
Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

Faculty of Engineering and Computer Science
Department of Information and

Electrical Engineering

Fakultät Technik und Informatik
Studiendepartment Informations-und
Elektrotechnik

Master Thesis

Tran, Thanh Minh Tu

Mobile P2P Audio Network for the iPhone and iPod Touch

Tran, Thanh Minh Tu
Mobile P2P Audio Network for the iPhone and iPod Touch

Master thesis based on the examination and study regulations for the
Master of Engineering degree programme
Information Engineering
at the Department of Information and Electrical Engineering
of the Faculty of Engineering and Computer Science
of the University of Applied Sciences Hamburg

Supervising examiner: Prof. Dr. Thomas C. Schmidt
Second examiner: Prof. Dr. Hans-Jürgen Hotop

Day of delivery December 7th, 2009

Tran, Thanh Minh Tu

Thema der Master Thesis
Mobile P2P Audio Network for the iPhone and iPod Touch
Stichworte
Peer-to-Peer Systems, Overlay Network, Application Layer Multicast Systems, Audio Live
Streaming Technologies, iPhone Audio Processing
Zusammenfassung
Gruppenkommunikation ermöglicht eine große Anzahl von Anwendungen, z.B. Sprach-
und Videokonferenzen, Radio- und TV-Broadcasts, verteilte Gruppenspiele etc., und wird
aus diesem Grund sowohl in kommerziellen Entwicklungen wie Forschungsprojekten häufig
zum Untersuchungsgegenstand. Während IP Multicast die Verkehrslasten im Netzwerk
minimiert, ist eine globale Verbreitung bisher hinter den Erwartungen zurückgeblieben.
Application Layer Multicast bietet hier eine alternative Lösungsmöglichkeit zur Content-
Verteilung, da es ausschliesslich auf der Basis einer Peer-to-Peer Overlay-Schicht arbeitet.
Viele Kommunikations- und Unterhaltungsdienste (z.B. Skype, Zattoo) verwenden ALM in
der Realisierung. Mit den gestiegenen Hardware- und Netzwerkressourcen der kleinen
elektronischen Geräte wie SmartPhones und PDAs ist es nun möglich, ALM Lösungen auch
auf Handhelds zu realisieren. Diese Arbeit entwickelt exemplarisch eine solche Anwendung
für live Audio-Streaming auf dem iPhone und iPod Touch. Die Software erlaubt es dem An-
wender, ein selbstorganisierendes P2P Overlay-Netzwerk auf den Geräten zu instantiieren
und dabei live verteilte Gruppen zu abbonnieren oder zu beenden. Jeder Teilnehmer kann
eine persönliche Gruppe zum Audio-Streaming erzeugen und darin z.B. in Echtzeit Karaoke
Musik aufführen. Jeder andere Nutzer kann diesem Musikereignis beiwohnen, sobald er
den zugehörigen Musikstrom abbonniert.

Tran, Thanh Minh Tu

Title of the paper
Mobile P2P Audio Network for the iPhone and iPod Touch
Keywords
Peer-to-Peer Systems, Overlay Network, Application Layer Multicast Systems, Audio Live
Streaming Technologies, iPhone Audio Processing
Abstract
Group communication offers a large application domain, e.g., voice and video conferencing,
radio and television broadcasting, multiplayer gaming, etc. and has attracted much attention
in commercial deployment, as well as in academic research projects. While IP Multicast
minimizes the network traffic, but suffers from limited deployment, Application Layer Mul-
ticast offers an alternative solution for content distribution, and is operated on an overlay
Peer-to-Peer network. Many communication and entertainment platforms (e.g., Skype,

4

Zattoo) use ALM to offer their services. With the increase of hardware resource, decrease in
size, and the WLAN support in small electronic devices (e.g., SmartPhones, PDAs), it is now
possible to deploy ALM on handheld devices. This work is an attempt to bring ALM for audio
live streaming onto the iPhone and iPod Touch. The software allows users to self-organize
an overlay P2P network, to subscribe or unsubscribe to a streaming group, to establish any
personal streaming group for multicasting music or live performing karaoke music. Any user
- when subscribing to this group - will be able to receive and listen to live stream karaoke
music.

CONTENTS i

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 General P2P Application Introduction . 2
1.3 The PAN4i Application Introduction . 3
1.4 Organization of the Report . 3

2 Streaming Technologies on the Overlay 5
2.1 General Background . 5
2.2 Overlay P2P Network . 7

2.2.1 Unstructured P2P . 8
2.2.2 Structured P2P - DHT-based approach 10
2.2.3 Pastry - a DHT-based P2P approach 14

2.3 The Dabek model for Structured P2P Overlays 20
2.4 Application Layer Multicast . 22
2.5 P2P audio/video streaming . 26

2.5.1 P2P live streaming . 26
2.5.2 P2P video-on-demand . 36
2.5.3 Base technologies . 38
2.5.4 Scribe - a DHT-based ALM approach 40

2.6 P2P Streaming Systems . 49
2.6.1 Skype . 49
2.6.2 Zattoo . 50

2.7 Conclusion and discussion . 52

3 Audio Processing on the iPhone and iPod Touch 58
3.1 iPhone OS Technologies . 58
3.2 Core Audio Overview . 59

3.2.1 Audio Queue Services . 60
3.2.2 Audio File Stream Services . 61
3.2.3 Audio Unit Services . 64
3.2.4 Audio Processing Graph Services 65

3.3 Audio codecs . 66

4 PAN4i Concepts and Design 69
4.1 User requirements . 69
4.2 Functional requirements . 72
4.3 Software concepts . 74
4.4 Application design . 79

CONTENTS ii

5 PAN4i Implementation 86
5.1 Pastry - KBR . 86
5.2 Scribe - ALM . 87
5.3 Application Layer . 92

6 Testing 95
6.1 Test setup and running . 95
6.2 PAN4i in the Nacht des Wissens 2009 . 97

7 Conclusion and Outlook 98

List of Figures 107

List of Tables 109

List of Source Code Snippets 110

1 INTRODUCTION 1

1 Introduction

1.1 Motivation

Recently, people quickly adopt infotainment which is a combination between information-
based media content and entertainment content. The purpose of this combination is to make
a service more attractive in order to gain more customers or consumers. Based on this
idea, there have been many software and hardware products or projects underdeveloped.
There are examples for such applications, e.g., a car driving navigation system device having
multimedia functions for radio and music, or the ongoing Mindstone project [1] for developing
an e-learning application on the basic of social network for the mobile platform.

The Internet has been showing its powerful usage and popularity in many activities in
daily life. Especially, the Internet plays an important role in the business, in communication
and also in entertainment. With the increment of the Internet bandwidth, and supported hard-
ware devices for wireless connection (Wireless LAN, Wimax), the Internet offers its users not
only connectivity but also mobility. There are many success stories on the usage of Internet
and especially in entertainment. Youtube [2] , Spotify [3], Zattoo [4] are good examples.

While the traditional client-server model for large scale application requires much invest-
ment on the server establishment and maintenance, overlay Peer-to-Peer (P2P) network has
proved that it is suitable for implementing large scale, stable application at low cost. Many
overlay P2P approaches have been proposed and tested. Among them, Chord [5], Pastry
[6], CAN [7] and Tapestry [8] approaches have been implemented as open source projects.
This makes overlay P2P ready to be deployed for new networking applications.

Since Apple [9] has released the iPhone [10] and iPod Touch [11], its products have
gained a huge success. Since the iPhone and iPod Touch share the same operating system
and API, in the rest of this writing, the term iPhone means for both iPhone and iPod Touch.
Starting from the iPhone first release day on June 29, 2007, it is said that about 10 million de-
vices have been sold out to the market. Over one billion applications have been downloaded
within 9 months [12]. The iPhone supports W-LAN and is not only a communication device,
it is also an entertainment and information organizer. These abilities together with its nice
design make it a good choice for those who would like to own a cell-phone. Besides, Apple
Inc. opens the iPhone’s API to third party developers. Applications developed by the third
parties can be put on the iTune store and developers will get 70% of sales revenue from their
sold applications. The iPhone and its business model have been attracting a large number
of third party companies as well as freelancer developers to create a huge amount and rich
content for the iPhone.

Inspired from what the iPhone can do and from the wonderful entertainment arts that
YouTube, Zattoo and Spotify bring, a group of students from the Information Engineering
course at the HAW Hamburg University have initially started the Mobiles Video-Network
Hamburg project [13]. The idea was to develop an overlay P2P network for sharing live

1 INTRODUCTION 2

video streams on the iPhone and iPod Touch via the W-LAN. This idea has won a support
from the Ditze Foundation. Later on, the project has not aimed at sharing live video stream
content since there was not an adequate support for live video stream on the iPhone at that
time. And the project was continuing as a final thesis project with the title Peer To Peer Audio
Streaming For The iPhone And iPod Touch. It is to develop a P2P audio streaming applica-
tion to form a communication and entertainment platform via the W-LAN for the iPhone and
iPod Touch. And this report is done on the basic work of this thesis project.

1.2 General P2P Application Introduction

The very beginning concept of the P2P network could be found in IP Router or Domain
Name Server in which these devices exchange routing information. This collaboration be-
tween devices forms a distributed system in which each device contributes its knowledge
(routing information) and resource (CPU, memory, network bandwidth) to let the network
routing functioning correctly and effectively. But until the birth of Napster P2P application
for music sharing between its users in 1999, P2P architecture has been much considered in
academic research projects as well as development in commercial business model.

At first, P2P applications were developed for desktop computers or laptops, those hav-
ing enough resource for a P2P application to run on. These applications have been used
mostly for file sharing such as Napster, Gnutella, FastTrack, BitTorrent and Transmission.
Since the Internet connection has been increasing its availability with higher bandwidth, P2P
architecture is considered for audio and video streaming such as Skype, PPLive and Zat-
too. Furthermore, the increase of hardware resource in combination with decrease in size,
and more widespread wireless network accessibility have allowed small electronic devices
to provide enough resources to run such softwares.

Besides its traditional software for Desktop, Skype [14] (a Voice over Internet Protocol
(VoIP) software) has recently released Skype for iPhone, Windows Mobile, Android, Symbian
and claimed to support Blackberry soon. Another example is the Moviecast project from the
HAW Hamburg. And as stated on its project page [15], "the aim of the project Moviecast is the
design and development of an Internet based videoconference solution for mobile devices".

Other attempts try to deploy P2P file sharing application onto the iPhone. One of the first
attempt which is claimed to be the first P2P torrent client on the iPhone was the migration
of the native open source P2P torrent Transmission onto the iPhone [16]. Unfortunately, the
original project page could not be accessed anymore at the time of this report writing. An-
other one is the iSlsk - Native Soulseek P2P sharing client for iPhone which is able to access
the P2P Soulseek file sharing network [17]. Although there are several implementations of
P2P application on small electronic devices, the number of such implementations is very
small as compared to the traditional desktop P2P application. And this project is another
attempt to push the P2P audio streaming application on the iPhone, iPod Touch and later
may also be extended to other different mobile platforms.

1 INTRODUCTION 3

1.3 The PAN4i Application Introduction

Mobile P2P Audio Network for the iPhone and iPod Touch (PAN4i) is a networking application
which was initially planned to have two main functions. It can be used for voice chatting and
this serves as a communicating function. The other one is serves as an entertaining function
by letting its users to receive a karaoke music stream. Any user can be a singer for this
karaoke background music and be able to send his or her beautiful voice to the overlay
network created by PAN4i users.

At first, a new user would like to join the PAN4i overlay P2P network. This joining node
is assigned a key. This unique key is used to distinguish each different node on the overlay
network. It joins the network by sending a JOIN request to any known node already existing
on the network. The new coming node will then receive information about other nodes in
the network whose keys are closest to the new node’s key. These information is used for
routing messages within the overlay network. When a node is in the overlay network, it
can do the following things. It can create a new overlay multicast group (later in this report,
the term group represents an overlay multicast group). It can join an existing group. It can
send messages, voice audio packets to an existing group. When a node is in a group, it
will receive all message sent to this group. By this way, nodes in one group can send voice
audio packets to each others to form a voice chatting group. Also, a node can send music
audio packets to one group i.e. sending an MP3 background music stream. The receiver can
sing on this background music stream and send this new mixed karaoke stream to another
group. The member of this "another" group can listen to the live performing karaoke stream.
The rest of this report will discuss on the different techniques that help to implement the
PAN4i, e.g., how to build an overlay P2P network, how to create, join or leave a group, how
to send, receive and playback the network audio stream, how to manage the multicast tree
when nodes leave their group gracefully or unexpectedly. Other solution choices, challenges,
possible improvement and future work of this application will also be discussed.

1.4 Organization of the Report

The remainder of this work is organized as follows:
Chapter 2 discusses different technologies that can be used to develop an audio/video

streaming Application Layer Multicast (ALM) software built on an overlay P2P network. The
key concepts of these technologies are generally discussed, in which the technologies used
in developing the PAN4i (i.e., the Pastry overlay and Scribe Application Layer Multicast ap-
proaches) are discussed in more detail. The discussion ranges from a set of different ap-
proaches for creating an overlay P2P network, to a set of different streaming topologies built
on an overlay that are classified into two different streaming application domains namely the
live streaming and the video-on-demand streaming. Besides, other based technologies for
media streaming, and the Dabek model for implementing P2P systems on the Structured

1 INTRODUCTION 4

P2P overlays are also mentioned. Chapter 2 is closed with an introduction to two different
commercial streaming systems (Skype and Zattoo), and a conclusion and discussion section
on the discussed technologies.

Chapter 3 is an introduction to the Core Audio Application Programing Interface (API) of
the iPhone Operating System (OS) which is used to program the audio processing functional
unit of the PAN4i. Core Audio API provides many interfaces for different audio processing
purposes. This chapter does only focus on the functions and technical usage of interfaces
that are needed to implement the required audio processes of PAN4i, i.e., playback, record-
ing, mixing, streaming, and encoding.

Chapter 4 provides information on the software concepts and design strategies of the
PAN4i. It starts with the user requirement analysis. Coming up from the user requirements,
the functional requirements of the software are then figured out. From these requirements
combining with the related technology know-hows, the software concepts describing the se-
lected design model, all the functional units with their dependences, and communication
protocol for sender and receiver are defined. Lastly, the application design, which is about
the design strategies including application logic and Graphical User Interface (GUI) design,
that can bring all the defined functional units into a working mechanism. And so that the
software can offer the services as described in the application use cases.

Chapter 5 is a report on the current implementing state of PAN4i. The implementation
exactly follows the described software concept and application design strategies in chapter 4.
This chapter reports on the functional units that have been implemented and those that are
left for further implementation. It also introduces to the open source projects (i.e., Chimera
[18], oRTP [19]) that are employed in the software. The already implemented units are
demonstrated with source code snippets and explanation. The other units for future work,
together with the implementing approaches are also discussed.

Although the PAN4i has not been fully implemented that it can provide full functionalities
as described in the software concepts and design, the current state of PAN4i can provide key
functionalities for music, karaoke streaming and receiving. These key functionalities of PAN4i
have been displayed to the visitors of the Nacht des Wissens 2009 (i.e., Night of Sciences
2009) at the Hamburg University of Applied Sciences. In this chapter 6, we would like to
describe the procedure that we setup the PAN4i system for running a test as we did and
shown to the guest on that event.

Lastly, chapter 7 concludes the work of this thesis. This chapter describes our target
to run this PAN4i project, about what we want to do, what we have achieved, how we have
achieved, the current state of the implementation, what can be done in the future for improve-
ment, how would the application look like and used for when all features would have been
implemented.

2 STREAMING TECHNOLOGIES ON THE OVERLAY 5

2 Streaming Technologies on the Overlay

2.1 General Background

Streaming technologies involve two main techniques. The first one is the building of stream-
ing network topologies namely overlay P2P network described in section 2.2 (later on in this
report, the term P2P means overlay P2P). The second one is the multicast streaming tech-
niques implemented upon their network topologies namely ALM described in section 2.4.
But first of all, we would like to draw out the general picture of different types of streaming
network topology which have been proposed. Some have been out of date, some are widely
implemented and some are recently proposed for new implementations.

Since there is a need for group communication, such as voice and video conference,
radio or television broadcasting or multiplayer gaming etc., there is a need to have solutions
for this. A solution can be a sender is transmitting each content message to each receiver
(unicast) which shown in figure 1. This method is not scalable for processing time at sender,
more delay at receivers, and consumes more network bandwidth. Another choice is to use
broadcast method at sender (figure 2). This method is also not sufficient, because unwanted
node will also receive the content message from the sender and it is a waste of network
resource. This makes multicast (figure 3) a choice and led to the proposal of IP Multicast
described in RFC 1112 [20] from the Internet Engineering Task Force.

3 ! Prof. Dr. Thomas Schmidt ! http:/www.informatik.haw-hamburg.de/~schmidt !

Ineffektive Gruppenkommunikation

! " # $ % & ' () * +

! " # $ % & ' () * ,

! " # $ % & ' () * -

. (& / ()

! " # $ % & ' () * +

! " # $ % & ' () * ,

! " # $ % & ' () * -

. (& / ()

Unicast Broadcast

Figure 1: Unicast (source [21])

IP Multicast allows one or more senders to send data to a group of receivers, whereby
the sender sends only one copy of data out to the network. When this data is passed through
any routers which support IP Multicast, these routers will replicate this data to each receivers
belonging in its domain network. Although this method has its advantages such as effec-

2 STREAMING TECHNOLOGIES ON THE OVERLAY 6

3 ! Prof. Dr. Thomas Schmidt ! http:/www.informatik.haw-hamburg.de/~schmidt !

Ineffektive Gruppenkommunikation

! " # $ % & ' () * +

! " # $ % & ' () * ,

! " # $ % & ' () * -

. (& / ()

! " # $ % & ' () * +

! " # $ % & ' () * ,

! " # $ % & ' () * -

. (& / ()

Unicast Broadcast

Figure 2: Broadcast (source [21])

4 ! Prof. Dr. Thomas Schmidt ! http:/www.informatik.haw-hamburg.de/~schmidt !

Effektive Gruppenkommunikation

! " # $ % & ' () * +

! " # $ % & ' () * ,

! " # $ % & ' () * -

. (& / ()

Multicast

Figure 3: Multicast (source [21])

tively minimizing the network traffic, reducing loading burden for the network and server, but
its deployment issues make it not everywhere feasible. In order to setup an infrastructure for
IP Multicast, it requires router capabilities, maintenance and solution for inter-domain multi-
cast routing problem. Firstly, these requirements mean investment cost for ISPs or carriers.
Secondly, there is a missing of a charging model for the large amount of traffic replicated
within their infrastructure. These reasons are not incentive for ISPs or carriers to deploy IP
Multicast. The first global deployment of this method was an experimental backbone for IP
Multicast traffic across the Internet name MBone (short for "multicast backbone"). MBone
is used mostly for the creation, exchange and viewing of multimedia (radio, television or
video-conferrenceing).

2 STREAMING TECHNOLOGIES ON THE OVERLAY 7

As an alternative solution for IP Multicast, ALM was proposed. ALM is built upon an
overlay P2P network topology. For each different overlay topology, there are different ALM
approaches. Unlikely IP Multicast which requires underlay network support, both ALM and
P2P do not require support of routers in the underlay network, and can be entirely imple-
mented on the application layer. This characteristic attracts research community as well as
commercial implementers.

P2P models are not only used in multicast applications e.g. multiplayer gaming, IPTV
etc., but also in distributed file sharing applications. Starting from the first P2P network
model deployed in the Napster file sharing application, over the time, many other P2P models
have been proposed. These models are divided into two categories, Unstructured P2P and
Structured P2P. The Unstructured P2P has three variants namely Centralized P2P, Pure P2P
and Hybrid P2P. Structured P2P has one variant, that is the Distributed Hash Table (DHT)
-based approach. For the DHT-based model, there are several proposed protocols such as
Chord, Pastry, Tapestry or CAN. The DHT-based P2P model will be discussed in section
2.2.2 Since Structured DHT Based - Pastry protocol is the selected overlay network topology
for the PAN4i application, this model will be discussed in section 2.2.3.

ALM is built upon P2P network. There are many proposals for the ALM protocol. They
are different from each one in their characteristics for both application requirements and net-
working point of view. These characteristics include application domain (i.e. live streaming,
archive streaming or video on demand), overlay routing protocols, design choices such as
mesh-base or tree-base approach, single source sender or multi-source senders, consider-
ation in the tree depth versus the tree fan-out degree, etc. These properties are discussed in
section 2.5. Among different proposals for the ALM protocols, Scribe [22] provides an ALM
protocol for the Structured P2P - Pastry protocol and is used in the PAN4i application. Scribe
will be discussed in more details in section 2.5.4.

2.2 Overlay P2P Network

The conceptual differences between the Client-Server model (Figure 4) and the P2P model
are that Client-Server model runs the application service on one normally powerful machine
called server and many machines requesting the services from the server called clients. The
server is the central entity which only provides services. Different from this concept, each
machine (called a peer or a node) in a P2P network can act as both, service provider and
requester. Resources are shared and can be accessed directly between peers. Further
more an overlay P2P network is a virtual signaling network built on top of the basic of the
routing function in a P2P application at each peer. These are the features of the overlay P2P
network.

2 STREAMING TECHNOLOGIES ON THE OVERLAY 8

20 ! Prof. Dr. Thomas Schmidt ! http:/www.informatik.haw-hamburg.de/~schmidt !

!"#$%&'$&(")*$"

+,&-./01/234,"56$%4,7/81/9$%&::-4*4,./+*,")/';</94$&;</=4;4,')*&;/!44,>)&>!44,/9#")4-"7/*;/?@A9/BCDE
Figure 4: Client-Server Topology (source [23])

2.2.1 Unstructured P2P

Unstructured P2P has three variants: Centralized P2P, Pure P2P and Hybrid P2P

Centralized P2P Starting from the Centralized P2P (Figure 5) which was deployed for Nap-
ster in May 1999, this model has all features of P2P. It uses a central entity to provide file
list indexing and signaling service i.e. registration, logging in, searching content etc. Peers
upload their file list to Napster Server, and can query from here a provider list for requesting
file. When a peer receives the provider list, it will communicate directly with the providing
peers and get the file. This single central lookup server is technically a single point for failure
and was a target for a lawsuit filed by the Recording Industry Association of America (RIAA)
against Napster Inc. In July 2001, due to court decision, Napster had to close its central
server and thereby its file sharing service.

Pure P2P Different from Centralized P2P, Pure P2P (Figure 6) which was used for Gnutella
version 0.4, does not use any central entity. It has all features of P2P. A node connects to at
least one active node in the P2P network. In order to look up for a file, it sends a search query
to its neighbor nodes. These neighbor nodes forward the query in the same way. A Time To
Live (TTL) field in the query message determines when the forwarding in the network stops
(how many hops a message may be forwarded). When there is another node which has the
queried file, it responds a message, and the message is routed back on the same way to
the requester. The requester may receive different response messages, it will select the best
answers and connect to the providing peers. Query forwarding with TTL constraint floods the

2 STREAMING TECHNOLOGIES ON THE OVERLAY 9

20 ! Prof. Dr. Thomas Schmidt ! http:/www.informatik.haw-hamburg.de/~schmidt !

!"#$%&'$&(")*$"

+,&-./01/234,"56$%4,7/81/9$%&::-4*4,./+*,")/';</94$&;</=4;4,')*&;/!44,>)&>!44,/9#")4-"7/*;/?@A9/BCDE
Figure 5: Centralized P2P Topology (source [23])

network and is restricted to a limited number of hops introduces scaling problems to this P2P
model.

20 ! Prof. Dr. Thomas Schmidt ! http:/www.informatik.haw-hamburg.de/~schmidt !

!"#$%&'$&(")*$"

+,&-./01/234,"56$%4,7/81/9$%&::-4*4,./+*,")/';</94$&;</=4;4,')*&;/!44,>)&>!44,/9#")4-"7/*;/?@A9/BCDE
Figure 6: Pure P2P Topology (source [23])

Hybrid P2P To solve the scalability drawback of Pure P2P, Gnutella version 0.6 was de-
ployed on the Hybrid P2P (Figure 7). This P2P model is a two tiers model - normal nodes and
super nodes. Each normal node is connected to one of any super nodes and is called leaf
node. This two tier model helps to improve scalability via signaling (routing, file list indexing

2 STREAMING TECHNOLOGIES ON THE OVERLAY 10

etc.) reduced to super nodes. A super node is elected among leaf nodes, the one which
has more resources (memory, storage, processing power), high bandwidth connection, the
uptime of a node etc. Leaf nodes announce their shared content to the super node that they
are connected to. When a leaf node wants to look for a file, it sends a request to its super
node. This super node forwards this request to other super nodes. If a super node has in-
formation for the requesting file shared by anyone of its leaf nodes, a response message is
routed back to the requester. The requester will select the any best matched provider peer
and get the file from there directly. Skype is also deployed on the Hybrid P2P model.

20 ! Prof. Dr. Thomas Schmidt ! http:/www.informatik.haw-hamburg.de/~schmidt !

!"#$%&'$&(")*$"

+,&-./01/234,"56$%4,7/81/9$%&::-4*4,./+*,")/';</94$&;</=4;4,')*&;/!44,>)&>!44,/9#")4-"7/*;/?@A9/BCDE
Figure 7: Hybrid P2P Topology (source [23])

Although Hybrid P2P has improved the Pure P2P much and is gained consideration in
commercial implementation, it is a Pure P2P between islands of Centralized P2P systems. It
enhances the scalability of both, however bears the limitations of each. Beside Hybrid P2P,
research community has proposed a new approach which can bring its own, definite and
predictable routing structure that has less signaling overhead, and also reduces the flexibility
in choosing routes. It is Structured P2P - DHT-based P2P.

2.2.2 Structured P2P - DHT-based approach

A picture of a P2P network is that resources are located at different nodes. Any nodes can
join or leave the network at anytime and the network can serve a large number of nodes. So
that the challenges for a successful P2P network is to have an effective resource locating
method. It is able to limit the complexity for communication and storage. It is robust, resilient
over frequent arrivals and departure of nodes. For these requirements, the central server
approach does not answer the robustness requirement for an increasing big number of nodes

2 STREAMING TECHNOLOGIES ON THE OVERLAY 11

since all signaling communications are assigned to a single point of failure. Centralized
approach results in O(1) flexible searches and O(N) node states at server. Whereby flooding-
based approaches have O(1) nodes states but resulting not only in communication overhead
≥ O(N2) but also limiting in search results.

For these challenges, a better P2P solution would have a compromise between both
approaches. It is the balance of O(logN) communication overhead and O(logN) node states
(Figure 8). This requirement turns out that Distributed Indexing in the form of DHT is one
of the most suitable method. This approach is also called Structured P2P because of its
definitive and predictable routing structure (proactive procedure).

8 ! Prof. Dr. Thomas Schmidt ! http:/www.informatik.haw-hamburg.de/~schmidt !

!"#$%"&'$()*+,)(-",./*01234(-"$"(#*

C
o

m
m

u
n

ic
a

ti
o

n

O
v

e
rh

e
a

d

Node State

Flooding

Central

Server

!"#$

!"#$!"%$

!"%$

!"&'()#$

!"&'()#$

*'++&,-,./0

12'334-5.6+5'-

!7,89,6:

1;6&<,)-,(6+57,<

*'++&,-,./<0

1=,3'8>?)2@A?)#,+B'8/
1C765&6D5&5+>Distributed

Hash Table

!56747&"4"$8/*9:41.*;<

!;1*=74#(*,(.7$">(#

!?(#"#$7,$*7.7",#$*6@7,.(#

! A7"4'%(#B*C$$76D#

! 5@1%$*$"2(*'#(%#

Figure 8: Complexity of different P2P models (source: [24])

2 STREAMING TECHNOLOGIES ON THE OVERLAY 12

Figure 9 demonstrates a resource locating scenario in a DHT-based overlay P2P network.
Each node or each data item (stored on any node) has a unique identifier ID (key) value in
the address space i.e. the range from 0 to 2160-1 of a P2P network. The calculation for
this key can be done via a collision-resistant hash function such as SHA-1 [25]. The input
parameter of this function for a peer node can be its IP:Port address and for a data item (i.e.
a file) can be its string name. Each node manages one DHT having key:value pairs in form of
identifier ID for key and IP:port for value. This DHT, called the routing table, is the knowledge
information of the local node about other neighboring nodes. If the DHT-based P2P system
is used for file sharing, each node may also manages another DHT having key:value pairs
of all data items whose keys in the responded range of this node. This range can be, for
example, defined as it is greater then the local node key and less then the next adjacent
node key, e.g., the data item key range of node 009 is from 010 to 119 and key range of node
120 is from 121 to 279 and so on.

A key range of a node may be changed during its lifetime. Supposing that node 120
would have not joined in the P2P network, then the key range of node 009 would cover
from 010 to 279. When a new node 120 joins the P2P network, then node 009 would have
to update its key range from 010 to 119, and node 120 would take the range from 121 to
279. In contrast, a node 009 would enlarge its key range from 010 to 279 again if node 120
would leave the P2P network via departure or node failure. The joining and leaving (called
the dynamic of DHT or peer churn) of nodes may happen frequently to an overlay P2P at
any time. Structured P2P software has to deal with this problem to ensure its robustness,
reliability and scalability.

