeable ALM systems. The API proposal by Waehlisch et. al [99] includes
detailed guidance and not only allows interchangeability of di�erent multicast implementations
but also a way to interconnect islands of di�erent multicast technologies (e.g., IP Multicast).
This is a major bene�t but also requires compatible Inter-Domain Multicast Gateways which
are currently not available (and not feasible until stable, server-side WebRTC implementations
emerge). Adapting BOPlish to the common API is certainly possible. A generic adapter to
Web-based applications would allow interesting use cases and connect the Web environment
seamlessly. We still decided not to use the API for our prototypical solution. Our goal of
the group communication layer is to experiment with the general feasibility of ALM over
WebRTC-based systems. For these reasons, we considered a simpler API approach su�cient
for our current usages.
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The API proposed in [67] is divided into three compliance levels. Each level increases the
amount of dictated properties. For Level 1 compliance, the interfaces pictured in Lst. 6.1 are
required. Level 2 and 3 dictate an XML-RPC API and the data format used on-wire. Level 2
and 3 are again not considered for our approach due to the same reasons stated above. The
Level 1 API is very generic and intuitively to use but does not open access to systems other
than Pub/Sub. Moreover, the bene�t of connecting di�erent multicast islands is not considered
in the API proposal.

1 subscribe(filter_expr, notify_cb, expiry) -> sub_handle
2 unsubscribe(sub_handle)
3 publish(event)
4 ~notify_cb(sub_handle, event)

Listing 6.1: Main interfaces of the Level 1 Pub/Sub API proposal [67]

Subscribe is called with a �lter expression chosen by the implementation and a notify callback
that is called whenever a message matching the expression arrives. A subscription handle is
returned that allows the application to refer to this subscription at a later time. An expiry
time can be speci�ed for the subscription while setting it to zero indicates in�nite leases. The
�lter expression is bound to the implementation in use. In a topic-based Pub/Sub system it
may consist of a topic name while content-based Pub/Sub specify the attribute speci�cation
required for a subscription match. The unsubscribe call removes a subscription indicated by
the handle argument.

The publish call takes a single argument: the event to be published. Events are generic in
the sense that the implementation dictates the actual properties and data format. At last, the
notify callback is invoked each time a matching event arrives. Apart from the event data, the
matching subscription handle is included. This allows the client to determine the subscription
that caused the noti�cation.

The described API complies to the Level 1 API proposed in [67]. Something that is not handled
here is state indication to the client. We therefore decided to decorate the API with promises
that are returned by each call, indicating success and error messages in an asynchronous way.
Promises either resolve or reject according to their state and call the according callback once
the state is set. The usage of promises is completely optional in our API. This allows all calls to
be non-blocking as usual in JavaScript.

1 var p = publish({...});
2 p.then(function() {
3 console.log(’publish successful!’);
4 }, function(err) {
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5 console.log(’publish failed!’);
6 });

6.2.2 Group Naming

After specifying the user-facing API, we lie the focus on the naming of groups. To subscribe
or publish in a group, end hosts use distinct group names or expressions indicating a type
of content. In IP Multicast, a speci�c range of IP addresses is used to identify such groups.
Receivers express their interest by using IGMP to relay the interest to a neighboring multicast-
enabled router. Such an interest can be expressed using ASM or SSM semantics. In ASM, only
the multicast IP address of the group is speci�ed (denoted as (∗, G)). In SSM, on the other
hand, the identi�er (S,G), apart from the group name, explicitly speci�es the source(s).

In ALM scenarios, naming is more �exible as it does not depend on IP addresses. As such,
the di�erent approaches each incorporate their own naming scheme. Scribe, for example, uses
source-independent identi�er built from the group name concatenated with the name of the
creator. This identi�er is then hashed using a collision resistant hash function that ensures a
uniform distribution, allowing it to be spread uniformly across the key space and therefore the
nodes in the system (using the DHT).

From the very beginning of our work, we designed the user-centric identi�ers used by
BOPlish to be extendable for group communication claims. To characterize the group naming
approach used in BOPlish, we recapitulate the BOPlish URI one-to-one scheme previously
described in Sec. 3.3.2:

bop:alice@example.org︸ ︷︷ ︸
User identifier

:one-to-one-chat︸ ︷︷ ︸
App. protocol

/room_xyz︸ ︷︷ ︸
App. path

? auth=xyz︸ ︷︷ ︸
App. parameter

The BOPlish user identi�er is bound to an identity and consists of a user name accompanied
by an identity provider (e.g., alice@id.com). In a group communication scenario, we do
not want to bind user identities to the group name as this would prevent groups from being
logically bound to multiple users. We opted for names that keep the BOPlish semantics intact
by exchanging the user identi�er with a group identi�er. This approach leaves users and
groups completely ignorant of each other. The group identi�er resembles the group name
accompanied by an identity provider and is hashed using a collision-resistant hash function
identical to the user identi�er in BOPlish one-to-one (see Sec. 3.3.2). The hash is then stored in
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the BOPlish name resolution system, indicating the existence of this group.
Only the group identi�er of the URI is used to identify the group (e.g., myGroup@example

.org). This implies that protocol semantics of the URI stay intact. Multiple protocols can
operate in the same group (e.g., group-chat and file-share). As an example, a group
chat protocol instance exploiting the multicast facility could use an identi�er like this:

bop︸︷︷︸
Scheme

:myGroup@example.org︸ ︷︷ ︸
Group identifier

:group-chat︸ ︷︷ ︸
App protocol

/room_xyz︸ ︷︷ ︸
App path

? auth=xyz︸ ︷︷ ︸
App parameter

The group name is string-based and can be freely chosen by the protocol. The group identi�er
generated from the group name and identity provider is composed into a BOPlish URI, also
containing the protocol type and parameters. Thus URI is fed into publish calls along with the
message to be published. Upon subscribing, a URI is fed into the subscribe call along with a
noti�cation callback and the expiry time. The call returns a handle that can later be used to
unsubscribe.

1 publish({
2 uri: <<bopuri>>,
3 payload: <<payload>>
4 });
5 var callback = function(err, msg) {
6 console.log(msg);
7 };
8 var handle = subscribe(uri, callback, 0);
9 unsubscribe(handle);

6.3 Scribe ALM on BOPlish

We now continue to lay out an ALM approach that is built on top of our concept and implement
it afterwards. We introduced many ALM systems and pointed out that choosing a single �tting
ALM approach to all use cases is unfeasible. The approaches can be broadly separated into
�ooding-based (e.g., CAN multicast) and tree-based (e.g., Scribe, BIDIR-SAM). Castro et. al
[17] have shown that tree-based ALM approaches generally outperform �ooding-based ones
when operating on a P2P overlay. This still leaves us with a multitude of di�erent approaches,
each with its own pros and cons. It has been pointed out by [10] that conventional tree-based
structures like the ones employed by Scribe and SplitStream are not particularly well suited for
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the unreliable characteristics of cooperative distributed environments. BIDIR-SAM mitigates
these problems by creating virtual distribution trees based on pre�xes. BIDIR-SAM requires a
DHT overlay that forwards according to pre�xes. BOPlish currently uses Chord as its DHT
overlay. This would need to be replaced by, e.g., Pastry. We decided to choose Scribe [16] as our
�rst approach to an ALM system in BOPlish despite the criticism that was hold up against it due
to the following reasons. Scribe is relatively easy to implement and has proven its scalability
in large-scale simulations ([17]) and implementations [28]. The general characteristics should
help deciding if an ALM approach on top of WebRTC is feasible. Moreover, implementing
SplitStream (which is built on Scribe) afterwards is considered relatively easy.