The functionality of DHTs can be interpreted as routing systems or as storage systems.
For the given destination keys, the first one focuses on the use of DHTs to route packets
and deliver them to the destination nodes like for a multicast streaming system. The second
one uses DHTs as distributed storage system like a P2P file sharing application. Routing is
the core functionality of DHTs. There are different proposals for the DHT routing protocol.
But the fundamental principle of this routing can be described in a scenario, where a user
on node 009 wants to search for a data item, say, a MP3 song Baby One More Time from
singer Britney Spears. At first, node 009 converts the song title to a key value (suppose that
the result is 810). Then node 009 will send a lookup request to a node in its routing table
whose key is numerically closest to the song key 810. And node 280 happens a closer one
than node 120 for the lookup key 810. The request message is sent to node 280. Node 280
checks if key 810 belongs to its key range (from 281 to 399), if this is not the case, it will
forward to the next closest key node in its routing table. This procedure is repeated on each
forwarding node. Until the request message is forwarded to node 691 whose key range is
from 692 to 869. Node 691 realizes that the song key 810 stays in its range. It then checks
for the existence of this data item in its data item DHT, if there is, node 691 is the correct
destination and it sends a response message to the requester-node 009. Data item 810 on
node 691 can be a MP3 file or a pointer to this file stored in another node on the overlay.

2 STREAMING TECHNOLOGIES ON THE OVERLAY 13

!"#$%&"'()*"+,%"+%)-$%.+#$/&(0%12%+$)3"/4

!"#$%&"'()*"+,%"+%)-$%"5$/&(0%262%+$)3"/4

!"#$%$&'$())*"+,$-).$
/&012+34).35"'36'78

%$9&:3$).$%$*+);$;93.3
/&012+34).35"'36'78

"<$()=&>3?6

%@A$<>&+-).?63?B
C31A$DDE
F)B>"+,$>&0(3A
GHD#$HID

@H@$B<3.A$<3&.=9$-).
/&012+34).35"'36'78

J)+,$*31$K$IGD

%@A$IL6I6GD68D
C31A$HID
F)B>"+,$>&0(3A
MDD#$LML

%@A$N68G6GD6HL
C31A$LML
F)B>"+,$>&0(3A
OEG

%@A$9&;P9&'0B.,6?3
C31A$OEG
F)B>"+,$>&0(3A
LML#$IND

C31A$GHD

C31A$MDD

C31A$IND

/&012+34).35"'36'78
C31A$IGD

J>37GA-).;&.?"+,

J>37HA-).;&.?"+,

J>37$8A$-).;&.?"+,

J>37MA.3<7)+?"+,

Figure 9: Use case scenario in DHT-based P2P

2 STREAMING TECHNOLOGIES ON THE OVERLAY 14

In conclusion, the above scenario shows the basic concepts of the DHT-based P2P ap-
proach. Besides, there are other proposals for improvement in dealing with peer churn1 con-
dition such as copying redundant key-value pairs to different nodes so that when one node
fails, others can repair the content and the routing information held by the failing node. An-
other proposal is that each node holds locality and proximity2 information about other nodes
to improve the routing effort. Routing efficiency, communication overhead and dynamic of
DHT are challenges for designing a DHT-based P2P application. Based on these funda-
mental concepts of the DHT-based P2P, there are a number of proposed protocols. Among
of them are Chord, Pastry (described in section 2.2.3), CAN or Tapestry, those are widely
supported, implemented and tested. Since properties for DHT-based P2P may conflict one
another (like communication overhead vs. node states, complexity), each system has its own
advantages and disadvantages. Each one targets its specific functionality goals.

Table 1 is to compare different properties (i.e. per node state, communication overhead,
fuzzy queries3 and robustness) between different overlay P2P approaches. And figure 10
is to summarize the main features the different Overlay P2P approaches, those have been
discussed up to this point.

System Per Node
State

Communication
Overhead

Fuzzy
Queries

Robustness

Central Server O(N) O(1) yes no
Flooding Search O(1) ≥ O(N2) yes yes
Distributed Hash Table O(log N) O(log N) no yes

Table 1: Comparison of central server, flooding search and distributed indexing (source: [25])

2.2.3 Pastry - a DHT-based P2P approach

In the rest of this section, we would like to introduce Pastry - a decentralized message routing
and object locating protocol. Pastry is one of the proposals for the Structured (DHT-based)
P2P approach, which is supported by a number of open source implementations, e.g., the
Bamboo-DHT [26], the FreePastry [27], and the Chimera [18] projects fully or partly imple-
ment the Pastry protocol, whereby the OverSim project [28] offering the overlay simulation

1Churn in the context of P2P network means the rate of node continuously join or leave the P2P network
which is also called the dynamic behavior of the P2P network

2Proximity concerns the distance between the two peers e.g. the latency, the throughput and the ISP locality
3Fuzzy queries or fuzzy searches: The results of these searches do not need to be exactly match with the

search arguments. But searches will return a result list in which the most argument matched results are on top
of the list and then other likely matched results go after e.g. Google searching with keywords "Britney Spears"
(with double quotes) will result in items having exactly the term keywords, but when searching with keywords
Britney Spears (not within double quotes) will return a fuzzy searched results

2 STREAMING TECHNOLOGIES ON THE OVERLAY 15

20 ! Prof. Dr. Thomas Schmidt ! http:/www.informatik.haw-hamburg.de/~schmidt !

!"#$%&'$&(")*$"

+,&-./01/234,"56$%4,7/81/9$%&::-4*4,./+*,")/';</94$&;</=4;4,')*&;/!44,>)&>!44,/9#")4-"7/*;/?@A9/BCDEFigure 10: Comparison Table for Client-Server and different P2P models (source: [23])

framework for Pastry and others. We have used the routing scenario in figure 9 to describe
the general concepts of the DHT-based approach. We will also use this scenario to describe
the working concepts of the Pastry protocol in detail. A full description and evaluation of
Pastry can be found in [6]. The Chimera project, which is a light-weight C implementation of
the structured overlay that provides similar functionality as prefix-routing protocol of Pastry,
is used in the PAN4i application.

According to Rowstron et al. [6], "Each node in the Pastry network has a unique identifier
(nodeId). When presented with a message and a key, a Pastry node efficiently routes the
message to the node with a nodeId that is numerically closest to the key, among all currently

2 STREAMING TECHNOLOGIES ON THE OVERLAY 16

live Pastry nodes. Each Pastry node keeps track of its immediate neighbors in the nodeId
space, and notifies applications of new node arrivals, node failures and recoveries. Pastry
takes into account network locality; it seeks to minimize the distance messages travel, ac-
cording to a to scalar proximity metric like the number of IP routing hops. Pastry is completely
decentralized, scalable, and self-organizing; it automatically adapts to the arrival, departure
and failure of nodes."

A Pastry system is a self-organizing overlay network of nodes. In Pastry, each node
or data item is uniquely assigned a len-bit identifier or a node ID or a key (len is normally
selected to be 128). The node ID is used to indicate a node position in a circular node ID
space, which ranges from 0 to 2128 – 1. An ID is a string of digits to base 2b where "b"
is a configuration parameter with typically value 4. A key is located on a node to whose
ID it is numerically closest. This key space concept is different to the key range of a node
described in the scenario in figure 9 where all keys within the range of the local node ID to
the next adjacent node ID are located on this local node. Figure 11 illustrates the identifier
space concept in Pastry. This concept works in the way that key K03 is between nodes N01
and N10. But because key K03 is closer to node N10 than to node N01, so that key K03 is
located on node N10. This principle is applies to the rest of keys shown on this figure.

41 ! Prof. Dr. Thomas Schmidt ! http:/www.informatik.haw-hamburg.de/~schmidt !

!"#$%&'()*+,$-.-+%(/"00-,1

! !"#$%&(2-+3#(!45-$(-*+,$-.-+%#("#(*-1-$(#$%-,1#(6.(5"#+(7"

! 89":0;+'(!#<(=>(" <(7

!?+&#(@?AAB("%+(#$6%+*("$

C;6#+#$(,6*+(@DAAB(

"CC6%*-,1($6(0%+.-9(:+$%-C

!),(C"#+(6.(+EF";(*-#$",C+(

G+&(-#(#$6%+*(6,(56$H(

,+-1H56F%-,1(,6*+#(@?77B

Figure 11: A 4-bit Pastry identifier space with six keys mapped onto five nodes. Numeric
closeness is an ambiguous metric for assigning keys to nodes as illustrated for key K03
(source: [29])

The routing information (or node state) of a Pastry node is of type hash table having
key (node or data item identifier) - value (IP-address:Port or pointer to data item) pair and is
contained in three elements: the routing table, the leaf set and the neighborhood set. Figure

2 STREAMING TECHNOLOGIES ON THE OVERLAY 17

12 shows an example of the node state of a Pastry node. In these tables, only the keys are
shown, the values (IP-address:Port or data item pointer) corresponding to the keys are not
shown.

44 ! Prof. Dr. Thomas Schmidt ! http:/www.informatik.haw-hamburg.de/~schmidt !

!"#$%&'()(*""+#,(-./012

-3411($./0125

!!"#$%&'(6
7418%9(:.$;3

! *1.8(<1$(6
=0"212$(>"?12
%&(@A140.B

!>1%'3/"#43""?(
<1$(6
=0"212$(>"?12
%&(,3B2C(>1$D"4+
.;;"4?%&'($"('%A1&(E1$4%;5(!--F(G",2F(HFigure 12: Pastry node state for node 103220 in a 12-bit identifier space and a base of 4 (k =

12, b = 2). The routing table lists nodes with the length of the common node identifier prefix
corresponding to the row index. (source: [29])

Routing Table The routing table sorts node IDs by prefix. It is made up of len
b rows and

2b – 1 entries for each row. Each entries in row ith and the local node have the first i-digits
prefix in common. For example, in the routing table in figure 12, the first column show the
ith row order. In the first row (i = 0), all entries have no common prefix with the local node
103220. In the second row (i = 1), they have one digit (the first digit) common prefix.

Leaf Set The leaf set holds L nodes whose IDs numerically closest to the local node
ID. The use of the leaf set helps to enhance the routing efficiency, such that, if a message
with a key is within the leaf set, then the closest key to the message key in the leaf set is
the destination for this routing message. In this case, there is no need to perform a routing
lookup in the routing table to forward the message to a next forwarding node.

Neighborhood Set Neighborhood set holds N nodes metrically closest to the local
node with regard to the network proximity metric. The proximity metric reflects the distance

2 STREAMING TECHNOLOGIES ON THE OVERLAY 18

between any pair of nodes, e.g., the round trip time, number of hops etc. For this, a function is
needed which allows each Pastry node to determine the distance between itself and another
remote node. For more information on this, please refer to the locality property of Pastry from
[6].

Routing Procedure Using the MP3 music lookup scenario in figure 9, the lookup query
is routed from the sender to the destination node via forwarding nodes on the Pastry overlay.
The routing decision at each node is made by the following two steps. Step 1: a node first
checks whether the lookup key k belongs to its leaf set range (i.e., far-left-leaf-node-key ≤
lookup-key-k ≤ far-right-leaf-node-key). If it is the case, the destination node is the node in
this leaf set whose key is numerically closest to the lookup key k. If the local node key turns
out to be the closest one, this local node is the destination node which hosts the lookup key,
and the lookup query finishes. Step 2: if key k does not belong to the leaf set range, the local
node will find the next forwarding node in the routing table whose key is numerically closest
to the key k. This lookup is done as follows. The local node check the number of digits in
common prefix between its key and the lookup key k (supposed this number is c). The local
node will then go to row cth of the routing table, and try to pick a key on this row which has
c+1 common prefix with this key k. This key stays at the column whose order is equal to the
digit at the c position of key k. If there is no entry at this position on row cth, the selected key
is the right or left adjacent key to this empty entry which is numerically closest to key k.

During the life time of a Pastry node, each node will dynamically update its routing in-
formation via exchanging the routing information with its neighborhood nodes or on arrival
or departure of nodes. The routing information is used for the routing procedure and for
self-organizing (node arrival and departure or failure) of the overlay network which will be
discussed in the following. With this routing fashion, for the Pastry overlay network of N
nodes, Pastry can route to any node in less than [log2b].

Node Arrival When a new node having node ID X arrives in the Pastry overlay network,
it needs to initiate its state tables. It does it by sending a JOIN message to a known node A
which is nearby node X according to the proximity metric. The JOIN message with the key
of X is then routed from node A to a destination node Z. In response to the receiving of this
JOIN request, node X, node A, destination node Z and other forwarding nodes (e.g. F1, F2,
...., Fn) on the routing path from A to Z send their state tables to the new node X. From these
information, node X can construct its own state tables.

Specifically, node A sends to node X its neighborhood set. This is because A and X are
proximity metrically nearby so that nodes in the neighborhood set of A are also nearby to
node X. Node Z sends to X its leaf set. This is because the node ID of Z is numerically
closest to node ID of X, so that the numerically closest keys to Z in node Z leaf set are
also numerically closest to X. According to Rowstron et al. from [6], in order to construct

2 STREAMING TECHNOLOGIES ON THE OVERLAY 19

the routing table of node X, X takes the first row (row zero) of A to be its first row. (The
explanation for this is because the entries in row zero of the routing table are independent
of a node’s node ID. So that row zero of A contains appropriate values for row zero of X)4.
Each time the JOIN message is forwarded to the next forwarding node (F1, F2,, Fn), the
length of the common prefix of the key X and the next forwarding node also increases. So
that row 1 of F1 can be used for row 1 of X, row 2 of F2 can be used for row 2 of X and so
on. From these receiving information, the routing table can be constructed for node X.

Finally, node X sends its node state to all nodes in its state tables. These nodes can also
update their own routing information accordingly.

Node Failure Failures of nodes in the routing table or in the leaf set are lazily detected.
This means that during the routing, communication attempts of the local node with these
nodes fail. Whereby, the local node periodically test the liveness of the nodes in its neighbor-
hood set (active detection), because these nodes do not contribute into the routing process.

For replacing a failed node at entry i in row j of the routing table (Ri
j), the local node

contacts a remote node whose key is on row i of its routing table. Since entries in the same
row j of the remote node are valid to the local node, the entry (Ri

j) from the remote node is
used to replace the failed entry of the local node. If this (Ri

j) is also failed, the local node will
do the same steps with another remote node whose key is in row j. If it is still not valid, the
attempts will continue with nodes on the preceding row R j−−1 until a valid entry is found for
replacing the failed entry in the routing table of the local node.

For replacing a failed node in the leaf set L, the local node contacts another remote node
whose entry in the leaf set having the largest index (far left or far right) on the side of the
failed node. The local node will then retrieve the remote leaf set L’. If this remote node is also
failed, it contacts another entry with a smaller index in the leaf set. Since the entries in the
local leaf set L and the remote L’ are close to each other in the identifier space and overlap,
the local node can select an appropriate entry for the replacement.

For replacing a failed node in the neighborhood set, the replacing procedure is similar to
the one for the leaf set. But as mentioned, for node failure detection, the local node has to
check the liveness of its entries in the neighborhood set periodically.

Node Departure The decision for finding an entry to replace a departed node is similar
to the node failure case. The benefit of a graceful departure may help to prevent data loss,
reduce communication overhead than in the node failure recovery case.

4Our comment: from the technical point of view, taking row zero of A for X is not always correct. To prove
that it is not a perfect solution, let us consider node X has key 020231, and node A has key 103220 with its
routing tables shown in figure 12. When X takes row zero of A to be its row zero, then the first item in this row
has one common digit (0) with X key which must not stay in row zero of X. Secondly, the second item or this
row is missing. In order to solve this row zero problem, we suggest that A can send X its row zero if A and X
has common prefix, otherwise A will send X its row one if they have no common prefix

2 STREAMING TECHNOLOGIES ON THE OVERLAY 20

Pastry API In a simplified manner, Pastry exports the following operations:

• nodeId = pastryInit(Credentials, Application) causes the local
node to join an existing Pastry network (or start a new one) and to initialize all relevant
states

• route(msg,key) causes Pastry to route a given message to the node whose
nodeId is numerically closest to the parameter key, among all live Pastry nodes.

• send(msg,IP-addr) causes Pastry to send a given message to the node with
the specified IP address, if that node is live. The message is received by that node
through the deliver method (described next)

Applications layered on top of Pastry have to export the following operations:

• deliver(msg,key) called by Pastry when a message arrives at the local node
and the local node’s nodeId is numerically closest to the message key, among all live
nodes.

• forward(msg,key,nextId) called by Pastry just before a message is for-
warded to the next node with nodeId is the nextId parameter. The application may
change the contents of the message or the value of nextId. Setting the nextId to NULL
terminates the message at the local node.

• newLeafs(leafSet) called by Pastry whenever there is a change in the local
node’s leaf set. This provides the application with an opportunity to adjust application-
specific invariants based on the leaf set.

Pastry can be used to build P2P file sharing applications, or multicast streaming applica-
tions (e.g. Scribe) etc. Since Pastry and Scribe are used in the PAN4i application, Scribe is
discussed in section 2.5.4.

2.3 The Dabek model for Structured P2P Overlays

Structured overlays can be used to construct services such as distributed hash tables (stor-
age systems), routing systems (group communication multicast / anycast) and decentralized
object locations. Since each structured overlay protocol might use different API and provides
services with subtly different semantics, the result would be that applications would be locked
into one system and unable to leverage innovations in other protocols. The work from Dabek
et al. [30] was an attempt to identify the fundamental abstractions provided by structured
overlays and to define API for the common services they provide, in particular the Key-based

2 STREAMING TECHNOLOGIES ON THE OVERLAY 21

 CAST

Tier 0

DHT

OceanStoreCFS PAST I3 Scribe SplitStream Bayeux

Tier 1

Tier 2

DOLR

Key!based Routing Layer (KBR)

Figure 1: Basic abstractions and APIs, including Tier 1 in-

terfaces: distributed hash tables (DHT), decentralized ob-

ject location and routing (DOLR), and group anycast and

multicast (CAST).

gle physical IP host). Participating nodes are assigned

uniform random nodeIds from a large identifier space.

Application-specific objects are assigned unique iden-

tifiers called keys, selected from the same id space.

Tapestry [11, 5], Pastry [8] and Chord [10] use a circu-

lar identifier space of -bit integers modulo (

for Chord and Tapestry, for Pastry). CAN [7]

uses a -dimensional cartesian identifier space, with 128-

bit nodeIds that define a point in the space.

Each key is dynamically mapped by the overlay to a

unique live node, called the key’s root. To deliver mes-

sages efficiently to the root, each node maintains a rout-

ing table consisting of the nodeIds and IP addresses of

the nodes to which the local node maintains overlay links.

Messages are forwarded across overlay links to nodes

whose nodeIds are progressively closer to the key in the

identifier space.

Each system defines a function that maps keys to nodes.

In Chord, keys are mapped to the live node with the clos-

est nodeId clockwise from the key. In Pastry, keys are

mapped to the live node with the closest nodeId. Tapestry

maps a key to the live node whose nodeId has the longest

prefix match, where the node with the next higher nodeId

value is chosen for each digit that cannot be matched ex-

actly. In CAN, neighboring nodes in the identifier space

agree on a partitioning of the space surrounding their

nodeIds; keys are mapped to the node responsible for the

space that contains the key.

3 Abstractions

All existing systems provide higher level abstractions

built upon the basic structured overlays. Examples are

Distributed Hash Tables (DHT), Decentralized Object Lo-

cation and Routing (DOLR), and group anycast/multicast

(CAST).

Figure 1 illustrates how these abstractions are related.

Key-based routing is the common service provided by

all systems at tier 0. At tier 1, we have higher level ab-

stractions provided by some of the existing systems. Most

applications and higher-level (tier 2) services use one

or more of these abstractions. Some tier 2 systems, like

[9], use the KBR directly.

The KBR API at tier 0 will be defined in detail in the

following section. Here, we briefly explain the tier 1 ab-

stractions and their semantic differences. The key opera-

tions of each of these abstractions are sketched in Table 1.

The DHT abstraction provides the same functionality as

a traditional hashtable, by storing the mapping between a

key and a value. This interface implements a simple store

and retrieve functionality,where the value is always stored

at the live overlay node(s) to which the key is mapped by

the KBR layer. Values can be objects of any type. For ex-

ample, the DHT implemented as part of the DHash inter-

face in CFS [4] stores and retrieves single disk blocks by

their content-hashed keys.

The DOLR abstraction provides a decentralized direc-

tory service. Each object replica (or endpoint) has an

objectID and may be placed anywhere within the system.

Applications announce the presence of endpoints by pub-

lishing their locations. A client message addressed with

a particular objectID will be delivered to a nearby end-

point with this name. Note that the underlying distributed

directory can be implemented by annotating trees associ-

ated with each objectID; other implementations are pos-

sible. One might ask why DOLR is not implemented on

top of a DHT, with data pointers stored as values; this is

not possible because a DOLR routes messages to the near-

est available endpoint—providing a locality property not

supported by DHTs. An integral part of this process is the

maintenance of the distributed directory during changes

to the underlying nodes or links.

The CAST abstraction provides scalable group commu-

nication and coordination. Overlay nodes may join and

leave a group, multicast messages to the group, or any-

cast a message to a member of the group. Because the

group is represented as a tree, membershipmanagement is

decentralized. Thus, CAST can support large and highly

dynamic groups. Moreover, if the overlay that provides

the KBR service is proximity-aware, then multicast is effi-

cient and anycast messages are delivered to a group mem-

ber near the anycast originator.

The DOLR and CAST abstractions are closely related.

Both maintain sets of endpoints in a decentralized manner

and by their proximity in the network, using a tree con-

sisting of the routes from the endpoints to a common root

associated with the set. However, the DOLR abstraction is

more tailored towards object location, while the CAST ab-

straction targets group communication. Thus, their imple-

mentations combine different policies with the same ba-

sic mechanism. The DHT abstraction, on the other hand,

provides a largely orthogonal service, namely a scalable

repository for key, value pairs.

2

Figure 13: Basic abstractions and APIs, including Tier 1 interfaces: distributed hash tables
(DHT), decentralized object location and routing (DOLR), and group anycast and multicast
(CAST) - (source from [30])

Rounting (KBR) functionality. This work resulted in a so called Dabek model. The key pur-
pose of this model is to facilitate independent innovation in overlay protocols, services, and
applications to allow direct experimental comparisons, and to encourage application devel-
opment by third parties. The API also helps to accelerate the adoption of structured overlays
and the implementation of any higher service layer. This concept is visualized in figure 13.

According to figure 13, KBR is the common service provided by all systems at tier 0. Tier
1 provides other higher level abstractions, those are specific for different applications, and
higher level services stay on tier 2. In the Dabek model, only the KBR API at tier 0 is defined
in detail as follows.

The common KBR API proposes two group of functions, the routing message and the
routing state access. The following API5 and their explanation are taken from [30]. Routing
message functions are used to route a message (or data packet) to destination nodes.
They are

• void route(key ->K, msg ->M, nodehandle ->hint) "This opera-
tion forwards a message M, towards the destination node of key K. The optional hint
argument specifies a node that should be used as a first hop in routing the message."

• void forward(key <->K, msg <->M, nodehandle <->nextHopNode)
"This upcall is invoked at each node that forwards message M, including the source

5In the following interfaces, a parameter p is denoted as ->p if it is a read-only parameter and <->p if it is a
read-write parameter. And an ordered set p of objects of type T as T[] p.

2 STREAMING TECHNOLOGIES ON THE OVERLAY 22

node, and the destination node-owner key K (before deliver (described below) is
invoked). The upcall informs the application that message M with key K is about to be
forwarded to nextHopNode. The application may modify the M, K, or nextHopNode
parameters or terminate the message by setting nextHopNode to NULL."

• void deliver(key ->K, msg ->M) "This function is invoked on the the des-
tination node owning key K upon the arrival of message M."

Routing state access functions are used to access the routing state of a node in order
to look up for instant a suitable next forwarding node (i.e. whose key is numerical closest to
destination key). They are

• nodehandle[] local_lookup(key ->K, int ->num, boolean ->safe)
This call returns a number (num value) of nodes (i.e. whose keys are numerical closest
to destination key K) that can be used as next forwarding node on a route towards
destination key K.

• nodehandle[] neighborSet(int ->num) This call returns a number (num
value) of nodes in the DHT routing table whose keys are numerical closest to the local
node key and called neighbor nodes. It is to improve the routing efficience (in Pastry,
it is the leaf set).

• nodehandle[] replicaSet(key ->k, int ->maxRank) This call re-
turns a number (maxRank value) nodes whose keys numerical closest to the data
item k. This data item can be replicated and stored on these returned nodes. It is to
improve scalability in case the local node fails.

• update(nodehandle ->n, bool ->joined) "This up-call is invoked to in-
form the application node that node n has either joined or left the neighbor set of the
local node."

• boolean range(nodehandle ->N,rank ->r,key <->lkey,key <-rkey)
This call returns information about the responsible key range of node N which is a
node in the neighbor set in the local node.

2.4 Application Layer Multicast

In section 2.1, we have discussed the problems of IP Multicast mainly in lacking of deploy-
ment support. As an attempt to overcome this drawback, ALM has been proposed. The
concept of ALM is that the multicast functionality is implemented on an application service
instead of using a network service as for IP Multicast. ALM systems can be deployed on
any overlay topology which can support multicast packet routing mechanisms. As shown in

2 STREAMING TECHNOLOGIES ON THE OVERLAY 23

Issues IP Multicast ALM
Multicast efficiency in terms of delay/bandwidth High Low – Medium
Complexity or Overhead Low Medium – High
Ease of deployment Low Medium – High
The layer where the multicast protocol works Network layer Application layer

Table 2: Conceptual comparison of IP multicast and ALM (source [31])

figure 14 a) for a scenario of IP multicast, all packets from sender S are routed to destina-
tions via underlay network routers R. Whereby in scenario b) for ALM, packets from sender
S are routed on the overlay network to destination D4 via intermedia node D1. This requires
each node to have knowledge about other neighboring nodes. These end-nodes with their
knowledge form an overlay network which can be used for routing packets from sender S to
any nodes in the overlay network. An application built upon this overlay network, that pro-
vides multicast functionality, is called ALM or End-system Multicast, or Overlay Multicast (i.e.
overlay network is the topology for ALM). But ALM also has its drawbacks as compared to IP
multicast such as multiple copies of the same packet may occur on the same links, routing
paths are non-optimal resulting in longer jitter delay. Table 2 is a comparison between IP
multicast and ALM based on different issues.

IEEE Communications Surveys & Tutorials • 3rd Quarter 200760

each other. The available bandwidth tends to be small. For
PIM-dense mode, the distances between members must be
short and their availability is judged to be high.

DEPLOYMENT ISSUES WITH MULTICASTING

Although IP Multicasting seems to hold great promise, its
practical deployment issues have prevented it from becoming
available on a global Internet level. Here we briefly describe
some of these issues and refer the readers to [2] for a compre-
hensive list of deployment issues and their detailed discussion.

IP Multicast-capable routers need to be installed at all lev-
els of the network (from backbone to edge routers) for the
multicasting service to work and be widely available, present-
ing a substantial cost to ISPs. In addition, there is a tendency
to install simple and unintelligent (therefore very fast) routers
at the backbone level since they can more efficiently handle
high capacity traffic instead of routers that can handle com-
plex services such as IP Multicasting. There also exist manage-
ment and security issues related to the deployment of IP
Multicast: the ease of flooding attacks via multicasting, unau-
thorized reception of data from a multicast session, preventing
allocation of same multicast address for two sessions, the diffi-
culty of setting up firewalls while allowing multicasting, etc.
Billing and service charge is another problem: a standard
model to charge for the delivery of packets duplicated by
routers does not yet exist. Note that most of the problems dis-
cussed above are easier to solve in an Intranet environment
controlled by a single entity due to the level of control that
exists in an Intranet. However, when it comes to the Internet,
these issues become problematic to the extent that they make
the deployment of IP Multicast at all levels of the Internet
next to impractical. In fact other approaches, such as the Mul-
ticast Backbone (MBONE) [11] project of the mid 90’s bring
multicasting closer to reality. In essence, MBONE uses uni-
cast connections between two or more subnetworks which are
capable of IP Multicast, referred to as Multicast Capable
Islands, by encapsulating the multicast packet in a regular uni-

cast IP packet and sending it from
one subnetwork to others. This
technique is also known as IP tun-
neling. But, inherent to the
MBONE are the general problems
of IP Multicasting such as receiver
authentication, group management
and possibility of flooding. In addi-
tion, the static setting up of unicast
tunnels stymies the natural growth
of such a network and assumes
responsible use of the available
resources. Consequently, the
MBONE is not made available to
typical home Internet users
through their ISPs, restricting its
use among education and research
institutions.

The lack of network-level sup-
port for multicasting has thus led
researchers and commercial enti-
ties to seek alternative ways of mul-
ticasting at the application layer. In
this article we present the rational
and design concepts behind ALM.
We will compare it against IP mul-
ticasting and discuss its pros and
cons. A novel classification of vari-
ous ALM protocols for the past 10

years is also presented. This classification, structured in 2 sets
of categorization based on application configuration and rout-
ing algorithm type, gives a unique perspective of the plethora
of ALM protocols that have emerged, helping practitioners in
the field select suitable protocols for their given multi-user
networked applications. We will also take a closer look at
three popular ALM protocols (ZIGZAG [12], NICE [12], and
OMNI [13]) and present their inner working as a tutorial for
those researchers who are interested in developing their own
ALM protocol for a specific application. The rest of this arti-
cle is organized as follows: we give an introduction to ALM
and compares it to IP Multicasting, while we discuss design of
ALM protocols. We present the classification of various ALM
protocols. Some classical ALM protocols are explained later.
We portray open issues and future work. Finally, we conclude
the article with closing remarks.

APPLICATION LAYER MULTICASTING

The concept of ALM is simply the implementation of multi-
casting functionality as an application service instead of a net-
work service. Figure 2b represents the ALM configuration for
the same group of sender and receivers in the IP multicasting
scenario shown in Fig. 2a. Here, the multicasting tree has
been built at the application layer. Using only the unicasting
capability of the network, the source sends two packets, one
to D1 and one to D2, each of which in turn send the packet to
D4 and D3, respectively.

While IP Multicast is implemented by network nodes (i.e.,
routers) and avoids multiple copies of the same packet on the
same link as well as possibly constructing optimal trees, ALM
is implemented by application nodes (either end systems or
proxies) and results in multiple copies of the same packet on
the same link as well as typically constructing non-optimal
trees. In exchange for its inefficiency, as compared to IP Mul-
ticast (by resulting in higher stress links and larger diameter
trees), ALM remedies the key shortcoming of the IP Multi-

Figure 2. a) IP multicasting scenario and b) application layer multicast.

D2

R

R

R

R

S

D3

(a)

D4

D1

D2

R

R

R

R

S

D3

(b)

D4

D1

Figure 3. a) Sample overlay topology; and b) an overlay multicast tree.

A

B

D

E

G C

(a)

F

A

B

D

E

G C

(b)

F

Authorized licensed use limited to: Telecom and Management Sud Paris. Downloaded on April 14, 2009 at 08:46 from IEEE Xplore. Restrictions apply.

Figure 14: a) IP multicasting scenario and b) an overlay multicast tree (sender S, router R,
destination D) (source [31])

There are a number of protocols designed for ALM. Each one is designed for each dif-
ferent application target. According to Hosseini et al. [31], things that have to be taken
into account for designing an ALM protocol are the deployment level (proxy-based ALM or

2 STREAMING TECHNOLOGIES ON THE OVERLAY 24

end-system ALM), application domain (number of user, application functionalities, process-
ing power, network resource, latency constraint, quality of services, nodes behind NAT etc.),
the requirement for multicast group management and also the selected routing mechanism.

For the deployment level, the proxy-based approach requires servers/proxies on the In-
ternet in a way they can form an overlay network and provide multicast service to end-user.
This topology is somehow similar to the Hybrid P2P described in 2.2.1 where servers/proxies
play the role of super-nodes. On the other hand, the end-system approach lets end-users
organize themselves to form an overlay network for multicast service without the need of
any server or proxy, e.g., solely using the P2P approach. Figure 15 shows a taxonomy of
architectures for ALM.

Internet video broadcasts: the AOL broadcast of Live 8 concert

in July 2005 [50], which at the peak has 175,000 simultaneous

viewers, and the CBS broadcast of the NCAA tournament [49]

in March 2006, which at the peak has 268,000 simultaneous

viewers. Even with today’s low bandwidth Internet video

of 400 Kbps, the CBS/NCAA broadcast needed more than

100Gbps server and network bandwidth. As a comparison,

Akamai, the largest commercial CDN service provider, reports

a peak aggregate capacity of 200Gbps with its tens of thou-

sands of servers [41].

Peer-to-peer technologies have emerged as important for

a wide range of applications such as file download and

voice over IP [41]–[43], [48]. However, video broadcast

applications pose very different challenges than these other

applications. Specifically, video broadcast imposes stringent

real-time performance requirements in terms of bandwidth and

latency. This is in contrast to file download applications like

BitTorrent [42], where the objective is to download a complete

file, and timeliness requirements are not critical. In fact, it

may typically take several hours to a few days to download

large files using BitTorrent, and such delays are clearly not

feasible for video broadcast applications. While voice over

IP applications also involve real-time requirements, video

broadcast applications are much more challenging given they

need to simultaneously support a large number of participants,

deal with dynamic changes to participant membership, and

cope with high bandwidth requirement of the video.

The distinguishing and stringent requirements of video

broadcast necessitate fundamentally different design decisions

and approaches. This article reviews the state-of-the-art of

peer-to-peer technologies for Internet video broadcast, and

presents a taxonomy of various solutions that have emerged.

In particular, two broad approaches have emerged: tree-based

approaches and data-driven randomized approaches. We ex-

amine typical examples and their differences. We then outline

future challenges that must be addressed to make Internet

video broadcast using peer-to-peer services a reality.

The remainder of this article is organized as follows. Section

II briefly discusses the architectural choices for Internet broad-

cast. In Section III, we highlight the key difference between

video broadcast and conventional peer-to-peer applications,

and taxonomize the existing approaches for peer-to-peer video

broadcast. Case studies for the typical approaches are pre-

sented in Section IV. We then present technical challenges

and open issues in Section V. The deployment status of the

practical peer-to-peer broadcast systems are reviewed in Sec-

tion VI, followed by a discussion on the potential deployment

challenges. Finally, Section VII concludes the article and

highlights possible avenues for future directions.

II. ARCHITECTURAL CHOICES FOR INTERNET

BROADCAST

We first review the architectural choices for supporting

Internet broadcast/multicast (see Fig. 1). There are subtle

differences between broadcast and multicast: the former is to

all the destinations and the latter is to a group of destinations

Router-Based

(IP Multicast)

No Router Support

Infrastructure-Centric

(CDNs, e.g. Akamai)

Application End-points Only,

End-System Only

Application End-points

or end-systems with

infrastructure support

End-System, Application-Level,

Overlay, or Peer-to-Peer Multicast

Fig. 1. Taxonomy of architectures for Internet broadcast

only. While broadcast is possible in air, cable networks, or

local area networks, it simply cannot be carried over the global

Internet. Nevertheless, given the popular use of this term in

radio and TV industries, in this article, we do not distinguish

it from multicast if the context is clear.

A. Router-Based Architectures: IP Multicast

In the Internet environment, the primary issue for broad-

cast/multicast is which layer it should be implemented. There

are two conflicting considerations that we need to reconcile.

According to the end-to-end argument, a functionality should

be 1) pushed to higher layers if possible; unless 2) implement-

ing it at the lower layer can achieve significant performance

benefits that outweigh the cost of additional complexity. In

his seminal work in 1989 [13], Deering argued that this

second consideration should prevail and multicast should be

implemented at the IP layer. This view has since been widely

accepted, leading to the IP multicast model.

IP multicast is a loosely coupled model that reflects the basic

design principles of the Internet. It retains the IP interface,

and introduces the concept of open and dynamic groups,

which greatly inspires later proposals. Given that the network

topology is best-known in the network layer, multicast routing

in this layer is also the most efficient. Unfortunately, despite

the tremendous effort in the past 15 years, today’s IP multicast

deployment remains limited in reach and scope. The reason is

complex, which involves not only technical obstacles, but also,

more importantly, economic and political concerns. First, IP

multicast requires routers to maintain per-group state, which

not only violates the ”stateless” architectural principle, but also

introduces high complexity and serious scaling constraints at

the IP layer. Second, IP multicast is a best-effort service, and

attempts to conform to the traditional separation of routing

and transport that has worked well in the unicast context.

However, providing higher level features such as error, flow,

and congestion control has been shown to be more difficult

than in the unicast case. Finally, IP multicast calls for changes

at the infrastructural level, and this slows down the pace of

deployment. In particular, there is a lack of incentive to install

multicast-capable routers and to carry multicast traffic.

B. Non Router-Based Architectures

The placement of the multicast functionality was revisited

in the new millennium, and several researchers have advocated

2

Figure 15: Taxonomy of architectures for ALM (source [32])

According to Diot et al. [33], application domains for multicast deployment are catego-
rized as follows.

• Audio/video streaming: involves one source sending live or recorded audio/video such
as streaming live sport event or video on demands. The typical consideration in this
application domain are bandwidth and latency.

• Push applications (information delivery): allows users to subscribe to any information
channels. This information is then automatically pushed to them at regular time inter-
vals. Bandwidth is in consideration.

• Audio/video conferencing: is similar to audio/video streaming but with smaller size

2 STREAMING TECHNOLOGIES ON THE OVERLAY 25

groups and higher interaction (multi-parties, multi-senders). The real-time effect, i.e.,
small latency is strictly required.

• File transfer : involves sending data (typically large amounts of data) (e.g. distributed
object or file sharing). Bandwidth is in consideration.

Multicast group management involves the questions of how users find out about a mul-
ticast session, how they join or leave a session, and how they individually can create a
multicast session etc. Furthermore, the question of whether multicast group is managed in a
distributed or centralized manner. Nodes in a multicast group can be organized in a tree or a
mesh topology. And when nodes join or leave the tree frequently, how to maintain the tree.

Different routing approaches between nodes on an overlay network satisfy different re-
quirements such as minimum overlay delay or minimum worst case delay. The Shortest Path
approach (figure 16b) aims to construct a minimum path from a source node to each receiver
applying the Dijkstra’s algorithm. This approach is for the best delivery effort strategy. The
Minimum Spanning Tree approach (Figure 16c) aims to construct a tree with minimum total
cost spanning all members which saves the cost of network resource. The Clustering Struc-
ture approach (Figure 17) aims to construct a hierarchical cluster of nodes. Each cluster has
a head node and some sub-nodes. This helps to reduce control signaling overhead, and to
manage the tree effectively.

IEEE Communications Surveys & Tutorials • 3rd Quarter 2007 65

between “islands” using unicast mechanism and the bottom
level concerned with packet delivery among the members in
an island using IP multicast.

Refinement — Depending upon the order of joining requests
for the same set of nodes, constructed trees might be different
and have different perception quality. The quality of an ALM
path between any pair of members is comparable to the quali-
ty of the unicast path between that pair of members. This
implies requirement of a minimum diameter tree. But, as the
protocol constructs the tree in real time and has no a-priori
knowledge of node arrivals, it is hard to construct this opti-
mum tree. Refinement is a solution to this problem. It moves
the overlay structure from the local optimum to the global
optimum and improves the system’s performance. But exces-
sive refinement makes the structure unstable due to the ad
hoc natures of node behavior. Moreover, the effectiveness of
the refinement to real-time applications is questionable due to
interrupted data distributions among the members. A designer
must thus carefully choose the depth and frequency of tree
refinement for a given application.

ROUTING MECHANISM

Once the overall group management has been designed and
the various choices are decided on, the most important part of
the design is how the tree (or a different structure) is formed
that provides the multicast service. This greatly depends on
the previous choices such as application domain (mainly
determining the quality metric and constraints), the deploy-
ment level (mainly determining the resources available to
each node in terms of permanency as well as bandwidth) and
group management. Design of the routing mechanism typical-
ly involves a (heuristic) solution to a graph theory problem.
That is, given a certain graph (i.e. a certain existing structure
of nodes) and certain constraints on each node (e.g. inbound
and outbound bandwidth constraints), the problem involves
the construction of a structure connecting the group of users
(or in case of a tree, connecting a source to all its recipients)
that satisfies a given requirement; e.g. minimum overlay delay
or minimum worst case delay. The solution to the problem
largely comprises the routing mechanisms; the routing mecha-
nism must then be augmented with stipulations about nodes
leaving the multicast structure, as well as possibly periodic or
event-based refinement strategies for the improvement of the
structure. In this section we provide a survey of common
approaches to the routing mechanism.

Group 1: Shortest Path — The aim of this group is to con-
struct degree constraint minimum diameter spanning tree.
Here they use RTT measurement to determine the shortest
path tree from the source to the end hosts and minimize the
time delay for each application while considering the degree
constraint and QoS. A Shortest Path Tree (SPT) constructs a
minimum cost path from a source node to all its receivers (see
chapter 25 of [21] for Dijkstra’s algorithm for building SPTs).
An SPT or one of its variants is commonly used by ALM pro-

tocols (such as Yoid [22], SpreadIt
[23], TAG [24], RITA [25]) in
order to construct a source-specific
multicast tree or in graph theoretic
terms a rooted tree. Figure 7b
shows the SPT rooted at the filled-
in node. It is important to note
that both MST and SPT can be
modified to respect degree con-
straints of each node [26].

Group 2: Minimum Spanning Tree — This group does not
worry about degree constraint of nodes and just tries to con-
struct a “low cost” tree or in other words a Minimum Span-
ning Tree. Given a graph with a cost associated with each edge
(usually delay), a Minimum Spanning Tree (MST) is a tree
with minimum total cost spanning all the members (see Chap-
ter 24 of [21] for Kruskal and Prim’s algorithms for building
MSTs). Given the graph with edge costs shown in Fig. 7a, an
MST is constructed to have the minimum total cost as shown
in Fig. 7c (total cost is 11 in this example). A MST is common-
ly used by a centralized ALM protocol such as ALMI [27] and
HBM [28] in order to construct a low cost shared tree that is
not rooted at any particular source (a shared tree implies that
all nodes use the same tree to distribute their data).

Group 3: Clustering Structure — This group constructs a
cluster of nodes that can be used to construct trees. In order
to better organize the overlay tree and reduce control mes-
sage overhead, some ALM protocols such as ZIGZAG [12]
and NICE [12] construct a hierarchical cluster of nodes with
each cluster having a “head” representing it in the higher
layer (Fig. 8). The advantage of a hierarchical clustering
approach to multicast tree routing is the reduction in control
overhead (nodes keep states only about a subset of other
nodes) and faster joining and management of the tree at the
cost of a sub-optimal tree and a lack of hard guarantees on
the degree limitation of each node.

Group 4: Peer-to-Peer Structure — In P2P structure, the
routing is simply done through reverse-path forwarding or for-
ward-path forwarding or in some cases a combination of both
types. From Table 2, we observe that many ALM protocols
(such as RMX [29], Gossamer [30], Bayeux [31], Borg [32],
Scribe [33]) operate based on an existing peer-to-peer sub-
strate that serves as a mesh on top of which an overlay multi-
cast tree can be constructed using either a reverse-path
forwarding scheme (Gossamer [30], RMX [29], Scribe [33]), a
forward-path forwarding scheme (Bayeux [31]) or both (Borg
[32]). The advantage of these approaches includes low control
overhead and distributed management of the multicast tree
but they do not restrict the degree of each node and are sub-
optimal.

Figure 7. a) A graph with link costs; b) shortest path tree, and c) minimum spanning tree.

4 43

2

(a)

2

2 2

3

2

(c)

2 2

4 3

(b)

2

2 2

Figure 8. A hierarchical cluster of nodes with cluster size 4.

Authorized licensed use limited to: Telecom and Management Sud Paris. Downloaded on April 14, 2009 at 08:46 from IEEE Xplore. Restrictions apply.

Figure 16: a) A graph with link costs; b) shortest path tree; c) minimum spanning tree (source
[31])

Each approach listed in the above has its own advantages and disadvantages. The an-
swer for which one to use depends on the objective and the application target. There have
been many publications to propose solutions and improvements on any feature of the ALM
systems. Therefore, in the scope of this report, not every approach will be discussed. Com-
mon features which are mainly considered in designing an ALM application will be discussed
in the next section.

2 STREAMING TECHNOLOGIES ON THE OVERLAY 26

IEEE Communications Surveys & Tutorials • 3rd Quarter 2007 65

between “islands” using unicast mechanism and the bottom
level concerned with packet delivery among the members in
an island using IP multicast.

Refinement — Depending upon the order of joining requests
for the same set of nodes, constructed trees might be different
and have different perception quality. The quality of an ALM
path between any pair of members is comparable to the quali-
ty of the unicast path between that pair of members. This
implies requirement of a minimum diameter tree. But, as the
protocol constructs the tree in real time and has no a-priori
knowledge of node arrivals, it is hard to construct this opti-
mum tree. Refinement is a solution to this problem. It moves
the overlay structure from the local optimum to the global
optimum and improves the system’s performance. But exces-
sive refinement makes the structure unstable due to the ad
hoc natures of node behavior. Moreover, the effectiveness of
the refinement to real-time applications is questionable due to
interrupted data distributions among the members. A designer
must thus carefully choose the depth and frequency of tree
refinement for a given application.

ROUTING MECHANISM

Once the overall group management has been designed and
the various choices are decided on, the most important part of
the design is how the tree (or a different structure) is formed
that provides the multicast service. This greatly depends on
the previous choices such as application domain (mainly
determining the quality metric and constraints), the deploy-
ment level (mainly determining the resources available to
each node in terms of permanency as well as bandwidth) and
group management. Design of the routing mechanism typical-
ly involves a (heuristic) solution to a graph theory problem.
That is, given a certain graph (i.e. a certain existing structure
of nodes) and certain constraints on each node (e.g. inbound
and outbound bandwidth constraints), the problem involves
the construction of a structure connecting the group of users
(or in case of a tree, connecting a source to all its recipients)
that satisfies a given requirement; e.g. minimum overlay delay
or minimum worst case delay. The solution to the problem
largely comprises the routing mechanisms; the routing mecha-
nism must then be augmented with stipulations about nodes
leaving the multicast structure, as well as possibly periodic or
event-based refinement strategies for the improvement of the
structure. In this section we provide a survey of common
approaches to the routing mechanism.

Group 1: Shortest Path — The aim of this group is to con-
struct degree constraint minimum diameter spanning tree.
Here they use RTT measurement to determine the shortest
path tree from the source to the end hosts and minimize the
time delay for each application while considering the degree
constraint and QoS. A Shortest Path Tree (SPT) constructs a
minimum cost path from a source node to all its receivers (see
chapter 25 of [21] for Dijkstra’s algorithm for building SPTs).
An SPT or one of its variants is commonly used by ALM pro-

tocols (such as Yoid [22], SpreadIt
[23], TAG [24], RITA [25]) in
order to construct a source-specific
multicast tree or in graph theoretic
terms a rooted tree. Figure 7b
shows the SPT rooted at the filled-
in node. It is important to note
that both MST and SPT can be
modified to respect degree con-
straints of each node [26].

Group 2: Minimum Spanning Tree — This group does not
worry about degree constraint of nodes and just tries to con-
struct a “low cost” tree or in other words a Minimum Span-
ning Tree. Given a graph with a cost associated with each edge
(usually delay), a Minimum Spanning Tree (MST) is a tree
with minimum total cost spanning all the members (see Chap-
ter 24 of [21] for Kruskal and Prim’s algorithms for building
MSTs). Given the graph with edge costs shown in Fig. 7a, an
MST is constructed to have the minimum total cost as shown
in Fig. 7c (total cost is 11 in this example). A MST is common-
ly used by a centralized ALM protocol such as ALMI [27] and
HBM [28] in order to construct a low cost shared tree that is
not rooted at any particular source (a shared tree implies that
all nodes use the same tree to distribute their data).

Group 3: Clustering Structure — This group constructs a
cluster of nodes that can be used to construct trees. In order
to better organize the overlay tree and reduce control mes-
sage overhead, some ALM protocols such as ZIGZAG [12]
and NICE [12] construct a hierarchical cluster of nodes with
each cluster having a “head” representing it in the higher
layer (Fig. 8). The advantage of a hierarchical clustering
approach to multicast tree routing is the reduction in control
overhead (nodes keep states only about a subset of other
nodes) and faster joining and management of the tree at the
cost of a sub-optimal tree and a lack of hard guarantees on
the degree limitation of each node.

Group 4: Peer-to-Peer Structure — In P2P structure, the
routing is simply done through reverse-path forwarding or for-
ward-path forwarding or in some cases a combination of both
types. From Table 2, we observe that many ALM protocols
(such as RMX [29], Gossamer [30], Bayeux [31], Borg [32],
Scribe [33]) operate based on an existing peer-to-peer sub-
strate that serves as a mesh on top of which an overlay multi-
cast tree can be constructed using either a reverse-path
forwarding scheme (Gossamer [30], RMX [29], Scribe [33]), a
forward-path forwarding scheme (Bayeux [31]) or both (Borg
[32]). The advantage of these approaches includes low control
overhead and distributed management of the multicast tree
but they do not restrict the degree of each node and are sub-
optimal.

Figure 7. a) A graph with link costs; b) shortest path tree, and c) minimum spanning tree.

4 43

2

(a)

2

2 2

3

2

(c)

2 2

4 3

(b)

2

2 2

Figure 8. A hierarchical cluster of nodes with cluster size 4.

Authorized licensed use limited to: Telecom and Management Sud Paris. Downloaded on April 14, 2009 at 08:46 from IEEE Xplore. Restrictions apply.

Figure 17: A hierarchical cluster of nodes with cluster size 4 (source [31])

2.5 P2P audio/video streaming

Audio/video streaming can be classified into two categories namely live streaming systems
(e.g. sending live sport event) and video-on-demand systems (e.g. cinema at home service).
All subscribers of a live streaming system receive the same stream at almost the same time
(with a very small delay). Like watching a television channel, any subscriber can not go
forward or backward to get the past streamed content. Whereby video-on-demand service
allows users to watch any point of video at any time. Users can go backward or forward
the video content at any time. Both multicast streaming systems can be built on a Tree-
first or a Mesh-first approach. The main difference of the on–demand streaming from the
live streaming is the caching technique used in the on–demand streaming system. In this
context, the live streaming technology which is used to deploy in the PAN4i application is
discussed in detail, on–demand streaming will only be discussed in brief.

2.5.1 P2P live streaming

In a live streaming session such as a live sport event, live audio/video content is distributed
to all users synchronically and in realtime. ALM technologies can be used to provide live
streaming service on an overlay P2P topology. In a P2P live streaming system, subscribers
will first join an existing overlay P2P network on which the streaming service is based. There
are mainly two approaches for building a P2P streaming multicast network namely Tree-first
and Mesh-first approaches. Each one has its own advantages and disadvantages. They are
discussed in the following.

A) Tree-first approach ALM tree-first approach organizes all participating peers into a
hierarchical structure with the peering relationship of parent node (header node) and children

2 STREAMING TECHNOLOGIES ON THE OVERLAY 27

node (sub node). A parent node has one or many children nodes. A child node of a parent
node can have other children nodes or have no child node. A node has no child node is called
the leaf node. This hierarchical structure forms a tree structure and is used for delivering
media stream from the top header node (also called the root of the tree) downward to all
nodes connected on the tree. The construction and maintenance of a tree can be done in a
centralized or decentralized approach. The Tree-based approach has two variations namely
the Single-tree and Multi-tree.

A.1) Single-tree streaming In this approach, there is only one unique stream flowing
from the top down to the bottom. All peers at all levels should continuously receive the same
stream content one after another. When a new node joins a multicast tree, it is added to an
existing node at a certain level of the tree and becomes a child node of this parent node. A
sender can send media stream to this multicast tree by sending packets to the top header
node on top of the tree (the root node). From this root node, the media stream is pushed
to the rest of the multicast tree. Tree-based structure is easy to construct but the largest
disadvantage of this approach is the scenarios of inner node failure. When a node fails or
leaves the multicast tree, especially those higher in the tree, it will temporarily disrupt the
video stream to all nodes in the sub-tree rooted at this departed node. The term temporarily
here means that the tree has to be repaired and the disrupted sub-tree can continue to
receive the stream as soon as possible. Other disadvantages are the delay in replication load
if the tree has many levels. For reducing the delay in lower level nodes, each parent can host
more children nodes (high fan-out degree). And in a tree with high fan-out degree, there is a
large number of node in the leaf level that do not contribute their uploading bandwidth to the
overall streaming system. Figure 18 shows an example of nodes on the Single-tree multicast
streaming network with the corresponding locations of nodes in the underlay network. For a
given sender, a stream is sent to the root of the tree. The root forwards each receiving packet
to its children (nodes 1 and 2), nodes 1 and 2 continue to forward to their children nodes 3,
4, 5 and 6. Nodes 3, 4 and 6 forward to nodes 7, 8, 9 and 10. Since nodes 5, 7, 8, 9, 10
have no child to forward to, they are called the leaf nodes of the tree.

For the tree construction, there are two major considerations. They are the depth degree
of the tree and the fan-out degree of the internal nodes (the possible number of supported
children of a node). A node in a lower level receives the stream after the node at its upper
level. The more level a tree has, the longer delay of nodes at bottom level have. To reduce
this delay, a streaming tree would have fewest levels possible. This means that the tree
should grow up horizontally and not vertically. For doing this, each node should be able to
support as many children nodes as possible. The uploading bandwidth of a node will define
the number of children it can support.

Another important issue in the Tree-based streaming approach is the tree maintenance.
The tree needs to be repaired in case of any intermediate node leaves the tree either grace-

2 STREAMING TECHNOLOGIES ON THE OVERLAY 28

Root node

!""#

$ %

&

$'

()*

+ , -

./0123/435

!"#$%&"'(")('"*+,(&'(%-+(,%.+$/&'0("1+.2$3(454(,&'02+6%.++(%"7"2"03

!"#$%&"'(")('"*+,(&'(%-+(8'*+.2$3(94('+%:".;!"#$%&"'(")('"*+,(&'(%-+(8'*+.2$3(94('+%:".;

23/435

Root node

Figure 18: Nodes of a multicast streaming group in a single-tree

fully or unexpectedly e.g. machine crashes. When a parent node leaves the tree, all de-
scendent nodes are disconnected to the streaming tree and could not receive the stream
anymore. This would result in disruption during playback. The tree needs to be be recov-
ered as soon as possible. Figure 19 shows a scenario where node 1 leaves the tree. All
descendent nodes 3, 4, 7, 8 and 9 are disconnected from the tree. The tree could possibly
be repaired as node 3 is connected to the root node, and nodes 4 and 9 are connected to
node 5 (Figure 20).

Tree management (i.e. construction and maintenance) can be done either in a centralized
fashion or de-centralized fashion. According to Liu et al. [34], in the centralized fashion, all

2 STREAMING TECHNOLOGIES ON THE OVERLAY 29

!""#

$ %

&'()

!""#

%

&

$*

'

(

)

+ , -

$

+ , - $*

$

)%

(' +&

(

&'

$ % +)

./01/2

34563#2/789$ 34563#2/789%

Figure 19: Scenario when a node leaves the multicast tree

!""#

$ %

&'()

!""#

%

&

$*

'

(

)

+ , -

$

+ , - $*

$

)%

(' +&

(

&'

$ % +)

./01/2

34563#2/789$ 34563#2/789%

Figure 20: Repaired tree after a node leaves

signaling communication of peers on the tree is done at a central server. The server has full
knowledge about the tree structure and the status of all nodes. When a new peer wants to
join a multicast group, it contacts the server. With the knowledge (e.g. bandwidth, number
of children, locality etc.) about each node on the tree and based on the characteristics
of the new coming node, such as network access and location, the server will look for a
suitable parent node for this new node. The new node would then be asked to connect to
the suggested parent node directly. An example is that a selected parent node is close to the

2 STREAMING TECHNOLOGIES ON THE OVERLAY 30

new node in locality e.g. in the same sub network or the parent node has more bandwidth
available, or delay between new node and suggested parent is small etc. On the other
hand, the server can detect a departure of a node through either a graceful LEAVE message
or after a time-out period without receiving any heart-beat message from this node. In both
cases, the server will calculate a new tree structure for the remaining peers and instruct them
to form a new tree structure. For a large scale streaming system, this centralized approach
with its central server is the single point of failure.

To overcome this problem, distributed tree management has been proposed. Distributed
tree management means that no central server is needed. All peers in the tree take part
into the management. Depending on different schemes, each one has a different approach.
An approach can be that each peer maintains relationships with some other peers called
neighbor peers. These peering relationships form an overlay network for routing the signaling
messages to any peers on the overlay. Based on the knowledge (e.g. bandwidth of each
node, locality, delay between nodes etc.) of the existing overlay network, another streaming
topology (e.g. shorted path tree or minimum spanning tree etc.) for content delivery (e.g.
media streaming) is built on the existing overlay network. Scribe (discussed in section 2.5.4)
is an example of this approach.

To solve the non-contribution of uploading bandwidth of leaf nodes in a Single-tree prob-
lem (especially for a high fan-out degree tree) which would degrade the utilization of band-
width efficiency in the system, a Multi-tree approach is proposed.

A.2) Multi-tree streaming The Multi-tree approach is designed to make use of the up-
loading bandwidth of all leaf nodes for the streaming system. In order to do so, the sender
will divide the stream into a number of sub-streams. For each sub-stream, there is a corre-
sponding sub-tree. All nodes of a multicast group will have to join in all different sub-trees
at different levels (intermediate or leaf level) in order to receive all the sub-streams and then
re-order them into a full stream for playing back. When a node stays in an intermedia level of
the tree, it receives the stream from its parent and then upload the received stream to its chil-
dren. If a node has more bandwidth capacity, it could be placed more often at the intermedia
level on different sub-trees than other nodes those having less bandwidth capacity. This is to
utilize the available bandwidth of all peer in a tree to best effort. According to Liu et al. [34],
given a fully balanced Multi-tree with m sub-streams, the node degree6 of each sub-tree is
m. In the m sub-trees, a single peer stays at an intermediate level in only one sub-tree and
upload the received sub-stream to only m children connected to it in this sub-tree. In the rest
of m-1 sub-trees, this peer stays only at the leaf levels and receives other sub-streams from
its parents. Figure 21 illustrates an example of a multi-tree topology. In this tree, there are
one sender and seven receiver peers. The sender splits the stream into two sub-streams,
each one is sent to its corresponding sub-tree. Each of the seven peers stays in both sub-

6Node degree: the number of children connected directly to this node

2 STREAMING TECHNOLOGIES ON THE OVERLAY 31

trees. Except peer 7, which stays at the leaf level on both sub-trees, all other peers stay
at the intermedia levels on one sub-tree and at the leaf levels on another. Peer 7 does not
contribute its bandwidth for uploading since the bandwidth of the sender is used instead.