Scribe builds on Pastry [79], a DHT similar to Chord that also uses a divide-and-conquer
approach in a ring-based key space [17]. The di�erence lies in the routing policies. Chord
routes clockwise in the ring-based key space while Pastry uses pre�x trees. Our solution is
based on Chord, not Pastry, as Chord is already implemented and used in the name resolution
mechanism of BOPlish (see Sec. 4.5). DHTs are easily interchangeable later due to the key-based
routing API that is o�ered by the BOPlish Router component (see Sec. 4.4.4).

BOPscribe inherits its name from the BOPlish environment it runs on and the related Scribe
ALM approach. Fig. 6.3 shows a simpli�ed example of a group communication scenario using
Scribe. First up, Alice creates a topic using a group identi�er. This identi�er is hashed into
a key and stored in the DHT. In this case, the peer responsible for the key is Carol. From
now on, other peers can subscribe to the group using the same identi�er. This subscription is
propagated using the DHT overlay until the root is reached. Whenever a peer wants to publish
data to the group, it sends the data to Carol who distributes it to the registered subscribers.

Scribe o�ers an API pictured in Fig. 6.4. The Scribe-speci�c API needs to be wired to the
generic group communication API and naming semantics described in Sec. 6.2. Lst. 6.2 shows
(in simpli�ed terms) how this is done. The create call of Scribe is mapped to a publish call with
the data property set to null. Apart from the simpli�ed calls described in Lst. 6.2, promises
are returned that signal success and error states to the protocol. Moreover, the subscribe call
passes in an expiry time that is used for the periodic tree maintenance mechanism described
above.

1 GAPI.publish({ uri: <<uri>>, data: null });
2 // Scribe.create(uri.credentials, uri.groupIdentifier);
3
4 GAPI.publish({ uri: <<uri>>, data: <<data> });
5 // Scribe.publish(uri.credentials, uri.groupIdentifier, data);
6
7 var handle = GAPI.subscribe(uri, notify_callback, expiry);
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Figure 6.3: Scribe ALM sequence diagram with Alice creating a group at the rendezvous point
Carol. After creating the group, other peers can subscribe to the group identi�er
and thereby create the distribution tree using reverse path forwarding. All data
send to carol is recursively propagated down the distribution tree.

create(credentials, topicId) creates a topic with topicId. Throughout, the credentials are
used for access control.

subscribe(credentials, topicId, eventHandler) causes the local node to subscribe to the
topic with topicId. All subsequently received events for that topic are passed to the
speci�ed event handler.

unsubscribe(credentials, topicId) causes the local node to unsubscribe from the topic with
topicId.

publish(credentials, topicId, event) causes the event to be published in the topic with
topicId.

Figure 6.4: Topic-based Pub/Sub API used by Scribe [16]
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8 // Scribe.subscribe(uri.credentials, uri.groupIdentifier,
callback) -> uri

9 // callback calls notify_callback with (uri, data)
10
11 GAPI.unsubscribe(handle);
12 // Scribe.unsubscribe(uri.credentials, uri.groupIdentifier);

Listing 6.2: The Scribe API (Scribe) can easily be wired to the BOPlish Group
Communication API (GAPI)

An explicit onmessage callback has to be set by the protocol to receive messages this
peer receives due to his subscriptions. The credentials parameter can be used to validate
requests at the rendezvous point or on intermediate hosts. In our prototypical implementation,
we do not use credentials and therefore push further security-related analysis to future work.

Arising question regarding security are: who determines if the peer is authorized for the
speci�c action and how to authenticate the identity? An interesting approach for the latter
question is to use the topicId itself to authenticate at an identity provider similar to BOPlish
one-to-one.

6.3.1 Implementation

After laying out the concepts for this approach we now continue to implement BOPscribe.
We identi�ed pluggable ALM schemes to be of high value as a single generic multicast layer
that can cope with all use cases is deemed well-nigh impossible. An important goal of the
implementation e�orts is thus a loose coupling of the group communication implementation
and the core BOPlish library. This allows to exchange the ALM system in case the use cases
�ts another approach.

We dig into the implementation details of BOPscribe by �rst giving an architectural overview
before exposing the changes made to the BOPlish core. Further, we give API examples of
protocols leveraging the group communication layer to give the reader a feel for the API. Fig.
6.5 shows the extended architecture of BOPlish. BOPscribe interfaces the Router component
(see Sec. 4.4.4) and is called by the BOPClient whenever an application utilizes the group
communication API (see Sec. 6.2). Received messages get passed up to the BOPclient which in
turn passes them to the respective BOPlish application protocol.

6.3.2 DHT Underlay

The BOPlish Router component o�ers a KBR-like API [22] and uses Chord [90] as its underlying
DHT mechanism. Our ALM approach is similar to Scribe [16] which is originally based on
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+--------+ +--------+ +--------+ +-------+
| chat | | file | | video | *** | |
+--------+ +--------+ +--------+ +-------+

v ^
+---------------------------------------------------+
| |
+-------------------------+ |

v ^ | BOPClient |
+-----------------------+ | |
| BOPscribe | | |
+-----------------------+ +-------------------------+

v ^ v ^
+---------------------------------------------------+
| Router |
+---------------------------------------------------+

Figure 6.5: How BOPscribe �ts into the BOPlish architecture

Pastry instead of Chord. Both DHTs maintain a similar ring-based topology but Pastry routes
on trees built from neighboring peers while Chord maintains a �nger table with logarithmically
increasing distance between the peers.

The underlying DHT could easily be exchanged due to the standardized KBR API. As of now,
we stick with Chord but it would be interesting to compare BOPscribe when using di�erent
underlying DHT mechanisms. The DHT o�ers the following interfaces: put(), get() and
remove(). The KBR API abstracts the DHT interfaces to a single route() call, accompanied
by forward() and deliver() [22]. To route messages between peers, route() is called
with a key and the message as its parameter. The forward() call is invoked at every peer
when a message arrives that is to be forwarded and gives applications the possibility to modify
the passing message. This is crucial for our Scribe-based approach which relies on consuming
messages that are en route to the rendezvous point and not actually addressed to the peer that
consumes the message. At last, the deliver() call gets invoked when someone routes a
message with a key the peer is responsible for.

In BOPlish, the KBR API has been adapted to accommodate to the asynchronous JavaScript
environment. Message interception capabilities required by forward() calls in BOPlish
are implemented as follows. The Router o�ers a registerInterceptor() which takes a
callback function as argument (see Lst. 6.3). This callback gets invoked each time a message
passes the peer. Parameters are the passed message and another callback used to propagate the
message to the next interceptor or, when all interceptors are processed, to the routing layer.
The �rst parameter of the propagation callback is an error message that cancels propagation
and signals the error message to the sender once set. The other parameters are the message
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that can be modi�ed in place and a boolean that drops the message when set. When drop is
set, successful delivery of the message is signaled to the original sender.

1 boprouter.registerInterceptor(interceptor.bind(this));
2 function interceptor(msg, next) {
3 console.log(’intercepted message’, msg);
4 var error = null;
5 msg.someParameter = true;
6 var drop = false;
7 next(error, msg, drop);
8 }

Listing 6.3: Register message interceptor

Apart from the additional route interception mechanism, no changes were made to the
BOPlish core for the BOPscribe implementation. This leaves us con�dent that other ALM
approaches based on a KBR-like API are also implementable without tinkering with the core
functionality. We now �ll the concept of BOPscribe with the implementation details. This
includes specifying the message formats and the reaction of the system to each of the messages.

Group Creation

To create a group, BOPscribe crafts a CREATE message and routes it in the direction of the
group key (sha(myGroup@id.com)). The peer responsible for this key receives the message
and from now on acts as the rendezvous point for the speci�ed group hash. The rendezvous
point stores the group in its local key storage. This allows the Chord DHT to replicate the
group entry to its successors using the maintenance mechanism. A such, when the rendezvous
point fails, the successor will automatically take over.