!"

$

%&'(

!"

$

%

#)

&

'

(

* + ,

#

* + , #)

#

($

' & *%

'

%&

$ *(

-./0.1

2345261.789# 2345261.789$

Figure 21: An example of multi-tree streaming topology

The Multi-tree approach solves the issue of bandwidth efficiency for the Single-tree ap-
proach. But it also introduces more complexity and communication overhead for the tree
management. In general, the Tree-based approach gives direct control over the tree and
the functionalities of each peer are well defined. This makes the Tree-based approach fairly
straight forward to be implemented. Although multicast on a tree topology is claimed to have
an efficient delivery effort, but jitter delay is also an issued to be considered. Under peer
churn, both of the Tree-based approaches still do not solve the question of robustness for
minimum disruption. Therefore, another Mesh-based approach was proposed and is dis-
cussed in the next section.

B) Mesh-based approach In the Mesh-based system, each peer maintains relationships
with neighboring peers to form a connected overlay called a mesh. There are several pro-
posals for a streaming topology established upon a mesh which mainly focus on the follwing
two main approaches. A streaming tree topology is built upon an existing mesh overlay e.g.
the shortest path spanning tree known as the Narada’s protocol [35]. Another one uses the
mesh overlay as for the streaming topology which means that the stream can arrive at a
destination node from different neighbor nodes of this destination node [34].

B.1) Delivery tree in Mesh-based approach The Narada protocol [35] constructs and
maintains a source rooted (reverse) shortest path spanning trees on a mesh. Narada al-

2 STREAMING TECHNOLOGIES ON THE OVERLAY 32

lows more trees to be built on the same mesh. Each one is used for a multicast session
and is rooted at the corresponding source. Narada design involves three main components.
Mesh management is the first component to ensure the mesh remaining connected in face of
churn. The second one is the mesh optimization which uses distributed heuristics for ensur-
ing shortest path delay between peers in the mesh is small. For a given poor mesh overlay
topology in figure 22a, the paths between each peer pair in the mesh are dynamically added
or removed according to the following optimization rules. Each peer periodically probes other
peers at random and monitor existing links. An existing link is dropped if the Cost of dropping
a link7 is less than a Drop Threshold8 value (Figure 22b). A new link between two peers is
added if the Utility Gain9 of adding link is greater than an Add Threshold value (Figure 22c
and d). The last component is about the spanning tree construction. The tree is built on the
improved mesh (Figure 22e and f) and its construction’s decision is based on the distance
vector routing and reverse path forwarding algorithms10.

B.2) Multiple delivery paths in Mesh-based approach Unlike the multicast tree in
the Narada Mesh-based protocol where the mesh is considered as an overlay for another
streaming tree topology to be built on, different approaches allow the stream delivery via
multiple paths to a destination node e.g the ChunkySpread [36] approach which forms a
multi-tree over a mesh. In the paper [34], the mesh of this type forms the multicast stream-
ing topology. In general, each peer at any given time maintains relationships with multiple
selected peers. In case of peer churn, a peer can still be connected with the streaming ses-
sion via connections with other neighbors. At the same time, a peer can learn about new
peers and would change its neighbors to better suitable peers for improving its playback per-
formance and to ensure that it always has a certain number of connected neighbors. With
these relationships, a peer can upload to or download media data from its neighbors. For
such a dense peering relationship, this Mesh-based approach is extremely robust again peer
churn. According to Liu et al. [34], there are two main components for dealing with the Multi-
tree Mesh-based system design namely the mesh formation and maintenance, and the data
exchange.

B.2.1) Mesh formation and maintenance The Mesh-based streaming system uses a
tracker11 to manage all active peers in the streaming session. Upon arrival, a new node con-

7Cost of dropping a link is based on the number of peers to which routing delay increases for either neighbor
[35]

8Add/Drop Thresholds are functions of the peer’s estimation of group size and the current and maximum
degree of member in the mesh [35]

9Utility Gain of adding a link is based on the number of peers to which routing delay improves and how
significant the improvement in delay to each peer is [35]

10Distance vector routing and reverse path forwarding protocols are both used in IP Multicast
11The use of a tracker follows the idea of using tracker in the file sharing systems like BitTorrent

2 STREAMING TECHNOLOGIES ON THE OVERLAY 33
!"#$%&'#()%*+!, -"#$.+/01!&/#2*%%#134&/*.1/%5#34#/'%#$%&'#()%*+!,

!"

1" 5"

%" 6"

7%45%*

$.+/01!&/#/*%%#134&/*.1/%5#34#089*3)%5#8%&'

-"

Figure 22: Narada - Optimizing Mesh Quality (source [35])

tacts the tracker to provide the tracker about its information e.g. IP address, port number etc.
and to receive a suggested list of peers being in the streaming session. The new node will
then try to connect with the remote nodes in the suggested list. If a remote node accepts the
connection request, this remote node is added to the neighbor list of the new node. Figure 23
illustrates a scenario for the arrival of a new node to an existing streaming mesh. After hav-
ing enough neighbors, the new node can start to exchange media content with its neighbors.
During a streaming session, a node dynamically updates its neighbors by adding new nodes
to replace departed nodes, changing its neighbors to get better neighbors for achieving bet-

2 STREAMING TECHNOLOGIES ON THE OVERLAY 34

ter performance. At any time, a node in the mesh should always maintain a certain number
of neighbors keeping it robust against peer churn. The mechanism for updating neighbors
can be done in two ways. A node can ask the tracker for a list of new suggested neighbors.
Or it can also find new neighbors by exchanging neighbor information between nodes in the
mesh. In case of graceful departure, a node will send a LEAVE message to the tracker and
its neighbors so that its information is removed from these receivers immediately. Since each
node periodically sends heart-beat messages to all its neighbors, in case of its unexpected
departure e.g., computer crash, neighbor nodes will detect and remove the crashed node
after a certain time without receiving any heart-beat message from this crashing node.

22 Peer-to-Peer Netw Appl (2008) 1:18–28

Fig. 4 Peer list retrieval from
the tracker server

to ask for a fresh list of active peers. It can also find
new peers by exchanging its peer list with its neighbors
through the established connections. If a peer leaves
the session gracefully, it will notify the tracker and its
neighbors such that its information can be removed
from their peer lists immediately. To handle unex-
pected peer departures, e.g. computer crashes, peers
regularly exchange keep-alive messages. A peer will
remove a remote peer’s information from its list if no
keep-alive message is received within a pre-configured
timeout period.

A peering connection is established based on the
mutual agreement between two peers at both ends.
Different systems have different peering strategies, i.
e., how many and which peers to connect to, when
and how often to switch neighbors, etc. The peering
decisions are normally made based on the following
considerations:

– the workload and resource availability on both
ends, such as the current number of connections,
uploading and downloading bandwidth, CPU and
memory usage;

– the quality of the potential connection, including
the packet delay and loss characteristics on the
network path between two peers;

– the content availability, i.e., how likely a remote
peer will have the content needed by the local peer.

Based on those criteria, a peer not only connects to
new neighbors in response to neighbor departures, but
also changes neighbors voluntarily to achieve better
streaming performance.

2.2.2 Data exchange

In tree-based systems, video streams flow from the
source to all peers along the streaming tree. In mesh-
based systems, due to the mesh topology, the concept
of video stream becomes invalid. The basic data unit in
mesh-based systems is video chunk. The source server
divides the video content into small media chunks, each
of which contains media data for a small time interval,

e.g., 0.1 second. Each chunk has a unique sequence
number. A chunk with lower sequence number con-
tains video with earlier playback time. Each chunk is
then disseminated to all peers through the mesh. Since
chunks may take different paths to reach a peer, they
may arrive at a peer out of order. For continuous
playback, a peer normally buffers received chunks in
memory and put them back in order before presenting
them to its video media player. Buffered chunks of one
peer can be uploaded to its neighbors. Depending on
the system design, a peer might keep several minutes
worth of video chunks in the buffer. For live streaming,
the sequence numbers of buffered chunks increases
steadily as the video playback progresses.

There are two major flavors of data exchange designs
in mesh-based systems: push and pull. In a mesh-push
system, a peer actively pushes a received chunk to its
neighbors who have not obtained the chunk yet. In tree-
based system, a chunk should always be pushed from a
peer to all its children peers in the streaming tree. How-
ever, there is no clearly defined parent-child relation-
ship in mesh-based system. A peer might blindly push
a chunk to a peer already having the chunk. It might
also happen that two peers push the same chunk to the
same peer. Peer uploading bandwidth will be wasted
in redundant pushes. To address that problem, chunk
push schedules need to be carefully planned between
neighbors. And the schedules need to be reconstructed
upon neighbor arrivals and departures.

One natural way to avoid redundant pushes is to
use pull instead of push. In a mesh-pull system, peers
exchange chunk availability using buffer maps period-
ically. A buffer map contains the sequence numbers
of chunks currently available in a peer’s buffer. Af-
ter obtaining buffer maps from its neighbors, a peer
can decide a chunk pull schedule that specifies from
which peers to download which chunks. Then it will
send requests to its neighbors to pull missing chunks.
Redundant chunk transmissions can be avoided since
a peer only downloads a missing chunk from only
one neighbor. Frequent buffer map exchanges and pull
requests do incur more signaling overhead and might
introduce additional delays in chunk retrieval. In Fig. 5,
peer 3 generates its buffer map indicating the chunk
availability in its buffer. Then it exchanges its buffer
map with peer 1 and 2. Missing chunks will be requested
and downloaded among all three peers.

3 P2P video-on-demand

Video-on-demand service (VoD) allows users to watch
any point of video at any time. Compared with live

Figure 23: Peer list retrieval from the tracker server (source [34])

According to Liu et al. [34], a peering connection is established based on the mutual
agreement between two peers at both ends. The decision on which peers to connect to,
when and how often to exchange neighbors etc. is different for different protocols. Basically,
a decision is based on the following considerations.

• The resource availability e.g. CPU, memory, uploading and downloading bandwidth
etc. on both ends.

• The current condition of the network e.g. packet delay, packet loss characteristics on
the network path between both ends.

• The content availability i.e. how often a remote peer having content needed by the
local peer.

2 STREAMING TECHNOLOGIES ON THE OVERLAY 35

B.2.2) Data exchange This mesh-based approach has the ability to effectively utilize
the uploading bandwidth of all participating peers as the group size grows. The data unit for
the streaming is media chunk. Each chunk contains media content for a small time interval
e.g. 0.1 second. Each chunk has unique time-stamp and sequence number. Since chunks
may arrive at receivers out of order, these values are used to re-order chunks for playback.
Unlike the Tree-based approach where content is pushed from the sender and flows down to
all peers in the tree, Mesh-based approach normally couples push content reporting with pull
content requesting. Each node has a storage buffer for the latest received trunks and a buffer
map of available trunks in the buffer. Pushing content reporting means that a node will send
its buffer map to its neighbors when there are new chunks available. And pulling content
requesting means that when a node receives these buffer map advertisements, depending
on its packet scheduling algorithm, it will pull the needed chunks from its neighbors to perform
its playback. Figure 24 illustrates a scenario where buffer maps are exchanged and needed
chunks are pulled between peers.Peer-to-Peer Netw Appl (2008) 1:18–28 23

Fig. 5 Buffer map exchange
and data pull among peers

Peer 1 Peer 3

Peer 2

Buffermap
 Exchange

Peer3 Buffermap

Available Chunk

Chunk
Request

Chunk
Delivery

Chunk
Delivery

Chunk
Request

streaming, VoD offers more flexibility and convenience
to users and truly realizes the goal of watch whatever
you want whenever you want. VoD has been identified
as the key feature to attract consumers to IPTV service.

In VoD service, although a large number of users
may be watching the same video, they are asynchronous
to each other and different users are watching different
portions of the same video at any given moment. Tree-
based P2P system is originally designed to function as
IP multicast at the application layer without underlying
network layer’s support. The users using tree-based
overlay is synchronized and receive the content in the
order the server sends it out. This is fundamentally dif-
ferent from the requirement imposed by VoD service.
How to accommodate asynchronous users using tree-
based P2P system is a challenging design issue.

Mesh-based P2P system is first introduced to dis-
tribute large files and then successfully applied to live
streaming. Typically a large file is divided into many
small blocks. The system throughput and the rate at
which the content can be distributed to users heavily
depend on the diversity of content blocks available
at different peers. The order at which the blocks are
received is different from peer to peer and is very
random. The challenges to offer VoD using mesh-based
P2P network is two folds. At the peer-level, the content
blocks have to be received before their playback time.
Ideally, the content blocks should be downloaded in
the same order as in the source file. At the system
level, the content sharing has to be enabled among
asynchronous peers and the overall system throughput
has to be high even with the per-peer downloading
constraint. Supporting VoD using mesh-based P2P is
again not straight-forward.

In the following, we present three representative so-
lutions that have been developed in the past to support
VoD using tree-based and mesh-based P2P system. As
described in the previous section, tree-based and mesh-
bashed P2P systems have their own pros and cons. Here

we focus on how to adapt these approaches to providing
VoD service.

3.1 Tree-based P2P VoD

Inspired by the patching scheme [11, 17] proposed to
support VoD service using native IP multicast, the au-
thors in [14] designed a scheme that uses tree-base P2P
system to support asynchronous users in VoD service.

Users are grouped into sessions based on their ar-
rival time. A threshold, T, is pre-defined. The users that
arrive close in time and within the threshold constitute
a session. Together with the server, users belonging to
the same session form an application-level multicast
tree, denoted as the base tree. The server streams the
entire video over the base tree as in tree-based P2P
live streaming. This complete video stream is denoted
as the base stream. When a new client joins the session,
it joins the base tree and retrieves the base stream from
it. Meanwhile, the new client must obtain a patch - the
initial portion of the video that it has missed (from the
start of the session to the time it joined the base tree).
The patch is available at the server as well as other users
who have already cached the patch. Users behave like
peers in the P2P network, and provide the following
two functions:

– Base Stream Forwarding: Users participate in the
tree-based overlay and forwards the received base
stream to its children. The base stream is shared
among all users in the tree.

– Patch Serving: Users cache the initial part of the
video and serve the patch to latecomers.

Figure 6 illustrates a snapshot of the above solution
when a new user arrives at time 40. It shows two
sessions, session 3 and session 4, starting at time 20.0
and 31.0, respectively, with the threshold equal to 10.
Each user is marked with its arrival time to the system.
A solid line with an arrow is used to represent the

Figure 24: Buffer map exchange and data pull among peers (source [34])

According to Magharei et al. [37] "The packet scheduling algorithm is the key component
of a Mesh-based P2P streaming mechanism that would achieve the following three design
goals: (i) effectively utilizing the available bandwidth from all parents peers, (ii) pulling a
proper number of description (i.e., desired quality) from all parent peers, and (iii) ensuring
in-time delivery of requested packets".

The dynamic peering relationship characteristic of the Mesh-based approach helps to
solve the question of robustness against peer churn problem of the Tree-based approach.
But the Mesh-based approach has to pay a price for its communication overhead, i.e., com-
munication for maintaining relationship with neighbors and buffer map advertising. Another
drawback feature of the Mesh-based approach is that data chunks are pulled in-orderly from
different neighbors to a peer. And this makes the video distribution efficiency unpredictable

2 STREAMING TECHNOLOGIES ON THE OVERLAY 36

which would result in playback quality degradation such as low video bit rates or frequent
playback freezes.

2.5.2 P2P video-on-demand

Besides the live streaming system, P2P video-on-demand (VoD) is another streaming system
which uses different techniques. VoD allows users to watch video content at any point and
at any time. This section provides an introduction with key components to the streaming
techniques for P2P VoD services. It does not provide a deep discussion to the techniques as
in the P2P live streaming section.

Similar to the P2P live streaming system, the purpose of the P2P VoD streaming system
is to organize peers into a multicast topology for making use of the uploading bandwidth of
all peers with best effort. Unlike the live streaming system where all peers playing the media
stream synchronously, peers in the VoD system play the media stream asynchronously (i.e.
different users may watch different portions of the same video stream at any given time). This
results in different streaming topologies and strategies as compared to the live streaming
system. According to Liu et al. [34], the following three solutions have been developed to
support VoD using tree-based and mesh-based P2P system.

Tree-based P2P VoD The basic idea is that users are grouped into a session tree, based
on their arrival time. A session is defined for a time period. If the arrival time of users is
in this session time period, these users together with the streaming server are grouped into
an ALM tree. The server forwards the base stream12 continuously during time to each of
the session tree connected to it. Each peer in the tree receives the stream from its parent
and stores the past received content for a time length equals to the session time period. On
arrival of a new node to an existing session tree, the new node is connected to an existing
node and receives the based stream (synchronously flowed from the server) from this parent
node. And at the same time, this new node is also connected to another existing node on this
streaming session tree and receive the asynchronous patch stream from it. Patch stream is
the archived media content from the beginning time of this session to the new node’s arrival
time. Figure 25 visualizes the concepts of this streaming tree approach.

Cache-and-relay P2P VoD This approach also employs a Tree-based topology for dis-
tributing VoD content. Each node keeps the past received content for a length of some time
e.g., 10 minutes. But the difference is that this approach does not organize peers into ALM
trees based on per timing session. Instead, new arrival nodes would join an existing tree at
a leaf node if the 10 minutes buffer length of this leaf node has the archived video content

12Base stream is the stream continuously flown from the streaming server

2 STREAMING TECHNOLOGIES ON THE OVERLAY 37
24 Peer-to-Peer Netw Appl (2008) 1:18–28

Fig. 6 A snapshot of the scheme at time 40. Users belonging to
the same session form an application-level multicast tree together
with the server. Users in session 3 have finished patch retrieval;
while 3 clients in session 4 are still receiving the patch stream from
their parent patch servers

parent-child relationship in the base tree; and a dashed
line with an arrow is used to represent the patch server-
client relationship. The server and the clients in a ses-
sion form an application-level multicast tree to deliver
the base stream. At time 40, all clients in session 3
have finished the patch retrieval; while three clients in
session 4 are still in the process of receiving the patch
stream. Note that users belonging to different sessions
do not interact with each other.

Note that users are synchronous in the base tree. The
asynchronous requirement of VoD is addressed using
patching. In the following, we describe cache-and-relay

P2P VoD. It again employs tree-based approach, how-
ever, the asynchronous issue is solved by the content
caching at users.

3.2 Cache-and-relay P2P VoD

To efficiently utilize memory, a streaming server caches
a moving window of video content in the memory
so as to serve a batch of clients whose viewing point
falling into the caching window. This is so-called in-
terval caching technique [8, 20]. Cache-and-relay P2P
VoD applies the interval caching idea to solve the
asynchronous issue in tree-based P2P VoD. A peer
in a cache-and-relay P2P VoD system buffers a mov-
ing window of video content around the point where
they are watching. It serves other users whose viewing
point is within the moving window by continuously
forwarding the stream. Although a P2P tree is formed
among peers, their playback points are different and
the synchronization issues is successfully addressed.

Figure 7 illustrates a simple example of cache-and-
relay P2P VoD system. Here users are assumed to
watch the video from the beginning and cache 10
minutes worth of video data. User A arrived first at
time 1. Since there is no other users in the system, it
retrieves the video from the server directly. Later on,
user B and C arrived at time 3 and 8, respectively. Both
discover that user A’s buffer still covers the beginning
of the video. They manage to ask user A to forward the
stream from the very beginning. When user F joined
the system at time 50, however, the moving windows of
early arrivals have passed the video beginning. User F
is forced to retrieve the video from the server directly.

Fig. 7 DirectStream system.
a DirectStream system with
two clusters — one headed by
client A and the other headed
by client F. b DirectStream
system after the departure of
client A. No service from the
server is required from
now on

Figure 25: A snapshot of the scheme at time 40. Users belonging to the same session form
an application-level multicast tree together with the server. Users in session 3 have Þnished
patch retrieval; while 3 clients in session 4 are still receiving the patch stream from their
parent patch servers (source: [34])

starting from the beginning of the video session. Otherwise, the new node will have to con-
nect to the server directly to get the video stream from the beginning. Figure 26a shows a
scenario where peer A arrives at time 1 and receives the stream directly from the server. At
time 3 and 8, peers B and C arrive and are asked to connect to A. At time 3, A has archived
video buffer for the last 2 minutes (because it arrived at time 1) starting from the beginning
of the video session. A can then send to B the archived buffer starting from the beginning
of the video stream, while still receiving continuing stream from the server. This concept is
repeated so that peers C, D, E can be connected to the same tree. When F arrives at time
50, the oldest archived video buffer is in E (starting from time 24 to 34). No archived video
starting from the beginning at time 0 is available in the existing tree. Then node F has to
connect to the server directly to get the the stream from the beginning. Figure 26b shows
that A has received to the end of the stream from the server and also has sent all its archived
video in the buffer to its children B and C. A now plays no role in the streaming tree while B
and C still serve to stream all content in their buffers to their children.

2 STREAMING TECHNOLOGIES ON THE OVERLAY 38

24 Peer-to-Peer Netw Appl (2008) 1:18–28

Fig. 6 A snapshot of the scheme at time 40. Users belonging to
the same session form an application-level multicast tree together
with the server. Users in session 3 have finished patch retrieval;
while 3 clients in session 4 are still receiving the patch stream from
their parent patch servers

parent-child relationship in the base tree; and a dashed
line with an arrow is used to represent the patch server-
client relationship. The server and the clients in a ses-
sion form an application-level multicast tree to deliver
the base stream. At time 40, all clients in session 3
have finished the patch retrieval; while three clients in
session 4 are still in the process of receiving the patch
stream. Note that users belonging to different sessions
do not interact with each other.

Note that users are synchronous in the base tree. The
asynchronous requirement of VoD is addressed using
patching. In the following, we describe cache-and-relay

P2P VoD. It again employs tree-based approach, how-
ever, the asynchronous issue is solved by the content
caching at users.

3.2 Cache-and-relay P2P VoD

To efficiently utilize memory, a streaming server caches
a moving window of video content in the memory
so as to serve a batch of clients whose viewing point
falling into the caching window. This is so-called in-
terval caching technique [8, 20]. Cache-and-relay P2P
VoD applies the interval caching idea to solve the
asynchronous issue in tree-based P2P VoD. A peer
in a cache-and-relay P2P VoD system buffers a mov-
ing window of video content around the point where
they are watching. It serves other users whose viewing
point is within the moving window by continuously
forwarding the stream. Although a P2P tree is formed
among peers, their playback points are different and
the synchronization issues is successfully addressed.

Figure 7 illustrates a simple example of cache-and-
relay P2P VoD system. Here users are assumed to
watch the video from the beginning and cache 10
minutes worth of video data. User A arrived first at
time 1. Since there is no other users in the system, it
retrieves the video from the server directly. Later on,
user B and C arrived at time 3 and 8, respectively. Both
discover that user A’s buffer still covers the beginning
of the video. They manage to ask user A to forward the
stream from the very beginning. When user F joined
the system at time 50, however, the moving windows of
early arrivals have passed the video beginning. User F
is forced to retrieve the video from the server directly.

Fig. 7 DirectStream system.
a DirectStream system with
two clusters — one headed by
client A and the other headed
by client F. b DirectStream
system after the departure of
client A. No service from the
server is required from
now on

Figure 26: DirectStream system. a) DirectStream system with two clusters – one headed
by client A and the other headed by client F . b) DirectStream system after the departure of
client A. No service from the server is required from now on (source: [34])

Mesh-based P2P VoD Very similar to the concept of the Mesh-based approach for the
live streaming system, the Mesh-based for VoD also works on the concept of advertising
buffer maps between neighbor nodes and pulling missing packets in the local node from its
neighbor nodes. The only difference is that VoD users are watching different part of video so
that they need to pull packets lying at different part of the stream.

In both Tree-based and Cache-and-relay approaches, peer churn problem remains to be
the key issue. In Mesh-based approach, communication overhead for managing the mesh
overlay, and how to optimally allocate resource across different parts of the video are the key
issues.

2.5.3 Base technologies

Besides the streaming topologies, other base technologies are considered in development
of a P2P streaming system.

RTP and RTCP In order to re-construct all the receiving audio/video packets for playback,
a receiver needs to get not only the media content of the packets, but also other informa-
tion about the packets for real-time processing at receivers. These information is about the

2 STREAMING TECHNOLOGIES ON THE OVERLAY 39

sequence number of a packet used for packet re-ordering, session identification used for dis-
tinguishing from which sender, media encoding e.g. frame type, layers etc. These attributes
are not available in a UDP packet profile. This has led to the proposal of the Real-time Trans-
port Protocol (RTP) from H. Schulzrinne et al. [38]. RTP is used for sending audio/video
stream. A media content packet can be encapsulated together with other real-time prop-
erties within an RTP packet. This RTP packet is then encapsulated within a UDP and IP
packets for sending out to the network. Normally RTP is used together with RTP Control
Protocol (RTCP) which is defined in RFC-3550 [38]. RTCP provides feedback by a periodic
transmission of control packets to all members of a RTP session. The feedback reports
on receivers about reception quality, packet loss, delay, jitter or faults to diagnose network
problems. RTCP facilitates flow control and multicast session surveillance. These reports
help to adapt the streaming to network conditions and session members. As an example,
the playback speed should be equal to the packet arrival rate at a receiver. When a media
player consumes more packets than arriving packets that will result in playback interruption.
Vice verser, when there are more arriving packets than the amount of packet that a player
consumes, those overloading packets will get lost if the buffer has not enough space. In this
case, the receiver would like to send to the sender RTCP packets and reports that the sender
should slow down the transmission speed to its playback rate value. For privacy issues, there
is secure real-time protocol profile (SRTP) which is defined in RFC 3711 [39] and provides
encryption for RTP packets.

Codec Raw video and audio streams are expensive for the network’s bandwidth. Before
sending to the network, the raw media stream is normally compressed to reduce its data size
at sender. The received compressed stream at receiver can not be play immediately, it has to
be decompressed to the raw data format for playing back. To do this, an encoder is needed
at the sender and a decoder at the receiver. Not only used for compression, encoder can
also be used for encryption, e.g., Skype provides encryption service for its audio stream to
ensure secure and privacy for its media content. There are two compression types namely
lossy and lossless compressions. A multimedia player e.g. QuickTime Player, Windows
Media Player, VLC Player etc. can have one or more codecs to play different audio/video
formats. For audio compression format e.g. MP3[40], Speex[41] etc., properties of an audio
format include the sample rate, bit rate (i.e. sample rate times bits per sample), constant bit
rate (CBR)13 or variable bit rate (VBR)14, number of channels etc.

Table 3 shows that different codecs are implemented for different application targets.
The audio Wav format is used for high quality CD music, and has less data reduction. MP3
format for music can save much space as compared to Wav. The principle concept of MP3
codec works in a way that "Parts of the music which are well-perceived are represented very

13in CBR, all packets have the same size including silent packets
14in VBR format, size of audio packets are different, e.g., no audio packet for silence

2 STREAMING TECHNOLOGIES ON THE OVERLAY 40

precisely, while other parts that are not very audible can be represented with lower accuracy.
Inaudible information will be discarded" [40]. For VoIP application, the requirements for
low network bandwidth transmission and hearable quality for human voice lead to higher
compression formats such as Speex or iLBC [42].

Audio Compres-
sion Format

Algorithm Sample
Rate

Bit Rate CBR or VBR Application

Wav no com-
pression

44.1 kHz
et al.

1411.2 kbps et al. CBR CD music

MP3 Lossy 44.1 kHz
et al.

128 kbps et al. VBR music

Speex Lossy 8 to 32
kHz

2.15 to 24.6 kbps
(NB15) 4 to 44.2
kbps (WB16)

VBR VoIP

Table 3: Audio codec comparison

2.5.4 Scribe - a DHT-based ALM approach

Scribe is a scalable Structured DHT-based ALM protocol built on top of Pastry (discussed
in section 2.2.3). Scribe organizes nodes on the Pastry overlay to form a streaming Single-
tree topology. Scribe offers a de-centralized approach for the tree management. Figure 27
illustrates a Scribe streaming tree built on the Pastry overlay network. Any Scribe node may
create a streaming group; other nodes can join the group, or multicast messages (e.g. media
content) to all members of the group. Any node can create, send messages to, and join many
groups. A group may have multiple multicast source senders and many members. Scribe
claims to provide best-effort delivery of multicast messages, and can support simultaneously
a large number of group with a wide range of group size, and a high rate of membership
turnover. Scribe is the selected ALM approach used in the PAN4i application.

Scribe offers a simple API to its applications:

• create(credentials, groupId) creates a streaming group with identifier
groupId; the credentials are used for access control.

• join(credentials, groupId, messageHandler) causes the local node
to join the group groupId; all subsequently received multicast messages for that group
are passed to messageHandler which is normally a callback function.

• leave(credentials, groupId) causes the local node to leave the group with
groupId.

2 STREAMING TECHNOLOGIES ON THE OVERLAY 41

!"#$%&"'()*"+,%*+%)-$%.+#$/&(0%12%+$)3"/4

!"#$%&"'()*"+,%*+%)-$%"5$/&(0%262%+$)3"/4

!"#$%&"'()*"+,%*+%(%,*+7&$8)/$$%,)/$(9*+7%)":"&"70

!"#$"%

Rendezvous Point

Rendezvous Point

!"#$"%

Rendezvous Point

&'

()

*

(+

,-.

/ 0 1

Figure 27: Scribe streaming tree built on the Pastry overlay P2P network

2 STREAMING TECHNOLOGIES ON THE OVERLAY 42

• multicast(credentials, groupId, message) causes the local node to
send the multicast message (e.g. media packet) to the group with groupId.

A Scribe system operates on the DHT-based overlay network consisting of Pastry nodes,
where each node runs the Scribe application software. Scribe uses Pastry for the routing
mechanism especially in managing group creation, group joining, and multicast tree man-
agement (construction and maintenance). All operations of Pastry and Scribe are fully de-
centralized without any server interaction, where all decisions are based on local information.
Besides the above API, two other methods i.e. "forward" and "deliver" need to be imple-
mented on the Scribe layer, and are invoked in the Pastry layer whenever a message arrivals
at a node. Specifically, forward is called whenever a Scribe message is arrived at a forward-
ing node. And deliver is called whenever a Scribe message is arrived at a destination node
(i.e. no more forwarding, since the nodeId of the destination node is numerically closest to
the key of the message), or when a message that was transmitted via "send(msg, node)"17

is received. There are four message types "CREATE, JOIN, LEAVE and MULTICAST" used
by Scribe, those are used respectively with the invocation of the four methods (i.e. create,
join, leave and multicast) in its API. Figure 28 and figure 29 show the pseudo-code for the
forward method and deliver method respectively.

In the pseudocode, groups is the set of streaming groups that the local node is aware of,
msg.source is the nodeId of the message source node, msg.group is the groupId18 of the
group, and msg.type is the message type.IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. XX, NO. Y, MONTH 2002 103

(1) forward(msg, key, nextId)
(2) switch msg.type is
(3) join : if !(msg.group ∈ groups)
(4) groups = groups ∪ msg.group
(5) route(msg,msg.group)
(6) groups[msg.group].children ∪ msg.source
(7) nextId = null // Stop routing the original message

Fig. 3. Scribe implementation of forward.

(1) deliver(msg,key)
(2) switch msg.type is
(3) create : groups = groups ∪ msg.group
(4) join : groups[msg.group].children ∪ msg.source
(5) multicast : ∀ node in groups[msg.group].children
(6) send(msg,node)
(7) if memberOf (msg.group)
(8) invokeMessageHandler(msg.group, msg)
(9) leave : groups[msg.group].children = groups[msg.group].children - msg.source
(10) if (|groups[msg.group].children| = 0)
(11) send(msg,groups[msg.group].parent)

Fig. 4. Scribe implementation of deliver.

route(create,groupId)). Pastry delivers this message to
the node with the nodeId numerically closest to groupId.
The Scribe deliver method adds the group to the list of
groups it already knows about (line 3 of Figure 4). It also
checks the credentials to ensure that the group can be cre-
ated, and stores the credentials. This Scribe node becomes
the rendez-vous point for the group.

The groupId is the hash of the group’s textual name con-
catenated with its creator’s name. The hash is computed
using a collision resistant hash function (e.g. SHA-1 [19]),
which ensures a uniform distribution of groupIds. Since
Pastry nodeIds are also uniformly distributed, this ensures
an even distribution of groups across Pastry nodes.

Alternatively, we can make the creator of a group be
the rendez-vous point for the group as follows: a Pastry
nodeId can be the hash of the textual name of the node,
and a groupId can be the concatenation of the nodeId of the
creator and the hash of the textual name of the group. This
alternative can improve performance with a good choice of
creator: link stress and delay will be lower if the creator
sends to the group often, or is close in the network to other
frequent senders or many group members.

In both alternatives, a groupId can be generated by any
Scribe node using only the textual name of the group and
its creator, without the need for an additional naming ser-
vice. Of course, proper credentials are necessary to join or
multicast messages in the associated group.

A.2 Membership management

Scribe creates a multicast tree, rooted at the rendez-
vous point, to disseminate the multicast messages in the

group. The multicast tree is created using a scheme similar
to reverse path forwarding [20]. The tree is formed by
joining the Pastry routes from each group member to the
rendez-vous point. Group joining operations are managed
in a decentralized manner to support large and dynamic
membership.

Scribe nodes that are part of a group’s multicast tree are
called forwarders with respect to the group; they may or
may not be members of the group. Each forwarder main-
tains a children table for the group containing an entry (IP
address and nodeId) for each of its children in the multicast
tree.

When a Scribe node wishes to join a group, it asks Pastry
to route a join message with the group’s groupId as the key
(e.g. route (join,groupId)). This message is routed by Pas-
try towards the group’s rendez-vous point. At each node
along the route, Pastry invokes Scribe’s forward method.
Forward (lines 3 to 7 in Figure 3) checks its list of groups
to see if it is currently a forwarder; if so, it accepts the node
as a child, adding it to the children table. If the node is
not already a forwarder, it creates an entry for the group,
and adds the source node as a child in the associated chil-
dren table. It then becomes a forwarder for the group by
sending a join message to the next node along the route
from the joining node to the rendez-vous point. The origi-
nal message from the source is terminated; this is achieved
by setting nextId = null, in line 7 of Figure 3.

Figure 5 illustrates the group joining mechanism. The
circles represent nodes, and some of the nodes have their
nodeId shown. For simplicity b = 1, so the prefix is
matched one bit at a time. We assume that there is a

Figure 28: Scribe implementation of forward (source: [43])

Group management Each group has a unique groupId (a key in the Pastry overlay net-
work). A Scribe node with a nodeId numerically closest to the groupId acts as the root
(rendezvous point) of the multicast tree of this group.

17send(msg, node) is implemented on Pastry which is used to send a message directly to a given node with
its IP address and port number, this method is described in the Pastry API section 2.2.3

18groupId: is a unique key (converted from its group name) used in a multicast streaming system which
is similar to a data item key (converted from a file name) used in a DHT file sharing system discussed the
DHT-based P2P section 2.2.2

2 STREAMING TECHNOLOGIES ON THE OVERLAY 43

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. XX, NO. Y, MONTH 2002 103

(1) forward(msg, key, nextId)
(2) switch msg.type is
(3) join : if !(msg.group ∈ groups)
(4) groups = groups ∪ msg.group
(5) route(msg,msg.group)
(6) groups[msg.group].children ∪ msg.source
(7) nextId = null // Stop routing the original message

Fig. 3. Scribe implementation of forward.

(1) deliver(msg,key)
(2) switch msg.type is
(3) create : groups = groups ∪ msg.group
(4) join : groups[msg.group].children ∪ msg.source
(5) multicast : ∀ node in groups[msg.group].children
(6) send(msg,node)
(7) if memberOf (msg.group)
(8) invokeMessageHandler(msg.group, msg)
(9) leave : groups[msg.group].children = groups[msg.group].children - msg.source
(10) if (|groups[msg.group].children| = 0)
(11) send(msg,groups[msg.group].parent)

Fig. 4. Scribe implementation of deliver.

route(create,groupId)). Pastry delivers this message to
the node with the nodeId numerically closest to groupId.
The Scribe deliver method adds the group to the list of
groups it already knows about (line 3 of Figure 4). It also
checks the credentials to ensure that the group can be cre-
ated, and stores the credentials. This Scribe node becomes
the rendez-vous point for the group.

The groupId is the hash of the group’s textual name con-
catenated with its creator’s name. The hash is computed
using a collision resistant hash function (e.g. SHA-1 [19]),
which ensures a uniform distribution of groupIds. Since
Pastry nodeIds are also uniformly distributed, this ensures
an even distribution of groups across Pastry nodes.

Alternatively, we can make the creator of a group be
the rendez-vous point for the group as follows: a Pastry
nodeId can be the hash of the textual name of the node,
and a groupId can be the concatenation of the nodeId of the
creator and the hash of the textual name of the group. This
alternative can improve performance with a good choice of
creator: link stress and delay will be lower if the creator
sends to the group often, or is close in the network to other
frequent senders or many group members.

In both alternatives, a groupId can be generated by any
Scribe node using only the textual name of the group and
its creator, without the need for an additional naming ser-
vice. Of course, proper credentials are necessary to join or
multicast messages in the associated group.

A.2 Membership management

Scribe creates a multicast tree, rooted at the rendez-
vous point, to disseminate the multicast messages in the

group. The multicast tree is created using a scheme similar
to reverse path forwarding [20]. The tree is formed by
joining the Pastry routes from each group member to the
rendez-vous point. Group joining operations are managed
in a decentralized manner to support large and dynamic
membership.

Scribe nodes that are part of a group’s multicast tree are
called forwarders with respect to the group; they may or
may not be members of the group. Each forwarder main-
tains a children table for the group containing an entry (IP
address and nodeId) for each of its children in the multicast
tree.

When a Scribe node wishes to join a group, it asks Pastry
to route a join message with the group’s groupId as the key
(e.g. route (join,groupId)). This message is routed by Pas-
try towards the group’s rendez-vous point. At each node
along the route, Pastry invokes Scribe’s forward method.
Forward (lines 3 to 7 in Figure 3) checks its list of groups
to see if it is currently a forwarder; if so, it accepts the node
as a child, adding it to the children table. If the node is
not already a forwarder, it creates an entry for the group,
and adds the source node as a child in the associated chil-
dren table. It then becomes a forwarder for the group by
sending a join message to the next node along the route
from the joining node to the rendez-vous point. The origi-
nal message from the source is terminated; this is achieved
by setting nextId = null, in line 7 of Figure 3.

Figure 5 illustrates the group joining mechanism. The
circles represent nodes, and some of the nodes have their
nodeId shown. For simplicity b = 1, so the prefix is
matched one bit at a time. We assume that there is a

Figure 29: Scribe implementation of deliver (source: [43])

!!!"

"!!!

#$%&'()*+*!!!!
$%&,-./012314*#$%&'()50-6)-78%&9*:%;6,

<$%&'9=
>*!!!!

!!!"

"!!!

!!""

!""!

"!""

<$%&'9 /?;@)$-6

!!!! "!!!4*"!""

<$%&'9 /?;@)$-6

!!!! !!"!

<$%&'9 /?;@)$-6

!!!! !""!

AB(C*!!!!4*9-6,*D$%E*!!"!

AB(C*!!!!4*9-6,*D$%E*"!""

AB(C*!!!!4*9-6,*D$%E*"!!!

AB(C*!!!!4*9-6,*D$%E*!""!

!!!"

"!!!

!!""

!""!

"!""

9-6).FGH3(/2I34*$-6)-7J%&95

Figure 30: Group management (creation) in Scribe

For creating a group, a Scribe node asks Pastry to route a CREATE message using the
groupId as the key (e.g. invoking the Pastry route(CREATE, groupId) method). This message
is delivered to the node having nodeId numerically closest to groupId. The deliver method at
this destination node is invoked and it adds the group to the list of groups it already knows
(line 3 of figure 29). This destination node is now the Rendezvous Point (RP) of the group.

Figure 30 visualizes a scenario for a group creation. Node 0111 routes a CREATE mes-
sage for groupId 1111 through two forwarders, and the message is delivered at node 1110
whose nodeId is numerically closest to groupId 1111.

2 STREAMING TECHNOLOGIES ON THE OVERLAY 44

Membership management The multicast tree is constructed via routing JOIN messages
from subscriber nodes. Each streaming group has its own constructed multicast tree. On
a multicast tree, Scribe nodes, those are not the RP and not the leaf nodes, are forwarding
nodes (e.g. forwarders). RP and forwarders may or may not be members of the multicast
group. Each forwarder maintains a children table of the group containing IP addresses, port
numbers and nodeIds of its children in the multicast tree. If a forwarder is a member of the
group, it will receive multicast messages, use them for its application logic, and forward them
to its children on this group. If a forwarder is not a member of the group, it will just forward
the messages to its children without using the messages for its own application logic.

!!!"

"!!!

#$%&'()*+*!!!!
$%&,-./012314*#$%&'()50-6)-78%&9*:%;6,

<$%&'9=
>*!!!!

!!!"

"!!!

!!""

!""!

"!""

<$%&'9 /?;@)$-6

!!!! "!!!4*"!""

<$%&'9 /?;@)$-6

!!!! !!"!

<$%&'9 /?;@)$-6

!!!! !""!

AB(C*!!!!4*9-6,*D$%E*!!"!

AB(C*!!!!4*9-6,*D$%E*"!""

AB(C*!!!!4*9-6,*D$%E*"!!!

AB(C*!!!!4*9-6,*D$%E*!""!

!!!"

"!!!

!!""

!""!

"!""

9-6).FGH3(/2I34*$-6)-7J%&95

Figure 31: Joining a multicast group in Scribe

To join a group A Scribe node asks Pastry to route a JOIN message with groupId as
the key. This means the routing path of this message is the path towards the RP. At each
node along the route, Pastry invokes Scribe forward method (lines 3 to 7 in figure 28) to
check if it is currently a forwarder for any other subscriber node of this group. If yes, it adds
the joining sender node to its children list of this group and terminates this message routing.
If not, it will become the forwarder - an intermediate level node in the streaming tree. It
creates an entry of this group, then adds the sender node as the first child in the children list
of this group, it modifies the JOIN message with its key the sender key of this message, and
then sends the message to the next node along the routing path to the RP. This procedure is
repeated at all forwarders during the JOIN routing.

Figure 31 visualizes a scenario for two nodes joining the existing group 1111 rooted at

2 STREAMING TECHNOLOGIES ON THE OVERLAY 45

the RP 1110. At first, node 0111 routes a JOIN message using groupId 1111 as key. Pastry
routes this message to node 1001. Node 1001 checks to see that it has no group 1111
before. It then adds group 1111 and node 0111 to the children list of this group. Node
1001 becomes the forwarder and continues to route the JOIN message with itself the source
sender to the next node 1100. This procedure is repeated until the JOIN message is deliv-
ered at the RP. After group 1111 is available on the forwarder node 1001, if node 0100 routes
a JOIN message to node 1001, node 1001 would simply add node 0100 to the children list
of group 1111 and stop forwarding the JOIN message to any further next node.

!!!"

"!!!

!!""

!""!

"!""

!!"!

#$%&'!!!!(')*+,'-./0'!!"!

#$%&'
!!!!('

)*+,'-.
/0'!"

"!

!!!"

"!!!

!!""

!""!

"!""

Figure 32: A case for a constructed Scribe multicaset tree

To leave a group A Scribe node removes itself from the children list of the group. If
the children list of the local node is not empty, this local node is still the forwarder but not
a member of the multicast tree. If there is no node in the children list, it will send a LEAVE
message to its direct connected parent (lines 9 to 11 in figure 29). The parent node will then
remove this local node out of its children list, and the local node will not receive multicast
message from the parent anymore. The message proceeds recursively up the multicast
tree, until a parent node is reached that still has nodes in its children list after removing the
departing child.

Figure 32 illustrates a case for a constructed Scribe multicast tree. Supposing that, node
0100 sends a LEAVE message for group 1111 to its parent node 1001. The entry 0100 is
then removed from the children list of group 1111 on the parent node 1001. After that, if node
0111 sends another LEAVE message for group 1111, the parent node 1001 will remove the
last entry in the children list of group 1111, and also sends another LEAVE message to its

2 STREAMING TECHNOLOGIES ON THE OVERLAY 46

parent 1100, since there is no child node that needs to receive multicast messages. And this
process is again repeated at node 1100.

Multicast message dissemination Multicast source senders use Pastry to locate the RP
of a group by calling the route(MULTICAST, groupId) method of Pastry, and ask the RP to
return its IP address and port number. The source senders cache this IP address and port
number for direct sending the subsequent multicast messages to the RP without repeating
the routing through Pastry overlay network. At the RP, multicast messages are disseminated
to its children, and the children then forward to their children. This procedure (lines 5 and 6
of figure 29) is done along the multicast tree repeatedly.

!!!"

"!!!

#$%&'()*+*!!!!
$%&,-./012314*#$%&'()50-6)-78%&9*:%;6,

<$%&'9=
>*!!!!

!!!"

"!!!

!!""

!""!

"!""

<$%&'9 /?;@)$-6

!!!! "!!!4*"!""

<$%&'9 /?;@)$-6

!!!! !!"!

<$%&'9 /?;@)$-6

!!!! !""!

AB(C*!!!!4*9-6,*D$%E*!!"!

AB(C*!!!!4*9-6,*D$%E*"!""

AB(C*!!!!4*9-6,*D$%E*"!!!

AB(C*!!!!4*9-6,*D$%E*!""!

!!!"

"!!!

!!""

!""!

"!""

9-6).FGH3(/2I34*$-6)-7J%&95

Figure 33: Sending multicast message in the Scribe multicast tree

Figure 33 illustrates that any node can send multicast messages to the RP node 1110.
These messages are disseminated through forwarders (1100, 1001) to all subscriber nodes
(0100, 0111) for group 1111 on the multicast tree.

Repairing the multicast tree Scribe uses Pastry to repair the multicast tree when a for-
warder fails. Periodically, each non-leaf node in the tree sends heart-beat messages to its
children. Within a heartbeating period of time, if there is already any multicast message sent
to the children, the parent does not need to send the heartbeat messages to its children any-
more. A child considers that its parent is faulty when it fails to receive heartbeat or multicast
messages. In this case, the child will use Pastry to route a JOIN message to the groupId.
Pastry will route this message to another new parent, and thus repair the multicast tree.

2 STREAMING TECHNOLOGIES ON THE OVERLAY 47

Entries in the children tables are discarded unless they are periodically refreshed by an
explicit message from the child.

!!!"

"!!!

!!""

!""!

"!""

!!"!

#$%&'!!!!(')*+,'-./0'!!"!

#$%&'
!!!!('

)*+,'-.
/0'!"

"!

Figure 34: Repairing the Scribe multicast tree

Figure 34 illustrates a scenario where forwarder node 1100 departs from the multicast
tree. The direct connected child 1001 of the parent node 1100 will have to route a JOIN
message for group 1111 to another parent node 1101. Node 1101 again joins this group on
the RP and the multicast tree can be repaired. After sometime, the RP receives no refreshed
message from its leaving child node 1100 and the RP will remove the entry 1100 from the
children list of group 1111.

Scribe replicates the state of the RP e.g. group creator, access control etc. across the k
numerically closest nodes to the RP nodeId (typically k = 5). These closest nodes should be
the nodes in the RP leaf set. Upon a failure detection of the RP, its direct connected children
will use Pastry to route JOIN messages to the new RP (which is one of the numerically
closest nodes in the leaf set of the old RP). Multicast senders likewise discover the new RP
by routing via Pastry.

A RP state of a group on node A may have to be shifted to another new joining node. This
situation may happen when node A is the RP of a group C, but after sometime, a new node
B join the overlay and the key of B is numerically closest to group C as compared to current
RP node A. Now, B will become the new RP of group C. And A has to send the RP state of
group C to B, and discard its RP group state. For doing this, a updateHandler callback can
be defined in Scribe which is invoked whenever there is an update on the leaf set table of a
node. Since the keys of A and B are close, Pastry on A will update B to its leaf set table. And

2 STREAMING TECHNOLOGIES ON THE OVERLAY 48

this causes the updateHandler callback to be invoked. This handler function can check if the
local peer is a RP of any group, and if any RP group state has to be copied to node B.

Providing additional guarantees Scribe also allows applications to implement stronger
reliability guarantees via providing three up-call functions in three events, i.e., before Scribe
is about to send a multicast message (forwardHandler(msg)), or when Scribe adds
a new child to a group (joinHandler(msg)), or when Scribe detects the failure of a
parent node of a group and is about the send the JOIN message to a new parent node
(faultHandler(msg)). Using these functions, Scribe allows applications on its upper
layer to modify the messages (msg) passed on each up-call function. These functions are
implemented in the application layer and are invoked by Scribe. What an application would
modify these messages is the strategy of this application. According to [43], an example for
the use of these functions is that the forwardHandler at the root assigns a sequence
number to each multicast message. Recent multicast messages (having greater sequence
numbers) are buffered by all nodes in the tree. When a node detect the failure of a parent
node, its faultHandler adds the last received multicast message sequence number n to
the JOIN message. The receiver of this JOIN message uses the joinHandler to retrans-
mit the buffered messages starting from the received sequence number n. This mechanism
helps to implement an ordered, reliable delivery streaming system.

For more information on the experimental evaluation of Scribe, one can refer to [43].
According to Bharambe et al. [44], there are two principal reasons for advocating a DHT-

based approach. "First, DHTs provide a generic primitive that can benefit a wide range of
applications, among them overlay multicast. Second, the same DHT-based overlay can be
used to simultaneously support and maintain a large number of overlay applications and
multicast trees. This could help achieve lower overheads as compared to constructing and
maintaining several seperate overlays." One of the main difference of this structured DHT-
based approach as compared to the unstructured Tree-based and Mesh-based approaches
is that the streaming links of the unstructured approaches are established based on the re-
source and performance of each peer. These approaches are also called the performance
centric approaches. Whereby, the peering relationship of the DHT-based approach is origi-
nally established based only on the numerically closest key routing mechanism. This policy
cannot account for bandwidth heterogeneity in streaming systems and cannot ensure the
requirement of growing tree more in fan-out degree than in depth. These are big drawbacks
and may result in the unknown of the application performance. There are proposals to fix this
bandwidth heterogeneity and the tree’s high depth degree issues by adopting performance-
base techniques which result in high fraction of non-DHT links (i.e. links exist in the streaming
tree but are not apart of the DHT overlay network) and application-specific monitoring over-
head. The result of these proposals again conflict with basic DHT concept (i.e. a parent node
is chosen via the closest key and not via the bandwidth).

2 STREAMING TECHNOLOGIES ON THE OVERLAY 49

Besides Scribe, SplitStream [45] is a Multi-tree multicast streaming approach built on top
of the Pastry overlay.

2.6 P2P Streaming Systems

There are success stories on commercial or academic research ALM streaming deployments
e.g. Skype, Zattoo and ESM. Skype [14] is a P2P VoIP, instant messaging and videocon-
ferencing client application. It offers some free and paid services. It is available in many
different desktop and also mobile platforms. Skype was founded in 2003 and was purchased
by eBay in 2005 with an approximate price of $ 2.5 billion. In 2009, eBay sold 65% of Skype
in deal valuing it at $2.75 billion. According to a statistic made by [46] on 29/10/09 at 11:30,
there were 16.836.599 currently online users of 48.190.335 Skype registered users. An-
other commercial streaming system is Zattoo which was founded in 2005. Zattoo is a P2P
live streaming system for realtime TV on the Personal Computer (PC)/Laptop. It offers free
service for receiving normal quality TV stream and paid services for advertisements and for
receiving high quality stream. In a report [47] from the Terena Networking Conference 2008,
Zattoo claimed to have more than 2.3 million users at that time. In Switzerland in 2006, it is
said that about 28% of broadband users was for Zattoo with 4 channels. While Skype and
Zattoo are commercial systems, ESM (End System Multicast) [48] was a research project
from the Carnegie Mellon University. ESM lets its users view and broadcast live streaming
media. The Mesh-based streaming approach Narada (discussed in section 2.5.1) was de-
signed for this ESM implementation. In this section, we would like to have a look on the key
components of the two commercial Skype and Zattoo P2P streaming systems in term of their
system architectures and functionalities.

2.6.1 Skype

Skype is the commercial system and its system internal design and implementation is not
shown to the public. On its homepage, Skype only mentions that it uses overlay P2P topol-
ogy, decentralized approach. It also claims that its call-completion rates are high for con-
nections under firewalls and NAT. This makes Skype to be the successful VoIP system as
compared to others, those having low all-completion rate which is said to be about 50%
of residential computers unable to communicate with traditional VoIP software. The follow-
ing presented technical information of the Skype system is based on the research work for
analyzing the Skype protocol from [49].

Skype runs on a Hybrid overlay P2P network which is a two tier network including sub
nodes and super nodes. A super node in the Skype network is elected among those sub
nodes which has powerful resource, high bandwidth and has to own a public IP address.
One of the main task of a super node is to relay media traffic to nodes behind NATs. Each
sub node has to connect to one super node and must authenticate itself to a login server.

2 STREAMING TECHNOLOGIES ON THE OVERLAY 50

Figure 35 illustrates the relationship between sub nodes, super nodes and the login server.
Each sub node also maintains a table of reachable nodes on the overlay network. A Skype
sub node listens on particular ports for different incoming calls. Skype uses TCP for signaling
and UDP or TCP for media streaming. Skype uses UDP for media packets where useable.
But in case of both caller and callee are behind port-restricted NAT and UDP-restricted fire-
wall, the voice traffic from both directions are forwarded over TCP via another online Skype
node. Skype encrypts messages end-to-end. Generally, its codec maintains a call quality
at an available bandwidth of 32 kbps of frequency between 50-8000 Hz, and a voice packet
is of size between 40 and 120 bytes. According to [49], the key functions of Skype are
startup, login, user search, call establishment and tear down, media transfer, and keep-alive
messages.

2.6.2 Zattoo

Zatto is also a commercial TV live streaming system. There is limited information about
its detail protocol design. From a talk on Zattoo [47], one can learn that Zattoo uses the
H.264/AAC codec for video and audio stream. All of its contents are encrypted. It is a P2P
live streaming system which has those live streaming features as discussed in section 2.5.1
such as stream buffering, time bounced constraints and effect of the uploading bandwidth
and session duration on the playback performance etc.

Zattoo organizes peers into a source rooted Directed Acyclic Graph (DAG19). Each TV
channel is rooted at one root server on a particular overlay network. There are three key
issues in constructing the streaming DAG. Firstly, Zattoo is topology-aware. For the efficient
use of the streaming traffic, peers within the same subnet have direct links. Secondly, peers
with high resource (e.g. bandwidth, processing power) are referred to be placed near to the
source sender and to have more outgoing (uploading) links. Figure 36 shows the scenario
where the first two issues are applied to form an effective streaming topology. Node A and
B are in the same subnet and have a direct link. Considering that D has high bandwidth, it
should be placed near to the source C and have two outgoing links. Thirdly, for nodes behind
different NAT types, Zattoo considers Port-restricted NAT hosts cannot share with Symmet-
ric NAT hosts and Symmetric NAT hosts cannot share with each other. These hosts have
restricted download and upload capabilities. Zattoo considers these limited hosts (behind
NATs) in its graph construction i.e. decision on establishing links between hosts. As com-
pared to figure 36, figure 37 shows another scenario where node D and E are behind NATs.
Zattoo now updates its topology for the best delivery effort.

Figure 38 shows the GUI of Zattoo. The left window is the live streaming player and a
list of available channels is in the right window. Figure 39 shows the setup steps that work

19DAG is a directed graph with no directed cycles. That is, each node in the graph are connected to other
nodes with links (incoming and/or outgoing links). And for any given node, if there are outgoing links, there is
no way from these outgoing links to route back to this given node

2 STREAMING TECHNOLOGIES ON THE OVERLAY 51

!"#!"$%&'('#)*#+,-#./&0-#1--23+)31--2#4"+-2"-+#

5-%-0,)")+)6)%

######.$%7$"#!8#9$'-+#$":#;-""("<#=8#.6,>%?2(""-#
@-0$2+7-"+#)*#A)70>+-2#.6(-"6-#

A)%>7B($#C"(D-2'(+&E#F-G#H)2/#FH#IJJKL#

M'$%7$"E,<'NO6'86)%>7B($8-:>
#

!"#$%&'$()*+,-./#.&.,--%0$10,--%.2134.'5/-6$.7-8-51,-7./6.9::;.

"+.$<-.1%=&6/>&$/16.$<&$.'%-&$-7.?&>&&@.)*+,-.'5&/A#.$<&$./$.'&6.

B1%*.&5A1#$.#-&A5-##5+.&'%1##.C!D#.&67.E/%-B&55#.&67.<&#."-$$-%.

81/'-.FG&5/$+.$<&6.1$<-%.2134.'5/-6$#@.3$.-6'%+,$#.'&55#.-670$10-67H.

&67. #$1%-#. G#-%. /6E1%A&$/16. /6. &. 7-'-6$%&5/>-7. E&#</16@.)*+,-.

&5#1.#G,,1%$#./6#$&6$.A-##&=/6=.&67.'16E-%-6'/6=@.

D</#.,&,-%.&6&5+>-#.*-+.)*+,-.EG6'$/16#.#G'<.&#.51=/6H.C!D.&67.

E/%-B&55.$%&8-%#&5H.'&55.-#$&"5/#<A-6$H.A-7/&.$%&6#E-%H.'17-'#H.&67.

'16E-%-6'/6=. G67-%. $<%--. 7/EE-%-6$. 6-$B1%*. #-$G,#@. !6&5+#/#. /#.

,-%E1%A-7."+.'&%-EG5.#$G7+.1E.$<-.)*+,-.6-$B1%*.$%&EE/'.&67."+.