1 var create = { // recipient sha({{Group identifier}})
2 type: messageTypes.CREATE,
3 createdOn: {{Date of creation}},
4 credentials: {{Authorization credentials}}
5 };

In the same way, groups can also be removed by issuing a REMOVE message. It is routed
through the DHT until the top of the tree is reached. The root then deletes the group and
denies further subscriptions/publications.

1 var remove = { // recipient sha({{Group identifier}})
2 type: messageTypes.REMOVE,
3 groupId: {{Group identifier}}, // e.g., myGroup@id.com
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4 credentials: {{Authorization credentials}}
5 };

Group Subscription

Every peer stores their own subscriptions in a list. As long as the peer wants to stay subscribed
to the group, it issues periodic SUBSCRIBE messages containing the peer ID in direction of
the group identi�er hash. The next hop intercepts the message, consumes it and adds the peer
to the list of registered subscribers for this group. All peers periodically craft SUBSCRIBE
messages to subscribe themselves to all current subscriptions. Thus, this procedure recursively
subscribes all peers en route until the root of the tree is reached. If no SUBSCRIBE message
arrives for a speci�ed amount of time, the subscription times out and is removed by simply
deleting the entry from the subscription list which is again propagated if the subscription list
is now empty.

1 var subscribe = { // recipient sha({{Group identifier}})
2 type: messageTypes.SUBSCRIBE,
3 peerId: {{Peer ID}},
4 credentials: {{Authorization credentials}}
5 };

Leaving the group can either happen by waiting for the timeout or by crafting an explicit
LEAVE message, again containing the peer ID. When a peer receives a leave request, it checks
if it has remaining subscribers and only propagates the leave if not.

1 var leave = { // recipient sha({{Group identifier}})
2 type: messageTypes.LEAVE,
3 peerId: {{Peer ID}},
4 credentials: {{Authorization credentials}}
5 };

Group Publication

Publication requires the sender to route messages to the root of the tree. The rendezvous point
receives the message and consumes it. It could check if the publisher is authorized to publish
but this is currently not implemented. Afterwards, DATA messages are created that hold the
content of the publication. They are sent to all subscribers in the subscription list of the peer.
Typically, this list is small as it only contains subscribers that are direct neighbors due to the
recursive creation of the subscriber list.
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1 var publish = { // recipient sha({{Group identifier}})
2 type: messageTypes.PUBLISH,
3 payload: {{Protocol payload}},
4 credentials: {{Authorization credentials}}
5 };

Whenever a peer receives aDATAmessage, it maps the included group hash to its subscription
list and routes the message to each known subscriber.

1 var data = { // recipients {{subscriptionList}} for groupKey
2 type: messageTypes.DATA,
3 groupKey: {{Hashed group identifier}},
4 payload: {{Protocol payload}},
5 credentials: {{Authorization credentials}}
6 };

We covered all message types of BOPscribe from creation of a group to the actual data
distribution. It can be seen that the group identi�er is never transmitted in clear text but only
a hash value of it which is created locally. Thus, the group names are naturally private as long
as the hash function is considered secure.

6.3.3 Leveraging BOPscribe

Protocols leveraging the group communication layer use the BOPlish group communication
API introduced in Sec. 6.2 to communicate in groups. Every API call is mapped to the according
functionality as described in Sec. 6.3. Lst. 6.4 shows a minimal example of such a protocol (i.e.,
create, subscribe, publish to a group).

1 // specify onmessage callback
2 var onmessage = function(uri, msg) {
3 console.log(’Topic: %s, Msg: %s’, uri.groupIdentifier, msg);
4 };
5
6 var bopuri = new BopURI(’bop:myGroup@id.com/my-protocol’);
7
8 // create group myGroup@id.com
9 var p = proto.group.publish({uri: bopuri, data: null});

10
11 p.then(function(){
12 // subscribe to ’myGroup@id.com’
13 proto.group.subscribe(bopuri, onmessage, 1000);
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14 // send textual data
15 proto.group.publish({
16 uri: bopuri,
17 data: "my message"
18 });
19 // send json-encoded data
20 proto.group.publish({
21 uri: bopuri
22 data: {
23 message: ’my message’,
24 username: ’alice’
25 }
26 });
27 });

Listing 6.4: Minimal example of a protocol leveraging BOPscribe

Published data can be either string-based or encoded in JSON, similar to the proto.send

() method introduced by BOPlish one-to-one. Currently, binary data such as images has to
be encoded into a textual form via, e.g., Base64 to send it over BOPlish. The overhead that
is introduced by encoding binary data can be reduced using JavaScript ArrayBuffer. If
transmitted over WebRTC, the Data Channel has to be speci�cally set up for such binary
transmission. We currently use the same Data Channel instance for data distribution and
DHT/ALM-related maintenance tra�c. As such, binary transmission is not supported. This
decision is ruled based on the current status of WebRTC implementations that do not yet
support ArrayBu�er to their full extent. As an example, the Chrome browser fails when
sending messages bigger than 64 kB and applications have to manually chunk the data1. We
therefore opted to stick with a single Data Channel for now and wait for the implementations
to stabilize before deciding on further steps.

6.4 Evaluation

We laid out the conceptional details and the implementation of our ALM approach. To conclude
the section, we now continue to evaluate the system. We evaluated BOPlish one-to-one using
the emulation environment described in Sec. 5. The same environment is used to measure
scalability-related metrics in BOPscribe. As such, the same restrictions apply and we are
currently limited to a LAN environment with high bandwidth and low delay links between

1https://code.google.com/p/webrtc/issues/detail?id=2270
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peers. As a future addition, it would be valuable to test the implementation using larger
numbers of geographically distant peers. This could, e.g., be achieved using a PlanetLab based2

setup. This, though, should be delayed until the WebRTC speci�cation is �nalized and stable
server-side WebRTC implementation emerge.

Multi-hop performance has already been evaluated in Sec. 5.2 and the results are directly
applicable for BOPscribe. As such, the structure of the distribution tree that is recursively
generated for each group is the main criteria for this evaluation. We generate tree traces by
appending peer IDs to the DATA message �owing from the rendezvous point down to the
members of the group. We obtain the complete structure by collecting the traces at the leafs
and combining them to a tree.

An application has been created that acts as a testing front end to the BOPscribe layer (Fig.
6.6). Using this application, we validate protocol mechanisms and measure performance in the
emulation environment.

The environment of this evaluation is the same that is speci�ed in Sec. 5.2 with the exception
of the DHT con�guration. The original Chord paper suggests to use a SHA algorithm to hash
peer and content identi�ers to the same key space. When using SHA-1, the resulting key space
lies in the interval 0...2m − 1 with m = 160. The Chord �nger table maintains entries for
every key at n+2k−1 with n = peerId and k = 1....m (i.e., m entries). This leads to a problem
in our implementation: Web browsers currently only support a limited number of concurrent
Peer Connections. For our evaluation, we want to use smaller-sized �nger tables that can be
fully populated. To achieve this, we restrict the key space to 0...216 − 1 by calculating the
modulo of the hash and the key space. This leads to fewer entries in the �nger table at the price
of increased collision probability (which is neglectable for our small test groups). The hash for
an identi�er is created as follows: sha1(′identifier′) mod 216. This eventually chops of 144
bit from the 160 bit result. We expect the statistical properties of the hash function to hold
but a proof is considered complex. We decided to run a test to verify the uniform distribution
of the resulting keys. The results graphs and source code of this test can be found on the CD
that is included with this thesis (/evaluation/uniform-distribution*). It shows that the resulting
limited key space is still uniformly distributed.

6.4.1 Scalability in Larger Groups

BOPscribe is supposed to operate in BOPlish User Communities. Such communities are not
bound to a speci�c group size but are expected to be of sizes in the hundreds. Our emulation
environment currently cannot handle hundreds of peers due to multiple issues: The underlying

2https://planet-lab.org
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Figure 6.6: BOPscribe test application displaying the �nger table of this peer and a GUI allowing
to leverage the group communication API.