/6$-%'-,$/6=. $<-. #<&%-7. 5/"%&%+. &67. #+#$-A. '&55#. 1E.)*+,-@. I-.

7%&B. &.A&,. 1E. #G,-%. 617-#. $1. B</'<.)*+,-. -#$&"5/#<-#. &. DJ4.
'166-'$/16.&$.51=/6@.

48! 4F5PQ@CA54QF#

./&0-#RIS#('#$#0--23+)30--2#T0K0U#V)41#6%(-"+#:-D-%)0-:#B&#
+,-#)2<$"(?$+()"#+,$+#62-$+-:#W$?$$#RKS8#./&0-#$%%)G'#(+'#>'-2'#
+)# 0%$6-# D)(6-# 6$%%'# $":# '-":# +-X+#7-''$<-'# +)#)+,-2#>'-2'#)*#
./&0-# 6%(-"+'8# 4"# -''-"6-E# (+# ('# D-2&# '(7(%$2# +)# +,-#Y.F# $":#
H$,))# 4Y# $00%(6$+()"'E# $'# (+# ,$'# 6$0$B(%(+(-'# *)2# D)(6-36$%%'E#
("'+$"+# 7-''$<("<E# $>:()# 6)"*-2-"6("<E# $":# B>::&# %('+'8#
;)G-D-2E# +,-#>":-2%&("<#02)+)6)%'# $":# +-6,"(Z>-'# (+# -70%)&'#
$2-#Z>(+-#:(**-2-"+8#

[(/-# (+'# *(%-# ',$2("<# 02-:-6-'')2# W$?$$E# ./&0-# >'-'# $"#
)D-2%$�--23+)30--2#"-+G)2/8#5,-2-#$2-#+G)#+&0-'#)*#"):-'#("#
+,('#)D-2%$&#"-+G)2/E#)2:("$2&#,)'+'#$":#'>0-2#"):-'#T.FU8#!"#
)2:("$2&#,)'+#('#$#./&0-#$00%(6$+()"#+,$+#6$"#B-#>'-:#+)#0%$6-#
D)(6-#6$%%'#$":#'-":#+-X+#7-''$<-'8#!#'>0-2#"):-#('#$"#)2:("$2&#
,)'+\'#-":30)("+#)"#+,-#./&0-#"-+G)2/8#!"&#"):-#G(+,#$#0>B%(6#
41# $::2-''# ,$D("<# '>**(6(-"+# A1CE# 7-7)2&E# $":# "-+G)2/#
B$":G(:+,#('#$#6$":(:$+-#+)#B-6)7-#$#'>0-2#"):-8#!"#)2:("$2&#
,)'+#7>'+#6)""-6+#+)#$#'>0-2#"):-#$":#7>'+#$>+,-"+(6$+-#(+'-%*#
G(+,#+,-#./&0-#%)<("#'-2D-28#!%+,)><,#")+#$#./&0-#"):-#(+'-%*E#
+,-# ./&0-# %)<("# '-2D-2# ('# $"# (70)2+$"+# -"+(+&# ("# +,-# ./&0-#
"-+G)2/#$'# >'-2#"$7-'# $":#0$''G)2:'#$2-# '+)2-:# $+# +,-# %)<("#
'-2D-28#5,('#'-2D-2#-"'>2-'#+,$+#./&0-#%)<("#"$7-'#$2-#>"(Z>-#
$62)''#+,-#./&0-#"$7-#'0$6-8#.+$2+("<#G(+,#./&0-#D-2'()"#I8KE#
+,-# B>::&# %('+# ('# $%')# '+)2-:#)"# +,-# %)<("# '-2D-28#](<>2-# I#
(%%>'+2$+-'#+,-#2-%$+()"',(0#B-+G--"#)2:("$2&#,)'+'E#'>0-2#"):-'#
$":#+,-#%)<("#'-2D-28#

!0$2+# *2)7# +,-# %)<("# '-2D-2E# +,-2-# $2-# ./&0-Q>+# R^S# $":#
./&0-4"#R_S#'-2D-2'#G,(6,#02)D(:-#1A3+)31.5F#$":#1.5F3+)3
1A#B2(:<("<8#./&0-Q>+#$":#./&0-4"#'-2D-2'#:)#")+#0%$&#$#2)%-#
("#1A3+)31A#6$%%#-'+$B%(',7-"+#$":#,-"6-#G-#:)#")+#6)"'(:-2#
+,-7#+)#B-#$#0$2+#)*#+,-#./&0-#0--23+)30--2#"-+G)2/8#5,>'E#G-#
6)"'(:-2#+,-# %)<("#'-2D-2# +)#B-# +,-#)"%-"+2$%#6)70)"-"+# ("#
+,-#./&0-#0K0#"-+G)2/8#Q"%("-#$":#)**%("-#>'-2#("*)27$+()"#('#
'+)2-:#$":#02)0$<$+-:#("#$#:-6-"+2$%(?-:#*$',()"8#

"#$%&!'()*+!

,&-.&-

/&,,0)&!&1230+)&

4*53!53&!'()*+!,&-.&-

67-*+)!'()*+

(-6*+0-$!3(,5!8"9:

,7%&-!+(6&!8";:

+&*)3<(-!-&'05*(+,3*%,!*+!53&!

"#$%&!+&54(-# #

](<>2-#I8#! ./&0-# F-+G)2/8# 5,-2-# $2-# +,2--# 7$("# -"+(+(-'`# '>0-2"):-'E#
)2:("$2&#"):-'E#$":#+,-#%)<("#'-2D-28.

a-# B-%(-D-# +,$+# -$6,# ./&0-# "):-# >'-'# $# D$2($"+#)*# +,-#
.5CF#RbS#02)+)6)%#+)#:-+-27("-#+,-#+&0-#)*#F!5#$":#*(2-G$%%#
(+# ('#B-,(":8#a-#$%')#B-%(-D-# +,$+#+,-2-# ('#")#<%)B$%#F!5#$":#
(2-G$%%# +2$D-2'$%# '-2D-2# B-6$>'-# (# +,-2-#G$'#)"-E# +,-# ./&0-#
"):-#G)>%:#,$D-#-X6,$"<-:#+2$**(6#G(+,#(+#:>2("<#+,-#%)<("#$":#
6$%%# -'+$B%(',7-"+# 0,$'-'# ("# +,-# 7$"&# -X0-2(7-"+'# G-#
0-2*)27-:8#

5,-# ./&0-# "-+G)2/# ('# $"#)D-2%$&# "-+G)2/# $":# +,>'# -$6,#
./&0-# 6%(-"+# T.AU# "--:'# +)# B>(%:# $":# 2-*2-',# $# +$B%-#)*#
2-$6,$B%-#"):-'8#4"#./&0-E#+,('#+$B%-#('#6$%%-:#,)'+#6$6,-#T;AU#
$":# (+# 6)"+$("'# 41# $::2-''# $":# 0)2+# ">7B-2#)*# '>0-2# "):-'8#
.+$2+("<#G(+,#./&0-#DI8JE#+,-#;A#('#'+)2-:#("#$"#cY[#*(%-8##

./&0-#6%$(7'#+)#,$D-# (70%-7-"+-:#$#d^=#1K1\#)2# d=%)B$%#
4":-X\#ReS#+-6,")%)<&E#G,(6,#('#<>2"+--:#+)#*(":#$#>'-2#(*#+,$+#
>'-2#,$'#%)<<-:#("#+,-#./&0-#"-+G)2/#("#+,-#%$'+#LK#,)>2'8#

Figure 35: Skype Network. There are three main entities: supernodes, ordinary nodes, and
the login server (source: [49])

for Zattoo. When a user selects a channel, the user has to authenticate its valid account
with an authentication server (steps 1 and 2). Since Zattoo only allows a particular user to
watch some particular channels (e.g., users from Germany can only select and watch the
german TV channels), on success authentication, the selected channel is checked with the
Rendezvous Host for the user right to watch his/her selected one (steps 3 and 4). When this
test is approved, this user will send JOIN requests to the broadcast server and its known
peers (step 5). A suitable peer will establish an outgoing link to this user (step 6). This

2 STREAMING TECHNOLOGIES ON THE OVERLAY 52

Figure 36: Zattoo’s overlayt topology-aware characteristic (source: [47])

suitable peer is selected according to the above discussed topology strategies. This user is
then connected to the streaming DAG network of Zattoo and can be able to receive the live
stream.

In its presentation for the Terena Networking Conference 2008, for running its service in
Europe, about 500 servers were deployed in 15 locations across Europe. Zattoo expects its
users to provide broadband Internet connection (>500 kbps). In conclusion, Zattoo claimed
that the P2P network can help alleviating the bandwidth requirement, but still it is not sufficient
to scale at present uploading capacity. This needs to further study on the performance and
scalability of the Zattoo network. Figure 40 illustrates the Zattoo Infrastructure Architecture
in the underlay network.

2.7 Conclusion and discussion

In this Streaming Technologies on the Overlay section 2.5, we have discussed the key con-
cepts from the low to high layers for building up an ALM streaming system. We have shown
that the advantages in deployment cost for large scale systems that P2P technologies brings

2 STREAMING TECHNOLOGIES ON THE OVERLAY 53

Figure 37: Zattoo’s overlay topology-aware characteristic in case there are nodes behind
NATs or Firewalls (source: [47])

over the traditional Client-Server model. We have discussed the reasons why IP Multicast
is frequently not feasible and the choice of using ALM. In section 2.2, we have discussed
different approaches and techniques for building an overlay P2P network, together with the
discussion on the advantages and disadvantages of each approach. We have mentioned
that the choice for which approach to use depends on the application targets.

Overlay P2P network is the communication layer for providing peering relationships and
routing services to its upper application layer. Applications on this layer can be any file shar-
ing systems, unicast or multicast systems etc. For the messaging protocol between these
layers, we have discussed the so called three-tiers Dabek abstract model for the Structured
P2P overlay including its suggested API for the common KBR layer. Although IP Multicast
has not been widely used, IP Multicast does have advantages, e.g., its routing and bandwidth
efficiency as compared to the ALM. For this reason, there have been proposals where both
the use of IP Multicast and ALM are considered on one same multicast protocol. The Dabek
model has to be extended for this hybrid multicast protocol. The work [50] from authors
Matthias Wählisch and Thomas C. Schmidt was for this hybrid multicast model.

In the application layer, we have limited our discussion in the ALM for media stream-
ing systems. There are two considerations in this discussion. The first one is about the
characteristics and used technologies for a general streaming system (i.e. RTP, RTCP and
Video/Audio codec). The second consideration is about different overlay P2P topologies for

2 STREAMING TECHNOLOGIES ON THE OVERLAY 54

ZATTOO Is Internet TV That Works

TV Window Chanel

bar

The Zattoo Player

Figure 38: The Zattoo Player (source: [47])

the media streaming multicast systems. Basically, the Tree-first approaches provides the
best delivery effort, but it deals with the peer churn problem. Whereby the Mesh-first ap-
proaches can solve the peer churn problem, but result in communication overhead and high
degree of packets that arrive in-orderly. While in the Tree-first approach, the construction al-
gorithm is the major issue, and in the Mesh-first approach, the packet scheduling is the most
important design part. We have mentioned that the topologies and protocols depend on the
application domains of multicast streaming system (i.e. whether it is a live, archive or on
demand streaming system). We have discussed the characteristics, advantages, disadvan-
tages and have compared on different possible streaming topologies for the live streaming
and VoD systems.

Besides the unstructured Tree-first and Mesh-first approaches, there is DHT-based ap-
proach. In this approach, normally a streaming Single-tree (e.g., Scribe) or Multi-tree is
built on a Structured or DHT-based overlay P2P network. This overlay provides the mes-

2 STREAMING TECHNOLOGIES ON THE OVERLAY 55

To Watch a Channel

• Per player authentication

on startup (steps 1 and 2)

• Per channel DRM checking

on every channel switch

(steps 3 and 4)

• Peer selection (step 5)

• Live streaming (step 6)

1
2 3 4

5

Authentication

Server
Rendezvous

Host Broadcast

Server

Peers

6

Figure 39: Steps to watch a channel in Zattoo (source: [47])

sage routing services for the construction and maintenance of the streaming tree. While the
decision on the tree management of the unstructured Tree-first approach, and the peering
relationship management together with the packet scheduling strategies of the unstructured
Mesh-first approach are based on the resource and performance of the peers, the basic tree
management concepts of the DHT-based approach are based on the closest key selection.
This management does not account on the bandwidth heterogeneity which is very important
for designing an effective streaming system. To deal with this problem, there are proposals
to adopt performance-based techniques which result in high fraction of non-DHT links. This
solution has its own drawback, because non-DHT links can not participate to the DHT-based
overlay routing network and conflict with the basic of the KBR concept. Other proposals were
trying to consider the bandwidth heterogeneity issue into the DHT-based approach and not
considering for non-DHT links. The authors from the work [44] proposed solutions to this is-

2 STREAMING TECHNOLOGIES ON THE OVERLAY 56

Figure 40: Zattoo’s underlay infrastructure architecture (source: [47])

sue such as changing the random key assignment (e.g. via the SHA-1 function) and instead
employing an assignment where node keys are correlated to node bandwidth constraints.

Our discussion went further briefly on the VoD streaming system. We have shown that
main difference of the VoD streaming system as compared to the live streaming system is
that VoD uses caching technique at each peers to cache the archive video stream and relay
this stream to the new connecting nodes.

In general, the key issues when developing an overlay multicast application for media
streaming are to ensure the system scalability for supporting a big number of user, the ro-
bustness under peer churn, the proximity and heterogeneity20 considerations, and to ensure
the working transparency for nodes behind NATs or Firewalls in a streaming system. The
streaming system can also employ block coding and network coding techniques [51] which
can be used to improve the content delivery throughput and eliminate the potential bottleneck
at the source node.

Overlay P2P network and ALM have been developing for a decade. Many proposals
have been published. Each one has its own advantages and disadvantages which aims to

20Heterogeneity concerns the difference of the resource available to a peer e.g. the uploading/downloading
bandwidth, the CPU and memory resource

2 STREAMING TECHNOLOGIES ON THE OVERLAY 57

solve a specific problem or to work for an application target. There are many open questions
in improving the scalability, robustness and performance (e.g. long jitter delay in buffering,
freezing or disruption during playback), those are still not fully answered. Zattoo claims that
the uploading bandwidth of its users still can not be sufficient enough and needs to deploy
more repeater nodes in the backbone network. ALM systems are said to consume a large
portion of the Internet bandwidth. So that the future of the overlay P2P and ALM may need
any further study in order to make ALM a friendly model to ISP and with better QoS to
compete with the traditional broadcasting methods e.g. radio or television.

3 AUDIO PROCESSING ON THE IPHONE AND IPOD TOUCH 58

3 Audio Processing on the iPhone and iPod Touch

3.1 iPhone OS Technologies

The iPhone OS technologies are categorized into four layers. Figure 41 shows these four
different layers. The lower-level layers provide the fundamental services for the higher-level
layers and applications. The higher-level layers provide more specific sophisticated services
and technologies for applications. The following information is taken from [52].

! !

"#$%&'!()!*+,(-%!./

0-1&(2341*(- .5%&6#$!+7+ 8"9 *+,(-% +8/:* ;*'43''*(-

<&#=,*4'!>%4,-(6(?*%'

832*(!>%4,-(6(?*%'

>,&%%!8+0!"#$%&'

@*2%(!>%4,-(6(?*%'

Figure 41: Layers of iPhone OS (source [52])

Cocoa Touch Layer This layer contains the key frameworks for developing applications.
Developers should start developing with this layer and go down to lower-level frameworks
when as needed. It provides the Apple Push Notification Service to alert users when some-
thing come up. It provides support for working with address book, email, map, P2P (built and
operates on top of Bonjour21), interfaces for implementing graphical.

Media Layer This layer contains the graphics, audio, and video services. Each service is
divided into higher- or lower-layer sub-services. Using sub-services in higher-layers makes
it easy to create advanced graphics, animations, audio processing, etc. quickly. Whereby,
the lower-layer sub-services provide more access control to the tools for doing exactly what
a developer wants.

Core Services Layer All applications use the fundamental services provided by this layer.
Even if these services are not used directly by applications, many parts of the system are

21"Bonjour, also known as zero-configuration networking, enables automatic discovery of computers, devices,
and services on IP networks" [9]. Bonjour is a service in the Core OS Layer

3 AUDIO PROCESSING ON THE IPHONE AND IPOD TOUCH 59

built on top of them. The services that this layer provides are address book access inter-
faces, core data for managing the data model of an application, core foundation (C-based
interfaces) for data management and service features (e.g., data types (arrays, sets etc.),
string management, date time, threads, ports and sockets communication etc.), foundation
framework which provides similar services (Objective-C22 wrappers) as the core foundation
does etc.

Core OS Layer This layer provides security, network and system supports, e.g., low-level
UNIX interfaces for threading, networking, file-system access, Bonjour and DNS services,
memory allocation etc.

For audio processing technologies used in the PAN4i application, some parts of the audio
technologies in the media layer (highlighted in figure 41) are used and discussed in the
following.

3.2 Core Audio Overview

Core Audio provides software interfaces for audio processing on the iPhone and on the
Mac Laptop or Desktop. Core Audio includes a set of frameworks, those are for recording,
playback, sound effects, positioning, format conversion, file streaming parsing, audio mixing,
accessing to audio input and output hardware etc. As compared to Mac OS X, in iPhone OS,
Core Audio is optimized for the limited computing resources, e.g., processing power, battery
of the mobile device. Core Audio uses the notion of proxy objects to represent files, streams,
audio players, etc. Most Core Audio interfaces use properties for managing object states or
refining object behaviors. A property has a key-value pair. Many Core Audio interfaces use
callback functions to communicate with applications. The use of callback functions for such
things:

• To deliver new audio data to applications (e.g., for recording; the callback writes the
recorded data to disk or sends to the network)

• To request new audio data from applications (e.g., for playback; the callback reads
from disk to provide the requested data)

• To implement an event handler function (on an event occurrence, the callback takes
appropriate actions)

According to figure 42, the programing interfaces of Core Audio are divided into different
services, those are arranged into three layers. In the following sections, only the services

22Objective-C is a object-oriented programming language which is used on Apple’s Mac OS X and iPhone
OS

3 AUDIO PROCESSING ON THE IPHONE AND IPOD TOUCH 60

used in the PAN4i application are discussed. For a complete information on other services,
the Core Audio Overview homepage [53] and its related links are good sources.

! !

"#$!%#&$$!'()!*+,$&-!./!0.&$!'123.

)4%&.215%3.4 67$&*+,!(8('9: 3(#.4$ (';<3 =3-51--3.4

64*,!+7+3*+>*$!/.&!:+5!6;!?

@4.%!34!3(#.4$!6;A

;$&735$-!1-$2!

34!(';<3

Figure 42: The three API layers of Core Audio (source [53])

3.2.1 Audio Queue Services

Audio Queue Services (AQS) API provides a straightforward and low overhead way to record
and play audio. The audio recording and playing formats can be linear PCM, or any com-
pressed format supported natively in the iPhone OS, or any format from third party installed
codec. In figure 42, AQS stays in the high level which means that "It lets your application
use hardware recording and playback devices (such as microphone and loudspeakers) with-
out knowledge of the hardware interface. It also lets us using sophisticated codecs without
knowledge of how the codec work" [53]. AQS and the AVAudioPlayer class are the only way
to play compressed audio e.g., MP3, AAC etc. Audio File Services or Audio File Stream
Services can be used together with AQS in order to provide audio input data to AQS e.g., for
playback.

AQS uses AudioStreamBasicDescription structure to set the audio format
which is going to be played or recorded which can be stored into an audio file.

3 AUDIO PROCESSING ON THE IPHONE AND IPOD TOUCH 61

struct AudioStreamBasicDescription
{

Float64 mSampleRate;
UInt32 mFormatID;
UInt32 mFormatFlags;
UInt32 mBytesPerPacket;
UInt32 mFramesPerPacket;
UInt32 mBytesPerFrame;
UInt32 mChannelsPerFrame;
UInt32 mBitsPerChannel;
UInt32 mReserved;

};

In this structure, the mFormatID field represents the audio codec that AQS will employ for
playback or recording. mFormatID can be one of the system defined ID for the supported
codecs on the iPhone OS or any third party installed codecs. Some of the supported codec
IDs on the iPhone are:

kAudioFormatLinearPCM = LPCM
kAudioFormatMPEG4AAC = AAC
kAudioFormatMPEGLayer3 = MP3
kAudioFormatiLBC = iLBC
etc.

An audio queue has three components: a set of audio queue buffers for storing tempo-
rary audio data, a buffer queue for an ordered list of audio data that is used for playback or
for storing onto disk, and an audio queue callback function that provides audio data to the
audio queue buffers on each invocation.

Figure 43 visualizes the playback process of the audio queue. In figure 43 a, the audio
queue buffers are filled with audio data from the callback function. This data can be retrieved
from the local hard disk or from the received network packets. When all the audio queue
buffers are orderly filled, the speaker can start playing from the buffer index 1 (shown in
figure 43 b). After finishing playing audio data in buffer 1, the audio queue returns buffer 1 for
re-filling at callback function and continues to play the next buffer(shown in figure 43 b). This
process is repeatedly to the last buffer 3 and starts again with the first buffer 1. For recording
with AQS, the audio callback has a converse role.

3.2.2 Audio File Stream Services

According to [55], Audio File Stream Services API is used for parsing audio stream (from
local file or from network stream) and returning packets of audio data or audio property

3 AUDIO PROCESSING ON THE IPHONE AND IPOD TOUCH 62

!"

#"

$"

Figure 43: The playback process of AQS (source [54])

data. Two callback functions have to be provided, one for audio data processing, the other
for property data . The audio stream is fed to the Audio File Stream Services parser. The

3 AUDIO PROCESSING ON THE IPHONE AND IPOD TOUCH 63

callbacks are invoked, when the parser has either a complete property value or a complete
audio packet. To implement an Audio File Stream Services parser, one has to do the
following steps.

1. Implementing callback functions for processing the audio property and the audio data.
The callbacks are invoked and provided the parsed audio packet or with the audio property
(type and value) in the callback parameters. The types of these two callbacks are

AudioFileStream_PropertyListenerProc

AudioFileStream_PacketsProc

2. Opening an audio file stream via calling the function

AudioFileStreamOpen (
void * inClientData,
AudioFileStream_PropertyListenerProc inPropertyListenerProc,
AudioFileStream_PacketsProc inPacketsProc,
AudioFileTypeID inFileTypeHint,
AudioFileStreamID *outAudioFileStream

)

The inClientData parameter is a constant that will be passed to the callbacks every
time they are invoked. The inPropertyListenerProc parameter is the pointer to the
audio property callback function. The inPacketsProc parameter is the pointer to the
audio data callback function. The inFileTypeHint parameter indicates the file type of
the stream. And the outAudioFileStream parameter is the new file stream ID for use
in other AudioFileStream API calls.

3. Passing the stream to the parser via calling the below function with parameters for
the file stream ID, the data passed to be parsed, the number of bytes for parsing and the flag
to indicate whether the data is discontinuity.

AudioFileStreamParseBytes(
AudioFileStreamID inAudioFileStream,
UInt32 inDataByteSize,
const void* inData,
UInt32 inFlags

)

3 AUDIO PROCESSING ON THE IPHONE AND IPOD TOUCH 64

3.2.3 Audio Unit Services

Audio Unit Services provides the mechanism for applications to work on audio input and
output with low-latency, e.g., VoIP. It also provides some digital signal processing features.
iPhone OS audio units use linear PCM audio data format for input and output. For describing
the information about capabilities and configuration, audio units use properties. One can set
and get values for properties of an audio unit via using AudioUnitSetProperty and
AudioUnitGetProperty functions. Further more, the setting values of audio units can
be adjustably changed in real time. Callback functions can also be used for event handler,
input requesting and output rendering. Audio units have a number of units, and some of
them are used in the PAN4i, i.e., Converter unit, Multichannel mixer unit and RemoteIO unit.
These units are discussed as follows:

Converter unit This unit, of property type kAudioUnitSubType_AUConverter, al-
lows to convert the sample rate, bit depth, and bit format (linear or fixed-point) between dif-
ferent audio PCM formats. This unit does not convert between PCM and other compressed
audio formats. For audio format compression, the Audio Converter Services (which does not
belong to the Audio Unit Services) is used instead. Figure 44 illustrates the Converter unit
where PCM audio data goes into the unit on input bus 0, and the converted PCM* data can
be retrieved on output bus 0.

! !

"#!$%&'()*()!+,)-.

! /)%'0-(1!12345(!)2*(6!70*!-(4*86!2&-!70*!

9%)32*!+50&(2)!*%!90:(-;4%0&*.!<%&'()10%&1

! $%&'()10%&!01!-%&(!%&5=!7(*>((&!/$?!+"@-0%!
$%&'()*()!A()'0<(1!9%)!<%&'()10%&!>0*8!%*8()!<%34)(11(-!

9%)32*1.

B&*)%-@<*0%& C'()52=!/D/ "E? 0/8%&(/"AF0 G01<@110%&

"#!$%&'()*()

B

&

4

@

*

C

@

*

4

@

*

0&4@*!7@1!H %@*4@*!7@1!H

/$? /$?I

Figure 44: Converter unit

Multichannel mixer unit This unit allows to mix multiple audio input PCM streams to
a single output PCM stream. It also allows applications to mute or unmute each in-
put channel and to control its volume. Figure 45 illustrates the Multichannel mixer unit
where there are more input channels, each one on each different input bus to the unit
and the mixed stream is produced at the output bus 0. The property type of this unit is
kAudioUnitSubType_MultiChannelMixer.

RemoteIO unit This unit, of property type kAudioUnitSubType_RemoteIO, allows
connections to audio input hardware (microphone) and output hardware (loudspeaker), and

3 AUDIO PROCESSING ON THE IPHONE AND IPOD TOUCH 65

! !

"#!$%&'()*+,,-&!.(/-0!12034

! #5-3!'6!.(/!.%&'(7&-!+%3(6!5'0-+.5!'6!+!

5(,8&-!5'0-+.

! 9,&:!;60<5!;('*!=>$

?,'063%)'(6, 9@-0&+:!=A= "B$ (=*6,- ="CD(E(5)%55(6,

"#!$%&'()*+,,-&

.(/-0

?

,

7

%

'

9

%

'

7

%

'

=>$!(,7%'!F%5!G

6%'7%'!F%5!G

=>$!$(/-3!5'0-+.

=>$!(,7%'!F%5!H

=>$!(,7%'!F%5!,

Figure 45: Multichannel mixer unit

supports realtime I/O. By using this unit, one can retrieve the recorded voice from the mic
for use in application, and can send any audio data to the loudspeaker for playback. Input
and output audio data formats of this unit are also PCM. Figure 46 illustrates the use of
this RemoteIO unit. Any input audio data from application provided to this unit has to take
input bus 0. And recorded voice from microphone takes input bus 1. Whereby, output to the
loudspeaker takes output bus 0, and applications can retrieve output audio data (e.g., the
recorded voice audio data) on output bus 1.

! !

"#!$%&'(%)*!+,$-.

! "//'01!('!2'33%2(!('!4356(1!+7$'&!&42$'58'3%!

'$!7$'&!955/429(4'3!-9(9.!93-!'6(56(1!+('!

15%9:%$!'$!('!955/429(4'3.

! *3/;!0'$:1!04(8!<=>

)3($'-62(4'3 *?%$/9;!<@< "A> 4<8'3% <"BC4 D4126114'3

"#!$%&'(%)*

)

3

5

6

(

*

6

(

5

6

(

4356(!E61!F!G!7$'&!955H

4356(!E61!I!G!7$'&!&42H

'6(56(!E61!F!G!('!15%9:%$

'6(56(!E61!I!G!('!955H

Figure 46: I/O unit (or called RemoteIO unit)

3.2.4 Audio Processing Graph Services

"Audio Unit Processing Graph Services provide interfaces for representing a set of audio
units, connections between their inputs and outputs, and callbacks used to provide inputs. It
also enables the embedding of sub (or child) processing graphs within parent graphs to allow
for a logical organization of parts of an overall signal chain." [56].

Figure 47 shows the use of this Audio Unit Processing Graph Services for connecting
inputs and outputs of different audio units to form a processing signal chain. This signal
chain is also used in the PAN4i application. Starting from the input bus 1 for the microphone
of the remoteIO unit, the high quality PCM recorded voice goes through the remoteIO unit,
and out at bus 1 to the application. This output bus 1 of remoteIO is connected to the input
bus 1 (considered for voice input signal) of the Multichannel mixer unit. Music audio data got
from the callback goes to the input bus 0 of the mixer. The high quality PCM mixed audio

3 AUDIO PROCESSING ON THE IPHONE AND IPOD TOUCH 66

stream is produced at output 0 of the mixer is connected to the input bus 0 of the Converter
unit. This unit converts the high quality input PCM to a lower quality PCM at output bus 0 of
the Converter unit. This converted audio can now be sent to the network, and/or for playback.
Audio data goes to input bus 0 for the remoteIO unit which will directly go to the loudspeaker
for playback.