WebRTC library is not �nalized and fragile in some parts3. Moreover, the libraries used in
Google Chrome and Mozilla Firefox happen to generate high system load due to bugs, requiring
vast amounts of computing resources4,5.

In the emulated environment, many peers share few systems. If individual peers abruptly
require high amounts of resources, they a�ect the other peers on the system. This can lead
to abrupt detachment of all peers due to increased timeouts. In this case, our system breaks
down as it cannot handle such a large amount of churn. We therefore choose to pick group
sizes where the system could work entirely stable and derive scalability properties for larger
groups from the results.

In this test all members of a User Community subscribe to a single topic. BOPscribe builds
a distribution tree rooted at one of the peers. We measure average, as well as min/max hop

3https://github.com/js-platform/node-webrtc/issues/144
4https://bugzilla.mozilla.org/show_bug.cgi?id=861050
5https://bugzilla.mozilla.org/show_bug.cgi?id=979716
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Figure 6.7: Average (with min/max markers) BOPscribe distribution tree length with increasing
group size

counts in such trees while increasing group sizes (see Fig. 6.7). It can be observed that the
average number of hops rises on a near-linear basis despite doubling the group size in each
iteration of the test. The minimum hop count is always 1. This is obvious as the rendezvous
point is also part of the group. The maximum hop count in our test stays at 5 hops for group
sizes of 8−32, marking the worst case for a leaf node. With 64 peers in the system, the average
hop count increases to 5.25 which is roughly in line with the expected number of routing hops
the Chord DHT dictates (12 log2(N)).

6.4.2 Distribution Tree Maintenance

A central aspect to the system is its behavior in case of failing or leaving peers. Web-based
applications are faced with rather high rates of churn. As such, we evaluate the impact of
failing rendezvous points as well as members of the distribution tree. BOPscribe constructs a
per-group distribution tree rooted at the rendezvous point. To visualize such a tree, we join
17 peers that form a User Community. A group is created and a rendezvous point is thereby
elected. The other 16 peers subscribe to the group and form the distribution tree. The initial
distribution tree created by the 17 peers is pictured in Fig. 6.8.

We can observe that the tree is not very well balanced. The reason for this is that the
structure is coupled to the DHT routing and therefore not in�uenceable. Moreover, messages
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Figure 6.8: Initial BOPscribe distribution tree rooted at rendezvous point 50780

are always routed to the predecessor of the group hash (47189) before reaching the rendezvous
point again caused by the Chord mechanics [90].

Rendezvous Point Failure

Data is always distributed from the root of the tree down to all children in the subscriber list.
The root of the tree is a quasi-random rendezvous point. If the rendezvous point fails, the
tree has to be reconstructed. We visualize the impact of such a failing root by closing the
corresponding node with peer ID 50780 and redraw the tree after it has stabilized. The amount
of time it takes to stabilize is coupled to the DHT maintenance timeouts as well as the periodic
re-subscriptions issued by BOPscribe. In our LAN environment, the timeouts can be set to
low values but have to be increased when operating on the public Internet. Fig. 6.9 shows the
result of a failing root after the stabilization.

Peer 61012 is now the rendezvous point as it was the previous successor of 50780. It is
therefore detached from its old parent node 31696. It can be seen that the departure of the
rendezvous point has only a�ected a small number of peers (namely, the direct neighbors
printed bold). Publishing to the group continues seamlessly, even though some messages
are lost at the moment the original rendezvous point fails because the subscription list of the
new rendezvous point has to populated (i.e., when peer 47189 issues the periodic re-subscribe
message).
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Figure 6.9: BOPscribe distribution tree after rendezvous point failure

Inner Failure

After investigating rendezvous point failures, we continue to take a look at inner failures, i.e.,
how the system reacts to departing nodes with multiple outgoing edges. We choose peer 45560
as it has the most outgoing edges (4) in the tree. After shutting down the peer (i.e., killing the
process of the instance), we can see that a larger number of peers has been a�ected. Rebuilding
the structure takes longer and some peers miss a few datagrams while others remain una�ected
(e.g., 14187).
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Figure 6.10: BOPscribe distribution tree after an inner node fails

Even though only neighbors of the failing nodes are directly concerned in the restructuring of
the tree, a lot of nodes where a�ected during restructuring. We have seen that the distribution
tree maintenance incorporated by BOPscribe handles both, rendezvous point and inner node
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failure but a large number of peers can be a�ected of disruptions when peers of a high tree
rank become unavailable. Dropouts result in the loss of publications and applications have to
deal with the best e�ort delivery model.

Summary

We have shown that both cases, inner failure as well as rendezvous point failure are being
mitigated very well by the tree structure. Though, we did not yet talk about the duration it
takes for the tree to recover. During our �rst tests it took over 90 seconds to recover a failing
branch after an inner node failure. This has multiple reasons: First, the Chord DHT periodically
checks random peers in its �nger table for failures which takes some time. Moreover, Scribe
delivers content on only one path. If any of the peers in that path fails, distribution halts until
the Chord rings stabilizes and, on top of that, the peers re-issue the periodic Scribe subscription.
This combination explains the high dropout latencies we observed.

After adapting the maintenance duration and re-subscription values, we managed to drop
the timeout to a range of 1− 3 seconds. It has to be noted, though, that this is only possible
in LAN environment as the timeouts have to be set to higher values when operating in the
public Internet. It would be interesting to compare these observations with the SplitStream and
BIDIR-SAM approaches which should perform superior in such situations due to the redundant
paths.
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7 Flow Control and Reliability

Participants in a distributed system are often very heterogeneous with regards to network
bandwidth, latency, processing power, memory capacity and many more variables. This usually
leads to situations in which a sender transmits data to a receiver at a rate or of a size that
the latter cannot handle (e.g., because its bandwidth is narrower or the CPU slower than the
sender’s). As a result, the communication between the participants is disturbed (e.g., packets
are lost), which eventually degrades user experience or even leads to application failures. In a
group communication scenario, the situation is even more di�cult to handle, since there are
multiple receivers and possibly multiple senders, that all have to agree on a mechanism to
handle overwhelmed receivers. Therefore, some kind of adjustment of sending rate or packet
size has to be put in place. This adjustment mechanism is called �ow control. Additionally,
many network applications need to assure that transmitted data actually arrived at the receiver,
leveraging a reliability mechanism of the underlying transport. This chapter introduces the
concepts of �ow control and reliability and lays out their application to BOPlish.

Even though there is a clear distinction between �ow control and congestion control, we
noticed that these terms are often used as though they were interchangeable. Thus, we follow
up with a di�erentiation of these two concepts. One source of confusion about �ow and
congestion control may stem from the fact that to a sender, both handle the problem of losing
packets. Tanenbaum and Wetherall describe the problem scope and the di�erence between
�ow and congestion control like this:

“An allocation problem that occurs at every level is how to keep a fast sender from
swamping a slow receiver with data. Feedback from the receiver to the sender is
often used. This subject is called �ow control. Sometimes the problem is that the
network is oversubscribed because too many computers want to send too much
tra�c, and the network cannot deliver it all. This overloading of the network is
called congestion.” [91, pp. 34-35]

By this de�nition, �ow control focuses on end-to-end connectivity while the scope of conges-
tion control are hop-by-hop links (see Fig. 7.1 for an illustration). One widely-known protocol
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that incorporates congestion control, �ow control as well as reliability is the Transmission
Control Protocol (TCP). It uses a sliding window mechanism for �ow control/reliability and
several techniques such as slow-start and fast recovery for congestion control. With the sliding
window algorithm a receiver indicates, upon reception of a TCP segment, the number of octets
the sender may transmit subsequently without overwhelming the receiver [68]. Slow start –
�rst described by Jacobson in 1988 [49] – is used to determine, how much data can be injected
into the network [1].

WebRTC Data Channels rely on SCTP, which does congestion control and o�ers services
such as ordered and reliable transmission. Sec. 7.1 gives an insight into this mechanism. It also
sheds light on current �ow control techniques and their application in multicast scenarios. In
Sec. 7.2 we describe the �ow control and reliability services of the BOPlish concept and in Sec.
7.3 we explain how we incorporated it into our reference implementation. Sec. 7.4 concludes
this chapter with an evaluation.

(b)

(a)

congestion control congestion control

flow control

receiver

receiver

sender

sender

Figure 7.1: Congestion control (a) acts on the network layer to ascertain a fair use of network
resources. Flow control (b) on the other hand happens between sender and receiver,
e.g., when the receiver has smaller bu�ers than the sender.

7.1 Background and Related Work

The basic problem, that �ow control ought to solve is that a sender could potentially transmit
data faster than one or more receivers can process [91, pp. 201�.]. Two commonly suggested
solutions exist that approach this problem: In feedback-based (or window-based) �ow control,
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the receiver explicitly grants permission to the sender for transmitting packets. Protocols
employing this behaviour are also called Automatic Repeat-Request (ARQ) protocols. They
usually include methods for error detection (lost/corrupted packets) and recovery (in the form
of data retransmission), providing a reliable transfer. A rate-based algorithm, on the other
hand, suggests that sender and receiver agree on a (�xed or dynamic) packet rate.

7.1.1 Unicast Flow Control and Reliability

The simplest feedback-based �ow control algorithm is stop-and-wait. Fig. 7.2 (a) illustrates
the functionality of stop-and-wait. Here, the sender sends one data packet and waits for the
receiver to acknowledge retrieval of that packet, indicating that the receiver is now able to
process the next one. This way it is ascertained that the receiver will never be overwhelmed
(as a side e�ect it guarantees reliable delivery). On top of that, the sender can start a timer
upon transmission of every packet. Once that timer runs out, it can be assumed that the packet
has been lost on the way or on the receiving side and the sender retransmits it (hence the
name ARQ). The drawback of stop-and-wait is its bad performance; If the transferred packets
are not very big, the throughput of such an implementation is mainly determined by the
round-trip latency of the connection (in Fig. 7.2 this is the “Wait” time). The throughput will
most probably never reach the link’s capacity (resource under-utilization).

Thus, a sliding-window protocol is employed, that allows a sender to transmit multiple
packets in a row, without having to wait for an acknowledgement from the receiver. Sliding-
window protocols have three properties: they guarantee reliable delivery of packets, allow for
�ow control and maintain the order of packages. We focus just on the �rst two properties.
The procedure is illustrated in Fig. 7.2 (b). Here, sender and receiver negotiate a window size,
which is the number of packets (or bytes or octets, depending on the speci�c protocol) that
the sender may transmit in a row. With high enough window sizes (depending on round-trip
latency) this enables the participants to “keep the pipe full” and leverage the bandwidth at hand
(a synonym for this approach is “pipelining”). To make this algorithm work without losing
packets, a consecutive sequence number is typically attached to every packet. This number is
included in the acknowledgement packets by the receiver. The term “window” derives from
the fact that the sender maintains a window which contains all the packets that have been sent
but not yet acknowledged. Whenever an acknowledgement arrives, the next packet is sent out
and the window is advanced by one packet on the input stream. Apart from better resource
utilization, this approach lets packets inside of the window arrive out-of-order, because they
are bu�ered until the window can be advanced.

In error cases, however, this protocol may lead to ine�ciencies, too. Suppose, a window
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Figure 7.2: Illustration of two di�erent feedback-based �ow control algorithms. Stop-and-wait
(a) is the simplest one, where every packet must be acknowledged by the receiver.
With a sliding-window approach (b), the sender may transmit a certain amount of
data before it has to wait for an acknowledgement (graphic based on [9, p. 503�.]).

size of 4 is used and all 4 packets have been sent out, waiting to be acknowledged. Before the
retransmission timer expires, acknowledgements for packets 2, 3 and 4 arrive, but not for packet
1. This means, that the sending window cannot be advanced until either an acknowledgement
for packet 1 arrives or its timer expires. Thus, the sender is blocked at that point. On top of
that, it is unclear what the sender should do after the timer expires. The options are that it
transmits all packets in the current window again (perhaps sending duplicates to the receiver)
or just packet 1 (which is ine�cient).

One very primitive way to handle this situation is called “go-back-n”. The receiver sends
cumulative acknowledgements, i.e., an acknowledgement for packet 4 implies that packets
1, 2 and 3 are acknowledged, too. So, in the above situation, the sender would receive an
acknowledgement for packet 4 and could advance the sending window by 4, transmitting the
next 4 packets. If the acknowledgement didn’t arrive in time, the sender sends all packets in its
sending window again, “going back 4”. Selective acknowledgements improve this cumulative
acknowledgement mechanism by informing the sender about the speci�c packet that have
been received, resulting in fewer retransmissions.

What can be seen from the described scenarios is that the parameters for any one of the used
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protocols must be chosen wisely. A too large window, e.g., would lead to many packets being
retransmitted in lossy networks. A too small window would result in resource under-utilization.
The timeouts on the sender side also have a huge impact on performance: Too small timeouts
result in many (possibly unnecessary) retransmissions; if the timeouts are set too high, both
sender and receiver would possibly stay idle many times. An important metric that can be
employed for �nding optimal window size and timeout values is the bandwidth-delay product.
It is calculated as the product of the link’s capacity (in bits/second) and the round-trip delay (in
seconds) and represents the maximum number of bits that can reside on the link without being
acknowledged by the receiver. If this value is very high, the sliding window must also be large.
[11] gives a deeper insight into the problem space and how it is solved for TCP, especially in
so-called long, fat networks with a high bandwidth-delay product. An advantage of the named
feedback-based approaches over rate-based ones is that – additional to o�ering �ow control –
they come with a way to handle transmission errors.

The second popular solution, rate-based �ow control, is much simpler: Sender and receiver
simply negotiate a rate (e.g., packets per second) at which the sender may transmit packets.
From then on, no further feedback is necessary (but can very well be included in the protocol for
reliability assurances or rate adaption). In [91], Tanenbaum and Wetherall promote rate-based
�ow control because in high-speed networks “due to the (relatively) long delay loop, feedback
should be avoided: it takes too long for the receiver to signal the sender.” More sophisticated
approaches to rate-based �ow control introduce upper bounds to the sending rate [9, p. 510].

The decision whether to use feedback-based or rate-based �ow control depends highly on
the use cases and the underlying network infrastructure. Tab. 7.1 summarizes the varying
properties that di�erent use cases demand of the transport: If the transport is mainly used to
transmit real-time events (small packets), it is important to have low latency but the bandwidth
does not play an important role. With real-time audio/video content (e.g., conferences), on the
other hand, both, low latency as well as high bandwidth are necessary. The third case is the
distribution of rather large data that is not time-critical (e.g., �le sharing); it demands a high
bandwidth and does not react too bad on high latencies between sender and receiver.

Usage Low Latency High Bandwidth Reliable

Real-time: Audio/Video yes yes no
Content distribution no yes yes

Real-time: Events yes no yes

Table 7.1: Di�erent usages require di�erent �ow control and reliability approaches.
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7.1.2 WebRTC Congestion/Flow Control and QoS

The Data Channel speci�cation [53] o�ers only little insight into the speci�c congestion and
�ow control mechanisms employed by WebRTC implementations. The following enumeration
lists mentions of congestion control in the speci�cation:

• “Data channels of a PeerConnection MUST be congestion controlled; either individually,
as a class, or in conjunction with the SRTP media streams of the PeerConnection, to
ensure that data channels don’t cause congestion problems for these SRTP media streams,
and that the WebRTC PeerConnection does not cause excessive problems when run in
parallel with TCP connections.”