By connecting these audio units in a processing graph and setting the property values
of each unit, the audio signal is automatically processed without the need to write any extra
code for controlling the process of each unit. The callback function has to be implemented
for providing input audio data to the mixer. Audio Unit Processing Graph allows to define
any callback function for any input bus of any unit. If a callback for providing input data is
registered with an input bus of an audio unit. This input bus cannot be connected with any
output bus of any audio unit.

In order to use this graph service, one has first to declare some audio units of type
AUNode (e.g., ioNode, converterNode, mixerNode), those are connected via the graph
service API for audio processing. After this step, an audio processing graph can be setup
via the following functions.

NewAUGraph to create a new audio unit processing graph
AUGraphAddNode to add each declared AUNode to the graph
AUGraphConnectNodeInput to connect any pair of node (e.g., output bus of the
mixerNode is connected to the input bus of the converterNode)
AUGraphOpen to open the graph and so the audio units in the graph are also opened for
further intialization, e.g., for initializing property values of any node or defining any callback
function to provide input to any node in the graph
AUGraphNodeInfo to return information about a particular node
AUGraphSetNodeInputCallback to register any callback function for providing data
to any input bus of any node
AUGraphInitialize to initialize the graph containing already configured nodes
AUGraphStart to start the graph and let it running

From figure 47, in order to get the output audio at bus 0 of the AU Converter for send-
ing to the Internet, one can use the AudioUnitRender interface. This interface is used
to get the audio data at the output bus of any audio unit, e.g., to get the recorded audio from
the microphone.

3.3 Audio codecs

For recording and playback, iPhone OS provides two types of audio codecs, i.e., hardware-
assisted codecs and software codecs.

The hardware-assisted codecs include the audio formats listed in table 4. The advantage

3 AUDIO PROCESSING ON THE IPHONE AND IPOD TOUCH 67

!"#
$%&'()*+,,-&

.(/-0

!"#
12,3-0'-0

!"#
0-.2'-45

!!!
6%7#8#9#:02.#+;;<6%7#8#9#'2#7;-+=-0

"6%7#>#9#:02.#.()<

6%7#>#:20#32()-

6%7#8#:20#.%7()1+&&6+)=

6%7#>#9#'2#+;;<

1+&&6+)=#?-'7#(,;%'#+%@(2#@+'+#:02.#
+0@#@(7=#20#:02.#,-'A20=#7'0-+. B-,@#'2#'-#,-'A20=

6%7#8 6%7#8 6%7#8

Figure 47: Audio processing chain using Audio Unit Processing Graph interfaces

of using the hardware-assisted codecs is to save the processing resource on the iPhone (e.g.
battery). Since all the hardware-assisted codecs share a single hardware path, there is only
one single instance these three supported formats that can be played at a time. According
to [57], "Offline rendering with an audio queue output allows applications to render audio to
a buffer instead of directly to an output device". The main interface used for offline rendering
(i.e., using the hardware-assisted codecs) is AudioQueueOfflineRender.

AAC
Apple Lossless
MP3

Table 4: iPhone OS audio formats supported by hardware-assisted codecs (source: [53])

The supported software codecs are listed in table 5. By using the software codecs, one
can concurrently play more than one instance of each of these formats.

AMR (Adaptive Multi-Rate, a speech codec)
iLBC (internet Low Bitrate Codec, also a speech codec)
IMA/ADPCM (also known as IMA-4)
Linear PCM
µLaw and aLaw

Table 5: iPhone OS audio formats supported by software codecs (source: [53])

3 AUDIO PROCESSING ON THE IPHONE AND IPOD TOUCH 68

For voice recording23, iPhone OS contains the supported recording codecs listed in table
6.

Apple Lossless
iLBC (internet Low Bitrate Codec, also a speech codec)
IMA/ADPCM (also known as IMA-4)
Linear PCM
µLaw and aLaw

Table 6: iPhone OS: recording audio formats (source: [53])

23If using Audio Unit Services to implement a voice recording function, the audio data got from the microphone
is Linear PCM. By using the Audio Converter Services, the PCM recorded voice data can be converted into
other different compressed formats

4 PAN4I CONCEPTS AND DESIGN 69

4 PAN4i Concepts and Design

4.1 User requirements

The idea to develop the PAN4i application is to create a P2P networking entertainment
application in the form of karaoke singing and in combination with group communication on
the iPhone and iPod Touch devices. Any iPhone or iPod Touch (called peer or node in the
overlay network) having the PAN4i installed and network (W-LAN) connectivity can use this
application. Figure 48 illustrates the use cases of this application. Generally, the application
would allow users to self organize (i.e., create or join) an overlay P2P network without any
server interaction. Any user can receive (i.e., joining a streaming group) and contribute (i.e.,
sending multicast) audio streams to a shared, multi-channel application that we coined for
karaoke. Users may request music from a distributed jukebox or a local music file and sing
karaoke music on an iPod Touch microphone. Simultaneously, any user may stream the
live karaoke music to his or her own, personally created channel on the overlay network.
All other users, when subscribing to this channel, will be able to receive and listen to live
stream karaoke music. According to the above description, the following user requirements
are defined:

!"#$
%&'()*+,*-.,.+/"

'0,".%
!"1")0*.*)2.##"1

!(#3*-.,.+/"
+#*02"*)2.##"1*%&'()

!(#3*-.,.+/"*+#
1+).1*%&'()*4(1"

!"1")0*1+).1*%&'()*
4(1"*4+,*'"#$(#3

5&(0

&'",

66"70"#$88 66"70"#$88

66"70"#$88

9('0"#*0+*02"*'"1")0"$*
)2.##"1*%&'()

66"70"#$88

66"70"#$88

Figure 48: Usecase diagram of the PAN4i application

Requirement 1: Get informed about bootstrapping information Precondition: no Postcon-
dition: the local peer has information about a nearby peer on an existing overlay or gets
informed that there is no existing overlay network Basic actions (dependent on the bootstrap-
ping strategy of the system): 1. If using IP Multicast for providing bootstrapping information

4 PAN4I CONCEPTS AND DESIGN 70

in a local network, then when a node is connected to the local network, it can get this
information via the IP Multicast in the local network. The bootstrapping information can also
be retrieved from some permanent active peers on the overlay (the software can store a list
of these peers). Or it can be retrieved from a server not belonging to the overlay. This server
will need to be informed about peers in the group. The bootstrapping peers can be updated
with the newest requesting peers.

In the rest of these requirements, the bootstrapping information is considered to be available
for any peer that may need in order to carry out other actions in each user requirement.

Requirement 2: Start up a new overlay network
Precondition: no
Postcondition: A new overlay network is created with only one peer
Basic actions:
1. The user creates a new overlay network
3. The user is acknowledged on success or failure

Requirement 3: Join in an existing overlay network
Precondition: There is an existing overlay network, a new peer has to know any existing
peer on this overlay network
Postcondition: This new peer is connected to this overlay network
Basic actions:
1. The user gets informed of any existing peer on the overlay network
2. The user sends an overlay JOIN request to this existing peer
3. The user request is acknowledged on success or failure

Requirement 4: Create a new streaming group
Precondition: The user peer is on the overlay network
Postcondition: A new streaming group is created and available on the overlay
Basic actions:
1. The user gives a new group name, and sends a CREATE request to the overlay network
2. The user request is acknowledged on success or failure

Requirement 5: Multicast a music stream from a local file to a group
Precondition: The user peer is on the overlay network, the streaming group exists on the
overlay network
Postcondition: no
Basic actions:
1. The user gives a group name, and sends MULTICAST messages of the music stream
from a local music file to this group

4 PAN4I CONCEPTS AND DESIGN 71

2. On failure, the user is informed that the multicast attempt was fail

Requirement 6: Multicast mixed Karaoke stream of the live singing voice and the back-
ground music stream the a local file
Precondition: The user peer is on the overlay network, the streaming group exists on the
overlay network (if the iPod Touch is used, an external microphone has to be connected)
Postcondition: no
Basic actions:
1. The user gives a group name, and sends MULTICAST messages of the mixed Karaoke
stream to this group
2. On failure, the user is informed that the multicast attempt was fail

Requirement 7: Join a group to listen to a music or Karaoke stream
Precondition: The user peer is on the overlay network, the streaming group exists on the
overlay network
Postcondition: no
Basic actions:
1. The user gives a group name, and sends a group JOIN request to the overlay
2. The user listen to the receiving music or Karaoke stream
3. The user is informed if after some time no stream is available or end of the streaming
session

Requirement 8: Join a group for receiving a background music stream and sing Karaoke on
this music stream
Precondition: The user peer is on the overlay network, both the streaming groups for re-
ceiving the background music stream and for sending the Karaoke stream to another group
exist on the overlay network (if the iPod Touch is used, an external micro phone has to be
connected)
Postcondition: no
Basic actions:
1. The user gives a group name, and sends a group JOIN request to the overlay (for
receiving the background music stream)
2. The user sings on the receiving background music, and listen to his or her produced
Karaoke music and send MULTICAST messages of this Karaoke stream to another group
(his or her own Karaoke group)
3. The user is informed if after some time no receiving stream is available or end of the
streaming session

Requirement 9: Leave a group
Precondition: The user peer is on the overlay network, the streaming group exists on the

4 PAN4I CONCEPTS AND DESIGN 72

overlay network, the user is a subscriber of this group
Postcondition: music playback of the receiving stream stops
Basic actions:
1. The user gives a group name, and sends a group LEAVE request to the overlay
2. The user hear no music playback anymore
3. The user request is acknowledged on success or failure

Requirement 10: Quit the PAN4i application gracefully while being as a subscriber of a
streaming group
Precondition: The user peer is on the overlay network, the streaming group exists on the
overlay network, the user is a subscriber of this group
Postcondition: music playback of the receiving stream stops, PAN4i stops running
Basic actions:
1. The user press on the quit button of the iPhone or iPod Touch device

Requirement 11: Quit the PAN4i application unexpectedly while being as a subscriber
of a streaming group
Precondition: The user peer is on the overlay network, the streaming group exists on the
overlay network, the user is a subscriber of this group
Postcondition: music playback of the receiving stream stops, PAN4i stops running
Basic actions:
1. The user does not press the quit button on the device, but the PAN4i application turned
off, e.g., device crashes

4.2 Functional requirements

This section defines the required functionalities and the related technologies that are needed
to develop the application and to fulfill the user requirements as described above.

The application allows peers to organize themselves into an overlay network. It allows
a new node to create or join an overlay network. It also allows any peer to send signaling
messages to the overlay network. These are the requirements for an implementation of an
structured overlay P2P network. The implementation has to have basic functions for creating
and joining an overlay network, updating its routing state tables, routing messages to any
peer in this network. For the message routing, it must have the functions for selecting a next
routing node, delivering the message at a node and stopping the routing, and providing the
updating ability to the routing information on upper layer application. It should be scalable
and robust and able to host a large number of peers. These requirement can be fulfilled with
the use of Pastry overlay network (described in section 2.2.3). Pastry provides a set of API
calls that allows it to do exactly what the application requires for setting up such an overlay
network.

4 PAN4I CONCEPTS AND DESIGN 73

When peers are in the overlay network, the application allows the peers to create any
personal streaming group. Any peer can also send audio (music or karaoke) stream to a
group where all subscriber peers of this group will be able to receive the stream for playback.
Any peer can also leave a streaming group or change to another group. These are the
requirements for an implementation of an ALM system. The implementation has to provide
the basic functions for creating, joining, leaving and multicasting to a streaming group. The
Scribe ALM approach (described in section 2.5.4) can be used for this purpose. Firstly,
Scribe operates on top of Pastry. Secondly, Scribe organizes peers of a streaming group
into a streaming tree hierarchy which provides the best delivery effort. Scribe also provides
a set of API calls for any peer in the overlay that can create, join, leave and multicast to
a streaming group. Scribe also has methods for repairing the multicast tree in case any
node departs from the tree gracefully or unexpectedly, e.g., by computer crashes. For doing
this, all Scribe nodes on intermediate tree levels have to send heart-beat messages to their
children periodically. If after sometime, a child does not receive any multicast or heart-beat
message from its parent, it will look for another parent. Since a RP node may fail or quit the
system, Scribe replicates the RP group state information on the RP node to the nodes in its
leaf set table. The RP group state of a node A may have to exported to another new coming
B if the new node B key is closest to the RP group hosted on node A as compared to the
key of A. The replication of the RP group state, or copying from one node to another can be
done in an handler function which can be invoked on the leaf set updating event in Pastry.

The application must allow any user to playback a receiving audio stream, sing Karaoke
on a playing music stream from the network or from a local file. These are the requirement for
implementing a real-time audio processing functions. The implementation has to provide the
basic function for live playing an audio stream from the network, mixing the local or network
stream with the recorded singing voice and sending the live mixed stream to the network.
Further more, the implementation should be able to provide appropriate audio codecs that
may take the network bandwidth into consideration. The codecs may be used to do down
or up-sampling, convert to another audio format. The Core Audio API (described in section
3.2), apart of the iPhone OS, can help to fulfill these requirements. It provides interfaces
for getting audio packets from the microphone buffer and sending any audio packet to the
loudspeaker for playback. It provides a multichannel mixer unit for mixing music stream and
recorded voice, and procedure the mixed Karaoke stream. And it also provides different
codecs for different audio processing purposes, e.g., iLBC for VoIP, MP3 for music etc.

For delivering audio stream in real-time, TCP is not used because of its long delay in re-
transmission for lost and error packets. UDP is used with the consideration that the packets
may arrive out of order. An adaptive jitter buffer is needed to re-order the packets before
playback. This requirement can be answered with the use of RTP which is discussed in
section 2.5.3.

From the defined functions and technologies applied for each requirement, the PAN4i
system can be described as follows. Generally, each node has to join an existing Pastry

4 PAN4I CONCEPTS AND DESIGN 74

overlay network. If no overlay network exists, a node can start a new overlay network. Each
node has a key value derived from its IP address and port number. A streaming group
channel also has its own key value which is derived from its channel name. Not only a node
is the destination for the key of itself, it is also the destination node of any channel whose
key is numerically closest to its node key. In Scribe, a destination node of a channel is called
the RP of this channel. Pastry uses the keys (of nodes and channels) to organize nodes and
distribute channels on nodes in its overlay network in a way that for a given message with
a key, Pastry can route this message to the correct destination node of this key value. An
example is that a new channel of key A (created by any node) is routed to the destination
node of key B where A and B are numerically closest. B becomes the RP of channel A. Any
message with key A or B is routed to node B. The routing mechanism of the system follows
the Pastry protocol. When a message arrives at a node (or starting from the sender), this
local node will lookup a numerically closest key in its routing tables to the message key. This
message is then forwarded to the next node of the returned closest key. If the local node key
turns out to be the closest key, this message is delivered at this local node and the routing
finishes here.

Based on these principles, the following section will discuss on the software concepts
and application design of the PAN4i application.

4.3 Software concepts

Derived from the functional requirements, the main functional units and their dependence
relationships of the PAN4i software can be defined and illustrated in figure 49. This figure
shows that the group creating, joining and multicasting units (provided by Scribe for group
management and multicasting) are derived from the overlay starting or joining unit. This is
explained as these functions can only be invoked on a peer after the peer is already in an
overlay network which means that the overlay starting or joining function (provided by Pas-
try) would have been invoked before. The group leaving, and heart-beat messaging functions
(Scribe) can only be invoked after the group joining would already have been invoked. Fur-
thermore, when the overlay starting or joining function is invoked, the including bootstrapping
function is also invoked to provide bootstrapping information needed by a peer for joining to
the overlay network. And the same for multicast sending unit, when it is invoked, it uses the
request IP of RP function to request for the IP address and port number of the RP so that
the subsequent multicast messages can be directly sent to the RP without going through
the routing procedure. Moreover, the multicast sending unit includes the RTP/RTCP unit, so
that any audio packets sent out to the network via using this unit are encapsulated in RTP
packets. Similarly, when a node joins a group, the receiving stream will go to the multicast
receiving unit. This unit also includes the RTP/RTCP unit, so that the receiving RTP packets
are decapsulated to audio packets for further processing. Finally, the overlay starting or join-
ing unit, the group creating and joining units and the IP of RP requesting unit use the KBR

4 PAN4I CONCEPTS AND DESIGN 75

unit of Pastry to route their messages to destinations. KBR unit will invoke its extending for-
ward, deliver and update handler functions for routing a receiving message to the next node,
delivering the receiving message to the local node, or to perform any appropriate action when
the local leaf set table is updated.

In order to realize the use cases shown in figure 48, for multicasting audio (music or
karaoke), the three extended units of the multicast sending unit can be used. They are
the "sing on a local music file", "select a local music file" and "sing on receiving stream"
units. Whereby, for listening to a multicast stream (music or karaoke), the derived "listen to
receiving stream" and "sing on receiving stream" units of the multicast receiving unit can be
used. The "sing on receiving stream" unit is a special unit. It is the extended unit of the
multicast sending unit and also the derived unit of the multicast receiving unit. For listening
music and singing karaoke from network stream or local music file, these units have to use
the audio processing unit which is the Core Audio API and described in section 3.2.

The PAN4i is developed based on the Three Tier Dabek model (section 2.3) as shown in
figure 50, which means that all the functional units are placed in these three tiers. From this
model, the Pastry on tier 0 provides the overlay start, join, bootstrapping and KBR services.
The Scribe ALM approach is built on top of Pastry and is placed at tier-1 and provides group
create, join, leave, multicast and request IP of RP functional units. Tier-2 is for the implemen-
tation of the application GUI, application logic and audio processing, i.e., the music listening,
Karaoke singing functional units.

The PAN4i software concepts can be more clearly described with the two figures 51 and
52. Figure 51 illustrates the communication concepts that PAN4i uses for sending signaling
and multicast messages to peers. Correspondently, figure 52 illustrates the communication
concepts that are used for the arrivals of signaling and multicast messages at a peer on the
overlay.

The general concepts shown on both figures are that the application layer includes the
GUI, application logic for using the functional units, and the audio processing unit. There
are two types of packet transmitted in the system, i.e., the messaging packets for signaling
and the audio packets for multicasting. The audio packets can be part of a MP3 music or
a Karaoke stream. The signaling messages are divided into a number of message types,
some are used by the KBR service - Pastry, and others are for the ALM - Scribe and any of
the user defined message types needed for the application logic. These messages are used
for managing or updating the overlay network, the streaming trees or any application specific
purpose, e.g., exchanging leaf set information between nodes, adding or moving nodes from
a tree, etc. The main Pastry message types can be PASTRY_JOIN (for joining an overlay
network), PASTRY_UPDATE (for updating the leaf set). Whereby, the main Scribe message
types can be SCRIBE_CREATE (for creating a group channel), SCRIBE_JOIN (for joining
an existing group), SCRIBE_LEAVE (for leaving a group), and SCRIBE_MULTICAST (for
sending multicast messages). Each Scribe message corresponds to a function defined in
the Scribe API (e.g., Create, Join, Leave, Multicast) Any new message type can be defined

4 PAN4I CONCEPTS AND DESIGN 76

!"#$"%&%'()*
(+,$-#.

/$,#",
0$(12 3(("4"$#22)*0

!,*5
61-")7#4"

'()*
0$(12

8,#+,
0$(12

995,$)+,::
995,$)+,:: 995,$)+,::

995,$)+,:: 99)*7-15,::

;3<
99)*7-15,::99)*7-15,::

99)*7-15,::

99)*7-15,::

!)*0%(*%#
-(7#-%=14)7%>)-,

!,-,7"%#
-(7#-%=14)7%>)-,

!)*0%(*
$,7,)+)*0%4"$,#=

8)4",*%"(
$,7,)+)*0%4"$,#=

995,$)+,::

995,$)+,:: 99,?",*5::
99,?",*5::

99,?",*5::

@15)(%A$(7,44)*0%B*)"

99)*7-15,::

99)*7-15,::

99)*7-15,::
99)*7-15,::

C($D#$5
E#*5-,$

F,-)+,$
E#*5-,$

B25#",
E#*5-,$

99,?",*5::
99,?",*5::

99,?",*5::

G,#$"HI,#"
=,44#0)*0

995,$)+,::

<,J1,4"
KA%(>%<A

99)*7-15,::

<,7,)+,
61-")7#4"

<LA&<L/A

99)*7-15,::

995,$)+,::

99)*7-15,::

Figure 49: The main functional units and their dependences of PAN4i

4 PAN4I CONCEPTS AND DESIGN 77

!"#$%$&''($)*+,-$%$
&./,*$01*-233,4+

5-1,627$8.9:,-;3:$:122

0;3:1<7$*=219;<$42:>*1?

0&5@,

Figure 50: The PAN4i Three Tiers Dabek model

for the application logic as needed (e.g., REQ_IP, RESP_IP for requesting and responding
the IP address and port number of a RP). The Scribe and user defined message types can
be used in two different ways. A message with a given key can be sent via the KBR service
(forwarding at forwarders and delivering at a destination receiver), or a message with a given
IP address and port number can be sent directly to the destination receiver.

For the smoothing playback experience at receivers in a streaming network application,
the PAN4i uses the RTP to encapsulate its sending audio packets (figure 52). At the receiver
side, packets can be re-ordered in the jitter buffer for playback. RTP is discussed in section
2.5.3.

For the highest possible real-time streaming experience, the audio packets have higher
priority to the signaling messages for processing. This can be done via using the main thread
for audio processing and creating new threads for message processing. Mover over, by using
two different sockets for sending messages and audio packets, at the receivers, messages
and audio packets are de-multiplexed and go to their audio streaming or messaging socket

4 PAN4I CONCEPTS AND DESIGN 78

interface. This helps to determine the type of the packets for performing appropriate process-
ing quickly without the need to read into the packets, and would improve the performance of
the application.

To be concrete, in figure 51, the PAN4i starts up via calling the join (overlay) function on
the application layer to join the overlay. This call sends the PASTRY_JOIN message with the
node key to the KBR service for routing the message on the overlay. The routing procedure
of Pastry is clearly described in section 2.2.3. During the routing to a destination peer, the
local peer receives routing information from a bootstrapping node, forwarding nodes and a
destination node to build up its own routing tables. On success of the routing, this local node
with its own routing tables is available on the overlay network. This overlay joining procedure
of Pastry is also described in section 2.2.3.

After joining to the overlay network, the local peer can send messages with keys via the
KBR service (i), or it can send messages with IP address and port number of a node directly
to this node (ii), or it can send multicast audio packets directly to a RP of a group (iii) (shown
in figure 51).

An example for the (i) sending method is that, a peer can send Scribe messages with
a group key for creating a group or joining an existing group. The KBR service is used to
forward the messages to a next forwarding node or to deliver the message to the application
layer of at a destination node (i.e., the node key and message key are numerically closest).
The forwarding and delivering of messages at a receiver can be illustrated in figure 52. In this
figure, the arriving messages go through the messaging socket to the KBR service. Here,
Pastry performs the routing lookup procedure. If this local node is the destination node,
the deliver handler function is invoked. If the message is of type SCRIBE_CREATE, then
a new group of the message key is created and the local node becomes the RP of this
group. If it is of type SCRIBE_JOIN, then the local node will add the source sender node
key to the children list of this message group key. The deliver handler function will return the
control to the application layer for performing any other processing. If this local node is not
the destination node, the forward handler function with a returned next forwarding node is
invoked. This handler may perform any extra processing before the message is sent to the
next node. The update handler is invoked whenever there is an update in the leaf set of the
local node. An application may use this handler to perform any specific action on this event.

For direct messaging in (ii), Pastry also provides an API call for this purpose. By provid-
ing a message with an IP address and a port number, the message can be sent directly to
the receiver. An example is that a Scribe node on an intermediate level wants to leave the
streaming tree. Since this local node contains IP addresses and port numbers of its parent
node and children nodes, it will just send the SCRIBE_LEAVE messages directly to these
node without using the KBR service. At the receiver (figure 52), the direct message handler
function is invoked, e.g., to remove the source sender node key from the children list of a
group. To destroy a streaming tree, the RP of a group can send direct messages (e.g., user
defined message type TREE_DESTROY) to its children to inform them that the streaming

4 PAN4I CONCEPTS AND DESIGN 79

group is no more available. The children will remove the group state and repeatedly inform
their children of this tree group. This situation may be happened, if after sometime, the RP
receives no multicast message from any source sender on this group. A Scribe intermedi-
ate node on a streaming tree uses the heart-beat function for sending hear-beat messages
periodically directly to its children to inform its availability and connecting state.

When a Scribe streaming tree is constructed, and after receiving the IP address and
port number of the tree RP, the peer can send multicast audio packets to this RP directly.
Depending on different audio multicasting purposes (e.g., sending a normal MP3 stream, or
Karaoke stream encoded in MP3 format), different audio processing methods are applied.
Audio processing methods for MP3 music or mixed Karaoke stream are described in sec-
tion 3. At sender, audio packets are encapsulated in RTP packets and are sent through the
streaming socket to a receiver (e.g., the RP). At the receiver (figure 52), RTP packets go
through the streaming socket to the media packet handler function. Here, the RTP packets
are forwarded to the children list of the current streaming group directly. Then the local node
will check if it is also a subscriber of this group. If yes, then RTP packets are decapsulated
and re-ordered (using jitter buffer), and sent to an audio processing unit. At the application
layer, the processed audio packets can be sent to the loudspeaker for playback, or the appli-
cation may perform mixing and send the mixed stream again to another group (i.e., the case
for singing Karaoke on a receiving music network stream).

4.4 Application design

The above described software concepts are the functional units and footprints that the PAN4i
needs to have and follow in order to provide services as describe in the use case figure
48. In this section, application design is about the selecting of different approaches for
implementing the application logic as well as GUI, that can bring all these software concepts
into a well cooperating mechanism to let the application running like what is described in the
use cases.

Figure 53 demonstrates an exemplar that the PAN4i GUI can be designed. Basically,
there are four main windows in the application: a home window (figure 53 a), a window for
selecting a MP3 local file for multicasting (figure 53 b), a window for singing Karaoke on
a selected local file or on a receiving music stream and for multicasting the live Karaoke
stream (figure 53 c), and a window for listening to a music stream (figure 53 d). The layout
designs of these window are similar, except the input forms in the middle of the windows.
The common layout components are the home button for going to the home window, the stop
button for stopping playing music, the status message on the top for informing the current
usage mode (idle, sending MP3, sending Karaoke, or listening to a music stream, and the
current receiving or sending channel name), the up-to-date channel list.

4 PAN4I CONCEPTS AND DESIGN 80

!"#$

%&'()*&++,)-./)01*2.3#$

40)1
506#$,.37

89,/)-."/
58%:*0$*;.$.0<#7

;=>*"#$6)-#
5%."/$37

>?%
#1-.+"9,./)01

'0-<#/
5@#"".A)1A7

'0-<#/
5"/$#.@)1A7

B1/#$1#/

BC*06#$,.3
D0)1#EF

G0

H#"

I#.$/JK#./
5@#"".A#7

!

&9E)0
+$0-#"")1A

'#1E)1A*@#"".A#"
L)/M*<#3"*6).*$09/)1A
5'-$)K#N*O$#./#P*40)1P
$#Q9#"/*B%*0C*>%P*#/-R7

S)$#-/*'#1E)1A*
@#"".A#"*L)/M*
B%*.EE$R*.1E*+0$/

5'-$)K#N*2#.6#P*#/-R7

'/.$/*)1)/).,)T)1A*)C*
K#-0@)1A*.*C0$L.$E#$

Figure 51: Communication protocol at a source sending node

4 PAN4I CONCEPTS AND DESIGN 81

!"#$%&"''(%)*+%,-&.*/01

234&5016%)0
7!*5+1/8

90:%*&'*);0+
<*-:(01&7#)1%=08

#,);0+
79055*>%->8

#,);0+
75+10*9%->8

?-+01-0+

@,1A*1:
<*-:(01
7B10*+0C
D,%-&0+)E8

:0(%601
<*-:(01
7B10*+0C
D,%-C&0+)E8

F':*+0
<*-:(01
7(0*@&50+8

*F:%,&
'1,)055%->

-0G+&-,:0

B&*&(&(&&&&&&&&&=&*&)&;&5
:%10)+
9055*>%->

4H!
:0)*'5F(*+%,-

?@&>1,F'
I,%-0:J

@,1A*1:&+,
)<%(:10-

1,F+0&+,
-0G+&-,:0

9055*>0
<*-:(01

740KF05+&?!
,@&4!C&0+)E8

Figure 52: Communication protocol at a forwarding node or a destination node

Bootstrapping - overlay joining On the application startup, not only does the home win-
dow (figure 53 a) appear, but also the overlay joining process is executed. At first, the KBR
service of Pastry including the network socket interfaces, and other related components are
initialized. The PAN4i can store the addresses and port numbers of some permanent boot-
strapping peers on the overlay in a Extensible Markup Language (XML) file. For the overlay
joining process, the local peer can send the PASTRY_JOIN message to any of these perma-
nent bootstrapping peers. These permanent bootstrapping peers can be updated after each
time the user runs the application.