• “The important features of SCTP in the WebRTC context are: [. . . ] Usage of a TCP-
friendly congestion control. [. . . ] The congestion control is modi�able for integration
with the SRTP media stream congestion control.”

• “SCTP provides congestion control on a per-association base. This means that all SCTP
streams within a single SCTP association share the same congestion window. Tra�c not
being sent over SCTP is not covered by the SCTP congestion control. Using a congestion
control di�erent from than the standard one might improve the impact on the parallel
SRTP media streams.”

Flow control is not mentioned at all and with regard to congestion control, the speci�cation
refers to other Internet standards. To gain an insight into the congestion control mechanisms,
it is thus necessary to inspect the SCTP speci�cation. SCTP as de�ned in [87] mandates both
�ow and congestion control similar to the mechanisms employed by TCP. Speci�cally, these
mechanisms are standardized in [3] (slow start, congestion avoidance, fast retransmit, fast
recovery) and [12] (avoidance of “silly window syndrome”). Both major Data Channel-enabled
WebRTC implementations – Chrome and Firefox – ship with this default mechanism. Currently,
handling congestion control of Data Channels together with media streams is discussed at the
IETF in the Rtcweb working group as well as the RMCAT (RTP Media Congestion Avoidance
Techniques) working group1. To date, there are no proposed drafts published by either of
these groups, which suggests that implementations will not change the current behaviour
dramatically in the foreseeable future.

Theoretically, messages passed to RTCDataChannel.send() can be arbitrarily large and
the implementation handles fragmentation and re-assembly. Currently, though, only Firefox

1http://tools.ietf.org/wg/rmcat/
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implements fragmentation properly. In Chrome, passing packets larger than the employed
SCTP library’s default of 64 KBytes/packet will result in an error condition. This is most likely
to change in the future (mostly depending on the �nalization of the NDATA draft [88]), but
currently, applications will have to account for this limitation and implement fragmentation
and re-assembly by themselves.

Send/Receive Bu�ering

The WebRTC speci�cation [7] de�nes a read-only attribute of the RTCDataChannel interface,
named bufferedAmount. This attribute is one potential parameter that can be employed
for implementing overlay �ow control. It indicates, how much of the data that has been passed
to RTCDataChannel.send() is currently being bu�ered at the sender. If the value of this
attribute increases constantly, it is an indication of congestion and the sending rate should
probably be decreased. We investigated the usability of this attribute for our purposes of �ow
control and examined both the Chrome browser as well as Firefox. Both employ a custom
bu�er in their Data Channel implementations. This bu�er is completely independent of the
underlying SCTP’s bu�er. Firefox has no built-in upper limit of bu�ered data2,3, while Chrome
has a hard-coded limit of 16 MBytes4 de�ned in the variable kMaxQueuedSendDataBytes.
One pitfall of Chrome’s bu�ering implementation is that, if the amount of bu�ered data in the
Data Channel exceeds kMaxQueuedSendDataBytes, the channel is immediately closed.
This behaviour mandates a careful monitoring of bufferedAmount and eventually stopping
of calling RTCDataChannel.send(), so that the channel does not get closed.

As for a receive bu�er, the situation is similar. Firefox has no hard-coded bu�er limit while
Chrome has a variable kMaxQueuedReceivedDataBytes that is set to 16 MBytes. If this
16 MByte bu�er is exceeded (e.g., by the sender overwhelming the receiver with data), the
connection is closed by the client’s browser. The application has no means of anticipating such a
situation because the WebRTC API does not de�ne an attribute that would represent the receive
bu�er. This problem is relaxed, though, by the fact, that kMaxQueuedReceivedDataBytes
is only �lled as long as no onmessage handler has been set on the Data Channel. For Firefox,
the situation is similar: The Firefox WebRTC implementation �res a message event as soon
as data arrives on the SCTP connection. Thus, the limiting factor would be the browser’s event

2https://mxr.mozilla.org/mozilla-central/source/netwerk/sctp/
datachannel/DataChannel.cpp#2227

3https://mxr.mozilla.org/mozilla-central/source/netwerk/sctp/
datachannel/DataChannel.cpp#1041

4https://code.google.com/p/webrtc/source/browse/trunk/talk/app/webrtc/
datachannel.cc#39
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queue size. In contexts di�erent from browser applications (e.g., system application written in
C or C++), developers would typically implement a dispatching functionality with a dedicated
thread for bu�ering incoming messages and dispatching them to a processing thread. This
prevents the network bu�er to �ll up. In Web applications, a Web Worker could be used for
dispatching [45]. Unfortunately, no browser implementation currently allows for the usage of
Data Channels from a worker context.

7.1.3 Multicast Flow Control

In simple WebRTC-based scenarios, where data is transported from one peer to another using
a Data Channel, the built-in hop-by-hop �ow and congestion control mechanisms as outlined
above su�ce to prevent the receiver from being overwhelmed with data. When a transport is
run over a network of WebRTC peers, though, an application-level transport protocol must be
employed to assure that receivers are not overwhelmed with huge data bursts. Flow control
algorithms face the major challenge of scalability when applied to multicast networks [63].
Algorithms must be scalable in the sense that feedback from receivers arrives at the sender
in a timely fashion (i.e., before messages get lost). Aggregated feedback is important because
in multicast scenarios, all senders may provide �ow control feedback (e.g., rate adaption
requests) to the senders. Such feedback messages can easily overwhelm intermediate peers
as well as the multicast senders (an e�ect known as feedback implosion) and hence must be
synchronized/aggregated at some point on their way to the senders.

Since the underlay transport of Data Channels already o�ers hop-by-hop congestion and �ow
control, it seems obvious to incorporate these into the overlay �ow control. Several publications
have analyzed the impact of leveraging the congestion and �ow control of underlying transports
(mostly TCP) in overlay networks. Most of the proposed approaches found in the literature
focus on single-source multicast. One speci�c problem of leveraging the hop-by-hop congestion
control is that slow receivers will slow down the sender [18]. This is the case in the simplest (and
not scalable) technique: Every receiver sends �ow control information towards the sender (end-
to-end multicast �ow control). This can be achieved simply in the form of acknowledgements
for every processed packet. The sender only transmits the next packet, if it has received
acknowledgements for the previously sent one. This resembles the stop-and-wait ARQ protocol.

In [95], Urvoy-Keller and Biersack propose a backpressure algorithm (Overlay Multicast
Congestion Control (MCC)), so that �ow control is conducted between adjacent nodes (leverag-
ing underlay congestion control and solving the problem of feedback synchronization) instead
of between all receivers and the sender (end-to-end). The idea is that each node in a multicast
tree has one input bu�er and N output bu�ers (where N is the number of downstream links
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on the tree). Incoming packets are only copied to the output bu�ers if all output bu�ers have
enough capacity. This way, �ow control between input and output bu�ers is achieved. Still,
congestion on one or more of the output bu�ers has to propagate back to the upstream peer.
The authors state that “to ensure a backpressure up to the source, the �ow and congestion
control mechanism must be coupled.” For this to work, the input bu�er is limited and received
packets are only ACKed, if they have been copied to all output bu�ers. Urvoy-Keller and
Biersack prove that this model has better performance than an end-to-end approach, especially
with regards to an increasing number of recipients.

7.2 A Concept for Flow Control and Reliability in BOPlish

We now describe our approach to add �ow control as well as reliability services to BOPlish.
The requirements that we identi�ed as crucial are as follows: BOPlish applications must not
be overwhelmed by data sent from a remote peer (a central aspect of �ow control). Depending
on the use case, applications may allow for large receive bu�ers so that bursts of incoming
data are bu�ered and can be processed later on. On the other hand, real-time applications may
not want to bu�er huge amounts of data, but rather signal the sender to stop sending or lower
its transmit rate. The second requirement is that applications must be able to choose between
reliable and unreliable data transfer, also depending on the use case. Since BOPlish is designed
to o�er a generic transport layer with di�erent quality of service assurances, an API must exist
so that applications built on top of it can directly communicate their requirements to BOPlish.

Adding a generic reliable transport to an multi-hop overlay network is considerably complex.
It is much simpler to incorporate mechanisms that are speci�cally tied to certain reliability
requirements. We identi�ed two di�erent use cases building on the requirements mentioned
above that we integrated into BOPlish: Delay-sensitive, real-time applications (such as an A/V
conference) and fully reliable applications (such as �le sharing). Those resemble rows 1 and
2 of Tab. 7.1. While the �rst type of applications accepts possible message drops, the latter
one must accomplish for all messages to be delivered, even at the cost of transfer delay. Both
naturally require receivers to be able to control the �ow rate. We extended the BOPlish API
with a set of methods and parameters so that developers can choose the reliability assurances
of their group communication application.

This extended API is shown in Lst. 7.1. The API calls registerProtocol and route (see
Sec. 4.4.1 and Sec. 4.4.4, respectively) were extended by a JSON object called reliability-

Options. Using this object, developers instruct BOPlish to apply the given restrictions on
each transferred packet of that speci�c protocol. The same applies to the buffers object,

122



7.3 Implementation

where developers instruct BOPlish to only accept M packets from the upper-layer application,
without receiving an acknowledgement from the remote side. Only N packets are accepted
in-bound, that are not processed by the upper-layer application. Fig. 7.3 shows how this looks
like for a single peer. Here, application 1 has a send bu�er of size 4 and a receive bu�er of size
4. Application N has a send bu�er of 2 and a receive bu�er of size 5. Further details on the
semantics of the options are explained in 7.3.

1 BOPlishClient.registerProtocol(identifier, reliabilityOptions,
buffers)

2 Router.route(to, message, callback, reliabilityOptions)
3
4 reliabilityOptions = {
5 reliable: [true|false], // default: true
6 timeout: TIMEOUT_IN_MS // default: calculated from RTT
7 maxRetransmits: N // default: 0
8 }
9

10 buffers = {
11 sendBufferSize: M // default: unlimited
12 recvBufferSize: N // default: unlimited
13 }

Listing 7.1: The new API calls, extended by options for reliability assurances as well as
bu�er sizes.

7.3 Implementation

Reliability and �ow control in BOPlish are services that application developers request by
using the API of the BOPlishClient interface de�ned in Sec. 7.2. For this to work, we had to
slightly adapt the transport message format (Sec. 4.3.3) as well as the inner workings of our
Chord implementation.

7.3.1 Unicast Reliable Transfer

The Chord implementation described in Sec. 4.5 o�ers an API method route(to, message

, callback), that routes a message to the peer responsible for the ID to. The remote peer
acknowledges reception of the message with an ACK message and callback is called on the
sending peer (route() is always non-blocking). In the process of adding a reliability service
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BOPlish core library

WebRTC / Browser environment

App 1 App N

Figure 7.3: The general �ow control architecture of a single BOPlish instance. Every application
has a dedicated send and receive bu�er.

to the DHT routing, we added the reliabilityOptions parameter from Lst. 7.1 to this
method.

Upon calling route(), developers instruct Chord on the reliability requirements they
would like to be applied. If reliable is set to true, the receiving peer sends back an ACK
message. If this message arrives at the sender, the callback is called and the transmission is
deemed successful. If the message does not get acknowledged by the receiver after timeout
milliseconds, the transmission is deemed unsuccessful and callback is invoked with an error
message so that the application can react appropriately. The option maxRetransmits con-
trols the behaviour when the timer expires: If maxRetransmits is an integer value N greater
than 0, then Chord tries to deliver the message N times, each time restarting the timer speci�ed
in timeout. Thus, the delivery is deemed unsuccessful after timeout ∗maxRetransmits

milliseconds of not receiving an acknowledgement. We exposed this transmission control
feature to applications by adding the same option parameter to the registerProtocol(

identifier) method de�ned in Sec. 4.4.1. This way, developers of BOPlish applications
can make use of the reliability extension on a per-protocol basis.
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The timeout value is especially hard to set correctly because of the varying latencies
between di�erent peers in the DHT. Given a round-trip time (RTT) of N milliseconds, it is not
advisable to set the value of this parameter lower than N (the time for the data packet to arrive
at the receiver plus the time for the ACK packet to arrive at the sender). The processing time
at the receiver must also be added to get a meaningful value. Thus, our Chord implementation
maintains RTT values for every peer it is communicating with and takes this value into account
as default, when the application developers has not provided this option.

To implement this behaviour, we changed our ChordNode classes so that every node that a
Chord instance maintains an open connection to, calculates the RTT by storing the time stamp
whenever a data packet is sent to a remote peer. When an acknowledgement arrives, the time
of the arrival is subtracted from the transmission time. The RTT for a remote node N thus
results from the following formula:

RTTN = trx − ttx

This value is constantly updated with every transmission conducted to that node. It is easy
to improve this simple RTT calculation in our code by, e.g., maintaining a smooth average,
as is done with many TCP implementations. One factor that makes it di�cult, though, to
maintain correct RTT values is that the structure of the DHT may change often and RTTs
vary extremely (as opposed to TCP, where the structure of the network does not change
signi�cantly during a session). Therefore, to simplify further research on the topic, we built the
API in such a way that developers can plug-in an RTT estimator of their own into our Chord
implementation. They include a script tag in their HTML hosting their application that
points to their estimator implementation. Such implementations must implement an interface
with three distinct properties: A zero-argument constructor, a function newRTT(rtt), taking
the value of the currently measured RTT as parameter as well as a function rto() that returns
the RTO for the next transmission. Plugging this code into our Chord implementation works
like this:

1 ChordNode.RTTestimator = MyEstimator;

A reference implementation of such an estimator – listed in Lst. 7.2 – is included in BOPlish
and used as default. It is shown in and calculates the next RTO by taking into account the last
10 measured RTTs, building a simple average and adding a factor of 2 (as is done for TCP, too).

1 ChordNode.RTTestimator = function() {
2 this._RTO = peerConfig.messageTimeout || 1000;
3 this._history = new RingBuffer(10);
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4 this.maxRTT = -1;
5 };
6
7 ChordNode.RTTestimator.prototype = {
8 /**
9 * Feeds a new calculated RTT value into the estimator for

10 * further processing.
11 */
12 newRTT: function(rtt) {
13 this._history.push(rtt);
14 if (rtt > this.maxRTT) {
15 this.maxRTT = rtt;
16 }
17 var histArr = this._history.getall();
18 this._RTO = (histArr.reduce(function(prev, cur) {
19 return prev + cur;
20 }, 0) + this.maxRTT) / (histArr.length + 1);
21 },
22
23 /**
24 * Retrieves the current calculated RTO.
25 */
26 rto: function() {
27 return 2*this._RTO;
28 }
29 };

Listing 7.2: RTT estimator using the average of the last 10 RTT values to calculate an RTO.

7.3.2 Unicast Flow Control

Additional to reliable transmission, we added the possibility to specify a bu�er size per BOPlish
protocol instance. This makes it possible for developers to assure, only a certain number of
unprocessed messages remains in the network. To support per-protocol bu�ers, we added the
parameter buffers to method registerProtocol(), which denotes the size of the send
and receive bu�er in number of messages. When the application calls the send() method
of the protocol instance returned by registerProtocol(), the BOPlish implementation
copies the message into the send bu�er. If the protocol is instructed to transmit data reliably
(using the options from above), the message is extracted from the send bu�er only when the
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transmission is marked complete. Similar to the return values EWOULDBLOCK and EAGAIN

known from the POSIX Socket API5 , the send() method call of the protocol returned by
registerProtocol() returns a value of −1 when the send bu�er is full. The application
can then act accordingly by, e.g., sleeping for a number of seconds and then retry.

The receive bu�er works in a similar way. Messages are put into an inbound queue by
the BOPlish instance and passed to the application for further processing. Only when the
application function returns, the message is removed from the queue by BOPlish. If the queue is
full (the number of messages in the queue has reached the con�gured maximum), the message
is discarded and the sender receives an error message, indicating the fact. This error message
contains the size of the receive bu�er, so that the sending side is able to adapt its transmission
rate (by, e.g., only leaving as many messages in-�ight (unacknowledged) as �t in the receiver’s
bu�er). This way, receivers are able to control the �ow rate of every sender individually.

7.4 Evaluation

In order to evaluate our implemented solutions, we started by gaining insights into common
transmission delays inside of BOPlish networks. We erected a BOPlish community of 17
nodes inside of a physical network with LAN as well as WLAN stations. The most simple
RTT estimator, that we plugged into the system, always takes the last measured value of
the RTT as RTO. Unsurprisingly, this lead to very many timeouts due to the big amount of
jitter (see Sec. 5.2). What we also perceived during testing of our chat demo application
was that whenever we started sending many chat messages, the round-trip times increased
signi�cantly. By conducting targeted RTT measurements in a BOPlish network of 2 peers, we
were able to reproduce this �nding. Fig. 7.4 shows the results of this measurement. During the
non-interactive phase, only DHT maintenance messages are exchanged between the two nodes.
When the user starts interacting with the application, RTTs increase to values up to 20 times
higher. This observation can be explain with two e�ects: First, the higher message load on each
node, caused by the user-generated chat messages, causes the BOPlish library to experience
higher load. Second, and most signi�cantly, the single-threaded runtime environment of
JavaScript applications has a direct impact on delay times. Lst. 7.3 shows the code that handles
incoming messages.

All messages are passed to the upper application layer (line 3), the application acts appropri-
ately (e.g., by displaying the chat message in the user interface) and then returns control back
to the lower Chord layer, that can then send back the ACK (for a reliable transfer). All of this,

5http://pubs.opengroup.org/onlinepubs/007908799/xns/send.html
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also the processing of incoming messages, updating the user interface etc., happen inside one
and the same thread of execution. Thus, if the processing of a message in the application takes
a very long time, the transmission of the ACK packet is delayed, too.

1 _handle_response: function(msg) {
2 delete this._pending[msg.seqnr];
3 this._pending.callback(msg.error, msg);
4 },

Listing 7.3: The Chord code handling incoming messages
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Figure 7.4: RTT values (in ms) in a network of 2 BOPlish peers. At about sequence number 120,
we started a burst of user interaction causing many messages to be transmitted. At
about 520, we stopped the interaction. It can be seen that during the interaction,
the delay between the 2 peers increased signi�cantly.

As a second step, we investigated further on the RTTs in the 17-node community to get
insights into what we can expect as delays in a common scenario. Fig. 7.5 shows the cumulative
distribution function of round-trip delays after sending about 150,000 messages through the
community. As can be seen, around 90% of the delays are under 107ms. Since there are huge
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outliers, though, a good RTT estimator implementation for BOPlish must take into account
big variances.
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Figure 7.5: Cumulative distribution function of round-trip times of 151,622 reliable transmis-
sions in a BOPlish network with 17 nodes. 90% of RTTs are under 107ms. It can be
seen, though, that there are huge outliers with values greater than 8800ms.

7.5 Outlook

We implemented a �rst prototype of �ow control and reliability extensions for BOPlish. These
are designed explicitly to enable extension of the mechanisms by third party developers.
Currently, applications dictate send/receive bu�er sizes to BOPlish. In a next iteration of the
concept, it makes sense to investigate possibilities of BOPlish centrally managing bu�ers and
access to them, e.g. by a round-robin mechanism. This way, BOPlish could guarantee every
application running on one peer to have fair access to the community resources.

Our evaluation showed that round-trip times vary extremely over time of usage of the
network. Thus, a deeper exploration of retransmission timeout possibilities (RTO) is well
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worth it. The adaptation of the TCP mechanisms (e.g, smooth average over past RTTs) or more
sophisticated approaches such as the ones recommended by Rhea et al. in [74] can easily be
experimented with, by using the plug-in mechanism for RTT estimators. It is also worthwhile
investigating a separation of application-level message processing from the underlying BOPlish
transport layer. We will investigate the possibility to separate all application-level code in a
Web worker so that the application handles incoming messages without blocking the transport
layer code.

With regards to multicast, we only outlined the concept that we envision for BOPlish. In
this work, we rather focused on our multi-hop unicast �ow control and reliability solution.
Nevertheless, multicast �ow control is an important building block of solid group communica-
tion frameworks. We suppose that adding single-source multicast reliability and �ow control
to BOPlish is an interesting next step. The limitation of focussing on SSM should not impose
great performance or functionality issues on applications, since in our Scribe-based multicast
communication, all messages are sent via one root node per group, thus resembling an SSM.
The approach to multicast reliability, that we �nd feasible of integrating easily into BOPlish
borrows from the push-back �ow control solution (also known as backpressure) suggested
by Urvoy-Keller and Biersack [95]. The authors assume the overlay network to be run atop a
reliable network, where each node is connected to other nodes via TCP. This resembles the
BOPlish network, where nodes are also connected to each other via reliable transports (SCTP).
For applications with predictable or minimum �ow rate requirements, a rate-based �ow control
mechanism would possibly be feasible, too.
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8 Conclusions/Future Work

An e�cient, name-based way of publishing content on top of the near-everywhere available
Web platform is the main contribution of this thesis. During our work on the subject, we
continuously published our ideas and discussed them with the research community [98, 97, 104].
Our work showed the conceptualization, implementation and evaluation of BOPlish, a user-
centric approach to distributed content communities in Web browsers. We described our
ideas by applying a bottom-up approach, from browser-based DHTs over user-centric content
identi�ers to multicast group communication and quality of service assurances. We validated
our idea by implementing all designed aspects in a JavaScript library and building real-world
applications on top of that library. Additionally, measurements were conducted regarding
performance and stability properties of our implementation. By releasing all the output of our
work on GitHub (https://github.com/boplish), we let interested researchers and developers
investigate the code and the underlying concepts.

The consolidation of Web-based technology and P2P paradigms will prospectively result in
similar approaches like BOPlish. During our work, a wide amount of thematic ground has been
touched. The result is a vertical cut-through that shows the general feasibility of our approach
and a wide range of possibilities for future extensions. Questions remain regarding technical
aspects, e.g., other DHT mechanisms to stabilize the overlay network or enhance performance
on the group communication layer. We imagine large-scale, distributed applications running
on the Web without the need of centralized infrastructure. It remains to be investigated how
such applications (e.g., Distributed Social Networks) behave on BOPlish. One of the next steps
in clearing the way is to validate the conceptual assumptions in a widely distributed emulation
that re�ects the Web more closely than a local environment. It should be noted that such
tests should continuously be conducted while the WebRTC implementations and tooling are
advanced. Additionally, Web platform standards, such as the Web Cryptography API, pave the
way to, e.g., enhance the privacy and security of BOPlish applications. Another aspect that
arose during the work on BOPlish is to couple a Web-based group communication mechanism
with other multicast islands. Such a hybrid multicast may be implemented in a stand-alone
library and bring any form of multicast to the massively available Web-capable devices.
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