4 PAN4I CONCEPTS AND DESIGN 82

!"#$ %&"'(")$*+,-.//$0+$&,1

234&$/ %$/)+5.6."7$ %$/)+(89

:-.//$0+234&

(61+;<=4+23>$+:"/,$6&+?5.6."7$@+#"6$111

A.BC+D/$+("6$+;3#$+?(89@+#"6$111

:"</&6C+E".)+?3/4&6<#$/&@+#"6$111

:"#$)C+&.07+4-"F+?(89@+#"6$111

G6$$+)34'0.C+4'.,$
?.)>$6&34$#$/&H+&$I&H+$&,1@

!"#$ %&"'
%$/)3/J+5.6."7$
E$,$3>3/J+K6"#*+:"</&6C+E".)
%$/)3/J+&"*+(61+;<=4+23>$+:"/,$6&

234&$/+ %$/)+5.6."7$ %$/)+(89

:-.//$0+234&

(61+;<=4+23>$+:"/,$6&+?5.6."7$@+#"6$111

A.BC+D/$+("6$+;3#$+?(89@+#"6$111

:"</&6C+E".)+?3/4&6<#$/&@+#"6$111

:"#$)C+&.07+4-"F+?(89@+#"6$111

A6"F4$ H+"6

L/'<&+,-.//$0*

D<&'<&+,-.//$0* (61+;<=4+23>$+:"/,$6&

%3/J+F3&-+0",.0+K30$*

%&.6&

!"#$ %&"'
%$/)3/J+(89
;"+,-.//$0*+:"</&6C+E".)

234&$/ %$/)+5.6."7$ %$/)+(89

:-.//$0+234&

(61+;<=4+23>$+:"/,$6&+?5.6."7$@+#"6$111

A.BC+D/$+("6$+;3#$+?(89@+#"6$111

:"</&6C+E".)+?3/4&6<#$/&@+#"6$111

:"#$)C+&.07+4-"F+?(89@+#"6$111

A6"F4$G30$*

D<&'<&+,-.//$0*

%&.6&

:"</&6C+E".)

:"</&6C+E".)

!"#$ %&"'234&$/3/J
:-.//$0*+(61+;<=4+23>$+:"/,$6&

234&$/+ %$/)+5.6."7$ %$/)+(89

:-.//$0+234&

(61+;<=4+23>$+:"/,$6&+?5.6."7$@+#"6$111

A.BC+D/$+("6$+;3#$+?(89@+#"6$111

:"</&6C+E".)+?3/4&6<#$/&@+#"6$111

:"#$)C+&.07+4-"F+?(89@+#"6$111

L/'<&+,-.//$0* (61+;<=4+23>$+:"/,$6&

%&.6&

.@+!"#$+F3/)"F B@+M3/)"F+K"6+4$/)3/J+(89

,@+M3/)"F+K"6+4$/)3/J+5.6."7$)@+M3/)"F+K"6+034&$/3/J+(89+"6+5.6."7$

Figure 53: PAN4i GUI

4 PAN4I CONCEPTS AND DESIGN 83

Initializing and updating the channel list The PAN4i system may have many user chan-
nels and one system default channel (e.g., a startup channel). Right after joining to the
overlay on startup, all peers will have to send the SCRIBE_JOIN message to this system
default channel. This channel is used to inform all peers in the system information about all
the available channels currently operating on the system. When a new channel is created
or a channel is discarded, it is informed to all peers in the system via sending a multicast
message to the RP of this system default channel. All peer in the system will cache these
up-to-date channel list information. When a new peer arrives and is connected to an existing
peer, this existing peer will send to the new peer its cached channel list, and the new peer
can initialize the list the available channels in the system.

Multicasting a MP3 stream read from a local file After joining the overlay and initializing
the channel list, a user can select the "Send MP3" tab (green highlight in figure 53 b) to open
the window for sending MP3. The user will touch on the Browse button to select a MP3 file
in the music library on the local file system. Then the user needs to select a channel name
(e.g., Country Road via selecting the item on the channel list or typing the name to the text
field manually) to that the MP3 is streamed. This channel can be a new or an existing one.
When the start button is selected, the key of this channel name is calculated. If this channel
is a new one, the SCRIBE_CREATE message with the channel key is routed to a RP. If it is
an existing one, the REQ_IP is routed to the RP. Until, the local peer receives the responded
IP address and port number of the RP, this local peer can now call the multicast function to
read and encapsulate the music stream into RTP packets, and send out directly to the RP.

Multicasting a mixed Karaoke stream The Karaoke stream is the mixed stream of the
recorded singing voice and a local music stream or a network receiving music stream. After
joining the overlay and initializing the channel list, a user can select the "Send Karaoke" tab
(green highlight in figure 53 c) to open the window for sending Karaoke. For doing this, there
are two options to get the background music. The user can produce the Karaoke stream
from a local music file via touching on the browse button and selecting a MP3 music file
for Karaoke. Or the user can join to any channel that streams music for singing Karaoke
via entering the input channel name in the text field "Input channel". Before multicasting
the Karaoke stream, the "Output channel" text field has to be filled with another channel
name. When the start button is selected, the keys of the two channel are calculated. The
SCRIBE_JOIN message with the input channel key is routed to join to an existing streaming
channel. The procedure for the output channel routing is similar to the above described
procedure for multicasting a MP3 stream. Then the audio processing unit for Karaoke singing
is initialized (if it has not yet been done). The receiving MP3 stream has to be converted into
the PCM format for mixing with the PCM recorded singing voice. The mixed PCM Karaoke
stream is then converted to MP3 format, and encapsulated in RTP packets for multicasting

4 PAN4I CONCEPTS AND DESIGN 84

to another channel. Figure 54 illustrates the audio processing graph for producing the mixed
Karaoke stream.

!"#
$%&'()*+,,-&

.(/-0

12$#'3#$14
)3,5-0'-0

!"#
0-.3'-67

!!!
8%9#:#;#<03.#+==>8%9#:#;#'3#9=-+?-0

"8%9#@#;#<03.#.()>

8%9#@#<30#53()-

8%9#:#<30#.%9()

2+&&8+)?

8%9#@#;#'3#+==>

2+&&8+)?#A-'9#(,=%'#
$14#B+'+#<03.#&3)+&#<(&-C
30#<03.#,-'D30?#9'0-+. E-,B#'3#'*-#,-'D30?

8%9#: 8%9#: 8%9#:

$14#'3#12$
)3,5-0'-0

8%9#:8%9#:

F+0+3?-#9'0-+.

Figure 54: Communication protocol at a source sending node

Listening to a music or Karaoke stream After joining the overlay and initializing the chan-
nel list, the user can select the "Listen" tab (green highlight in figure 53 d) to listen on a
selected channel. To do this, the user will type the channel name in the text field or touch
on an item in the channel list so that the channel name is filled in the text field automatically.
By selecting the start button, the channel key is calculated, the SCRIBE_JOIN message with
this key is routed. And this peer is connected to the streaming group of this channel, and
then the user can initialize the audio processing unit (if it has not been done yet) for playback
the receiving network stream.

Changing to another channel during playback During listening on the selected channel,
the user may select another channel in the list. With this action, in the background process,
the local peer will check if it stays on the leaf level of the tree or on an intermediate level. If it
is on the leaf level, it will directly send a SCRIBE_LEAVE message to its parent. If it is on an
intermediate level (i.e., it has a children list of this group), it will not send this leave message.
It still has to receive the stream and forward it to the children, but it will stop processing the
audio stream for playback. Then the SCRIBE_JOIN message with the new channel key is
routed to connect this local peer to another streaming group tree. On success, the peer can
playback the new channel stream.

4 PAN4I CONCEPTS AND DESIGN 85

Stopping the currently Listen, or Send Karaoke, or Send MP3 play mode When the
user is in one of the three above described play modes, if the stop button is selected, the
application will stop running on this mode, de-allocate the initialized related audio units, free
unused memories, and go to the home window. If the local node is the subscriber of a
streaming group, the leaving procedure is carried out as described in the above procedure
for changing to another channel. If it is a source sender of a streaming group, it will send a
group destroy message to the RP, this RP will then forward this message to its children. And
each child node repeatedly forwards this message to its children. In this way the streaming
tree can be destroyed.

Other background running processes These processes are run on different background
threads infinitely and independently from an user interaction on the GUI. They are the pro-
cess for Pastry KBR routing service, a process for periodically sending heart-beat messages
to children nodes of a streaming group which is used for detecting node failures or for dis-
carding a streaming group in a RP and destroying the streaming tree when after sometime it
receives no multicast message from any source sender. Another process waits for if there is
any message or audio packet arriving at the incoming sockets.

Turning off the PAN4i application When the user is in one of the three above described
playing modes, if the quit button of the iPhone or iPod Touch device is pressed, the peer
will send SCRIBE_LEAVE messages to its parent node, and children nodes. The children
nodes in this case have to look for their new parent node. All the allocated memories are
de-allocated. Any operating state (e.g., permanent bootstrapping peers, history of visited
channels, favorite channels etc.) may be stored for the next application startup.

5 PAN4I IMPLEMENTATION 86

5 PAN4i Implementation

Since PAN4i employs two open source projects Chimera [18] and oRTP [19] which are written
in C, its implementation is mainly in C, and partly in Objective-C for the GUI implementation.

PAN4i implementation follows the Dabek model, and the functional units of this software
(described in the software concepts section 4.3) are categorized and implemented on each
tier. This chapter is a report on the current implementing state of PAN4i. On each tier, the
already implemented functional units and others that are for future work will be presented.

5.1 Pastry - KBR

The software employs the Chimera open source project for providing its KBR service. Ac-
cording to the Chimera project page [18], "Chimera is a light-weight C implementation of a
"next-generation" structured overlay that provides similar functionality as prefix-routing pro-
tocols Tapestry and Pastry". Basically, Chimera provides full features that described in the
Pastry-KBR protocol (section 2.2.3), except that it does not provide the proximity feature of
Pastry. Chimera communicates using UDP messages sent over BSD sockets. Chimera API
follows the syntax defined in the Dabek model section 2.3, and is divided into three parts: the
basic interface, the message Up-call interface, and the routing interface. Figure 55 shows
the system design architecture of Chimeara.

Figure 55: Chimera system design architecture (source [18])

5 PAN4I IMPLEMENTATION 87

The basic interface provides functions for initializing the Chimera overlay
(chimera_init), joining to an existing Chimera overlay (chimera_join), assign-
ing key to a node (chimera_setkey), etc., and especially Chimera allows developers
to define message types that the KBR service is used for sending and receiving their
messages. To register message types that will use the KBR service (i.e., on an arrival of
a message, KBR will up-call the forward, deliver, or update callback handler function), the
chimera_register function can be used. Chimera also allows any callback functions
and message types that are registered for each of these callback functions to be defined.
An the arrival of these messages, the messages are passed to their registered callback
functions and not to the KBR service. The message_handler function is used to register
a message type to any user defined callback function.

The message Up-call interface Supposing that the three callback functions forward,
deliver, and update have been implemented on Scribe, this interface provides the func-
tions for registering these three callbacks for up-calling to the KBR service. An example for
the implementation of the deliver callback on Scribe in PAN4i is in listing 1.

The routing interface allows the application to access the routing state and pass down the
routing preferences to the KBR. By invoking route_lookup, a list of possible next nodes
on toward a given key is returned. By calling chimera_route with a given message and
a key, the KBR will forward the message to the destination key. This call will cause either the
forward, or deliver up-call at each receiver node. Calling route_neighbors will
return the closest nodes in the leaf set of the local node.

Future work The proximity functionality may be implemented for Chimera. Besides,
Chimera claims that its current implementation needs further improvement, e.g., Chimera
processes the incoming messages in the order of first-in-first-out, and uses a simple algo-
rithms for calculating latency with inaccurate prediction. It suggests that the improvement
can be done in assigning different priorities for the message processing, and in using more
effective and complex methods for predicting network performance. The bootstrapping mech-
anism of Chimera overlay also needs to be implemented.

5.2 Scribe - ALM

The current Scribe implementation state in PAN4i is that the group management and multi-
cast messages dissemination functions have been implemented. Whereby, the tree repairing
functions have not yet implemented and are considered for future work.

5 PAN4I IMPLEMENTATION 88

1 /∗
2 ∗ Invoked by the KBR on a r r i v a l o f the KBR r e g i s t e r e d message types
3 ∗ S p e c i f i c handler f u n c t i o n o f each message type i s f u r t h e r invoked
4 ∗
5 ∗ @param ∗ s ta te : the over lay Chimera opera t ing s ta te o f t h i s peer
6 ∗ @param ∗msg : the de l i ve red message
7 ∗ /
8 void delivery_handler(ChimeraState ∗state, Message ∗msg) {
9 switch (msg−>type) {

10 case SCRIBE_CREATE :
11 create_deliver(state, msg) ;
12 break ;
13 case SCRIBE_JOIN :
14 join_deliver(state, msg) ;
15 break ;
16 case SCRIBE_LEAVE :
17 leave_deliver(state, msg) ;
18 break ;
19 case SCRIBE_REQUEST_RP_IP :
20 respondIPAddress(state, msg) ;
21 break ;
22 defaul t :
23 break ;
24 }
25 }

Listing 1: Deliver callback invoked by the KBR

5 PAN4I IMPLEMENTATION 89

1 /∗
2 ∗ Invoked at sender to j o i n a streaming group
3 ∗
4 ∗ @param ∗ s ta te : the r o u t i n g s ta te o f the l o c a l node
5 ∗ @param groupID : the ID of the j o i n i n g group
6 ∗ /
7 void join(ChimeraState ∗state, Key groupID) {
8 ChimeraGlobal ∗chglo = (ChimeraGlobal ∗)state−>chimera ;
9 char s [2 5 6] ;

10 i n t len ;
11 / / cu r ren t host encode s t r i n g " key : hostname : po r t "
12 host_encode(s , 256 , chglo−>me) ;
13 len = strlen(s) + 1 ;
14 / / c rea te a SCRIBE_JOIN messge and send i t using the KBR
15 chimera_send(state, groupID, SCRIBE_JOIN, len, s , SEQNUM) ;
16 }

Listing 2: Join function for sending SCRIBE_JOIN message

Group management implementation includes create, and create_deliver for
sending and deliver handling the SCRIBE_CREATE messages, join, join_forward,
and join_deliver for sending, forward handling and deliver handling the SCRIBE_JOIN
messages. Moreover, leave, and leave_deliver are used for sending and deliver
handling the SCRIBE_LEAVE messages. Listing 2, 3, and 4 demonstrate implementation for
the SCRIBE_JOIN messages.

On line 15 of listing 2, the chimera_send function of the Chimera KBR is invoked to
create a SCRIBE_JOIN message with the providing parameters, and then perform a lookup
routing via the chimera_route sub-call.

The if, else condition on line 17 and 23 of listing 3 checks if the joining group is known
by this local node. If not (group == NULL), this new group is added with its first child (the
message sender) is added to this local node. If it is true (executing the else block), the
message sender is simply added to the children list of this group on the local node, and the
SCRIBE_JOIN message routing terminates here.

Listing 4 is the group joining handler function of the deliver callback invoked by the KBR.
Since the key of this message is the group ID , this function should only be invoked at the RP
of this group ID. The addNewHostToList function call in this listing adds the message
sender to the children list of the requested joining group.

This current version does not support the initializing and updating the channel list (new
channel group announcement). This function will be supported in the next version of PAN4i.

5 PAN4I IMPLEMENTATION 90

1 /∗
2 ∗ This f u n c t i o n i s the handler f u n c t i o n f o r the forward up−c a l l
3 ∗ which i s invoked by the KBR before sending the msg to the
4 ∗ next fo rward ing node
5 ∗
6 ∗ @param ∗ s ta te : the r o u t i n g s ta te o f the l o c a l node
7 ∗ @param ∗∗message : the SCRIBE_JOIN message
8 ∗ @param ∗∗nextHost : the intended next fo rward ing node
9 ∗ /

10 void join_forward(ChimeraState ∗state, Message ∗∗message, ChimeraHost ←↩

∗∗nextHost) {
11 ChimeraGlobal ∗chglo = (ChimeraGlobal ∗) state−>chimera ;
12 Message ∗msg = ∗message ;
13 ChimeraHost ∗nextNode = ∗nextHost ;
14 ScribeGroup ∗group = NULL ;
15 ChimeraHost ∗host = host_decode(state, msg−>payload) ;
16 group = getGroupFromList(state, msg−>dest) ;
17 i f (group == NULL) { / / t h i s group does not ex i s t , c reate i t here
18 group = addNewGroupToList(state, msg−>dest, nextNode, host) ;
19 / / update t h i s node i s now the sender o f the SCRIBE_JOIN msg to the ←↩

nextNode
20 key_assign(&(msg−>source) , chglo−>me−>key) ;
21 host_encode(msg−>payload, 256 , chglo−>me) ;
22 }
23 else { / / i f the group i s known , then add the message sender to i t s ←↩

c h i l d r e n l i s t
24 addNewHostToList(state, host, msg−>dest) ;
25 ∗nextHost = NULL ;
26 }
27 }

Listing 3: Join forward handler invoked by the forward callback

5 PAN4I IMPLEMENTATION 91

1 /∗
2 ∗ Invoked when the j o i n message i s de l i ve red at the RP of the group
3 ∗ The d i r e c t sender o f t h i s msg i s added to the c h i l d r e n l i s t o f t h i s ←↩

group
4 ∗
5 ∗ @param ∗ s ta te : the r o u t i n g s ta te o f the l o c a l node
6 ∗ @param ∗msg : SCRIBE_JOIN message i t s payload i s o f form " k e y s t r i n g : ←↩

hostname : po r t "
7 ∗ /
8 void join_deliver(ChimeraState ∗state, Message ∗msg) {
9 ChimeraGlobal ∗chglo = (ChimeraGlobal ∗) state−>chimera ;

10 i f (key_equal(msg−>source, chglo−>me−>key)) {
11 addNewHostToList(state, chglo−>me , msg−>dest) ;
12 }
13 else {
14 ChimeraHost ∗host = host_decode(state, msg−>payload) ;
15 addNewHostToList(state, host, msg−>dest) ;
16 }
17 }

Listing 4: Join deliver handler invoked by the deliver callback

Multicast messages dissemination includes requestIPAddress, and
respondIPAddress for requesting and responding the IP address and port number of
a RP of a given group ID. After receiving the address of the RP, the requester can multicast
a MP3 stream from a local file to this RP via executing the multicast function in a separate
thread.

pthread_t tid;
pthread_create (&tid, NULL, multicast, (void *) state);

The multicast parameter in the pthread_create function is the function pointer where
this multicast implementation is executed. Audio packet are sent to the RP via using the
rtp_session_send_with_ts function. This function encapsulates the audio packets
under RTP packets and send them to the RP. Furthermore, for sending live karaoke stream,
every time when the mixed karaoke packets are rendered, they are directly sent to the the
streaming group. For handling the receiving stream, the rtp_mcast_handler is invoked
on the arrival of the RTP audio packets. This handler will forward these packets to the children
of the streaming group. If the local node is also a subscriber of the group, these packets are
sent to the rtp_session_rtp_parse function for re-ordering the packets using the
adaptive jitter buffer implemented in this function. Then these re-ordered RTP are sent to the
rtp_session_rtp_parse function for decapsulating the RTP packets to audio packets

5 PAN4I IMPLEMENTATION 92

(i.e., MP3 packets) for further processing. The mentioned interfaces for dealing with RTP
and jitter buffer are provided by the open source oRTP library [19]. For more detail about
these implementation, please refer to the project source code on the CD that is included on
the back of this thesis.

Repairing the multicast tree This functional unit has not yet been implemented, and is
considered for the future work of PAN4i. Fundamentally, it includes a function for sending
LEAVE messages on node graceful departures, and a function for sending heart-beat mes-
sages to children and parent of a all the streaming group available on this departing node. In
a period of time, if the local node does not forward any multicast message to its children, it
will send the heart-beat messages to them. This function is used to detect node unexpected
departures or failures. That is, if the parent node does not receive and heart-beat message
from a child node, it will remove this child from its streaming group children list. And if a child
does not receive any multicast or heart-beat message from its parent, it will look for another
parent. RP nodes also need to have a function to detect if there is no multicast sender for
their hosting group. If this is the case, the RP will send tree-destroy messages to its children,
so that the non-operating streaming tree will be discarded. In case of the RP node failures, or
a new node becomes the new RP of an existing group, the updateHandler callback (invoked
by the KBR if the leaf set of a node is updated) have to be implemented. This callback will
provide appropriate actions in order to copy the RP group state of a RP node to the nodes
in its leaf set. Further implementation would consider the fan-out degree that a node with its
limited bandwidth can support, etc.

5.3 Application Layer

Audio processing The concepts and related interfaces for the iPhone audio process-
ing used in PAN4i have been described in section 3. All the discussed audio units in
this section are employed in this software, except that the hardware-assisted codecs and
software-codecs. Listing 5 shows the playback callback implementation that can playback
the receiving karaoke stream (from line 9 to 18), or render the mixed karaoke packets from
the down sampling converter output (line 22). These live performing mixed karaoke pack-
ets are sent to the playback buffer to the loudspeaker, and also to the RP via using the
rtp_session_send_with_ts function of the oRTP library (line 37).

For the future work, the PAN4i does want to implement a suitable codec for its karaoke
stream. MP3 is a suitable codec for music streaming. But since iPhone OS provides only
the MP3 decoder but not its encoder, and Apple claims that encoding MP3 on the iPhone
would be an expensive process for its resource (e.g., battery), therefore another codec for
the karaoke stream may be considered (e.g., Ogg Vorbis [58]). Currently, PAN4i supports
karaoke streaming via playing the background music for singing on a local file, and not on

5 PAN4I IMPLEMENTATION 93

1 s t a t i c OSStatus playbackCallback(void ∗inRefCon,
2 AudioUnitRenderActionFlags ∗ioActionFlags,
3 const AudioTimeStamp ∗inTimeStamp, UInt32 inBusNumber,
4 UInt32 inNumberFrames, AudioBufferList ∗ioData) {
5 OSStatus err = noErr ;
6 ChimeraState ∗state = (ChimeraState ∗)inRefCon ;
7 char ∗frameBuffer = ioData−>mBuffers [0] .mData ;
8 memset(frameBuffer, 0 , ioData−>mBuffers [0] .mDataByteSize) ;
9 i f (state−>myAudio−>runMode == 1) { / / karaoke l i s t e n i n g mode

10 i f (state−>myAudio−>readStart) {
11 memcpy(frameBuffer, state−>myAudio−>receiveBuffer [state−>myAudio ←↩

−>readInd] ,
12 ioData−>mBuffers [0] .mDataByteSize) ;
13 state−>myAudio−>readInd++;
14 i f (state−>myAudio−>readInd == kNumAQBufs) {
15 state−>myAudio−>readInd = 0;
16 }
17 }
18 }
19 i f (state−>myAudio−>runMode == 2) { / / karaoke sending mode
20 / / render karaoke packet from the down sampling conver te r
21 / / and copy i t the playback b u f f e r (ioData)
22 err = AudioUnitRender(state−>myAudio−>downConverterUnit, ←↩

ioActionFlags, inTimeStamp, 0 , inNumberFrames, ioData) ;
23 ChimeraGlobal ∗chglo = (ChimeraGlobal ∗)state−>chimera ;
24 i n t gKeyLen = strlen(chglo−>me−>sentGroupID) + 1 ;
25 size_t bytesRead = ioData−>mBuffers [0] .mDataByteSize + gKeyLen ;
26 / / i n i t i a l i z e sendBuffer the f i r s t t ime , or the s ize i s changed
27 i f (state−>myAudio−>sendBuffer == NULL | | state−>myAudio−> ←↩

sendBufferLen != bytesRead) {
28 i f (state−>myAudio−>sendBuffer != NULL) {
29 free(state−>myAudio−>sendBuffer) ;
30 }
31 state−>myAudio−>sendBufferLen = bytesRead ;
32 state−>myAudio−>sendBuffer = calloc(1 , bytesRead) ;
33 memcpy(state−>myAudio−>sendBuffer + ioData−>mBuffers [0] . ←↩

mDataByteSize, chglo−>me−>sentGroupID, gKeyLen) ;
34 }
35 / / sending karaoke packet to the RP using oRTP i n t e r f a c e
36 memcpy(state−>myAudio−>sendBuffer, ioData−>mBuffers [0] .mData, ←↩

ioData−>mBuffers [0] .mDataByteSize) ;
37 rtp_session_send_with_ts(state−>session, state−>myAudio−> ←↩

sendBuffer, bytesRead, state−>myAudio−>user_ts) ;
38 state−>myAudio−>user_ts += ioData−>mBuffers [0] .mDataByteSize ;
39 }
40 return err ;
41 }

Listing 5: Implementation of the remoteIO playback callback function

5 PAN4I IMPLEMENTATION 94

the remote receiving stream for singing. Singing on a remote receiving stream would be
supported in the next version of PAN4i.

Graphical User Interface For our testing purpose, a simple GUI is created for PAN4i. The
GUI is programmed in Objective-C language. In the future work, this current GUI needs to be
replaced by another better user friendly GUI. One possible GUI design is described in figure
53. For the description of how to use the current GUI to test the application, please refer to
the next testing chapter 6.

6 TESTING 95

6 Testing

6.1 Test setup and running

Although all features of the PAN4i described in the software concepts and design section
have not been fully implemented, its key functionalities for the streaming group management
and the multicast function for live audio streaming on the overlay have been implemented
(section 5), and shown to the visitors of the "Nacht des Wissens 2009" (i.e., Night of Sciences
2009) event at the Hamburg University of Applied Sciences. In this chapter, the test setup and
running on the current version of PAN4i, that was performed on this event, will be described.

Figure 56 illustrates the currently used PAN4i GUI for testing. For our testing, there are
four iPod Touches connecting to the Internet via the W-LAN, and each one owns one public
IP address and a port number. In this writing, we consider that the four devices have the
following domain name and port number pairs: iPodA:portA, iPodB:portB, iPodC:portC, and
iPodD:portD.

Step 1: Self-organizing an overlay network On application startup, the application GUI is
displayed with its domain name on top. Supposing that, at the beginning, there is no existing
overlay network. Peer A starts the overlay first by entering a selected port number, say portA,
into the text field and pressing the Join button. This Join button is used for two purposes, i.e.,
to join to the overlay network and after that is used for joining to a streaming group. Since
peer B wants to join to the overlay network created by A, supposing that peer B knows the
address and the port number of peer A (e.g., via a bootstrapping mechanism), peer B user
needs to type the "iPodA:portA portB" string into the text field and press the Join button. The
meaning of this string is that peer B on portB sends an overlay JOIN message to the address
iPodA:portA of the bootstrapping peer A. On success, peer B is now in the overlay with peer
A. Later, both peers C and D come to join to the overlay using the the same procedure that
described for peer B. Peers C and D can use peer A or B, those are already in the overlay,
for their bootstrapping node. When all the four peers are in the overlay, they can create any
streaming group, subscribing to any group, multicasting to any group, and leaving from any
subscribed group as described in the next step.

Step 2: Streaming group management and multicast message dissemination Sup-
posing that, peer B creates a streaming group (groupB) by entering "groupB" string into the
text field and pressing the Create button. Now that, any peer can send multicast messages
to this groupB. For example, peer B wants to send a MP3 stream to its created groupB, it
enters "groupB" into the text field and presses the "MP3 Send" button (for the testing pur-
pose, the MP3 file is selected by default). From now on, if any of peers A, C and D joins
groupB (via entering "groupB" in the text field and pressing the Join button), they will receive
and be able to listen to the MP3 stream. For sending or listening to a karaoke stream, one

6 TESTING 96

Figure 56: The PAN4i GUI for testing (source [32])

can do the same procedure as for MP3 music. To send karaoke, if using the iPod Touch,
an external microphone has to be connected to the device, and the user has to sing on the
playing background music of a local file (this local file is selected by default for the testing
purpose). While being in groupB, any subscriber peer A, C, or D may not want to listen to the
music stream and want to leave the group via entering "groupB" in the text field and pressing
the Leave button. At the same time, on the overlay, many groups can exist (groupA, groupB,
etc.). And for each group, it may have one or more source senders (i.e., for music streaming,
it should have only one, but for a voice chat group, it has more than one sender).

6 TESTING 97

6.2 PAN4i in the Nacht des Wissens 2009

Figure 57: PAN4i introduction slice

7 CONCLUSION AND OUTLOOK 98

Figure 58: Establishing the PAN4i overlay and a streaming group

7 Conclusion and Outlook

The aim of this project is to create an entertainment platform for the iPhones and iPod
Touches which is based on the ALM and overlay P2P network technologies. The entertain-
ment art is in the form of listening and sending music or live performing karaoke in real-time.
It also allows users to create any personal streaming channel where he or she can distribute
his or her music to a group of audiences. The audiences would also be able give feedback
to the Karaoke singers. Furthermore, the users could also be able to create chat or confer-
encing group. This system is designed to host a large number of users, and operating on the
self-organizing of user nodes without installing a single server, so that the cost for running
this system is zero.

To realize such a system, there are challenges that one will meet in the development
process. Firstly, one will face the challenges in designing and implementing the overlay P2P
network. It has to guaranty that the overlay works dynamically and precisely in case of node
arrivals and departures. Secondly, the challenges are in the implementation of an ALM for
audio streaming built on top of the overlay. The ALM for audio streaming has to be robust

7 CONCLUSION AND OUTLOOK 99

Figure 59: Performing the PAN4i live karaoke streaming

under peer churn which happens very frequently in any P2P system. For the best delivery
effort, proximity and heterogeneity properties of each node are considered as design strate-
gies for the implementation. The challenges are also for using the right interfaces in order
to have a wanted audio effect, especially those interfaces in the lower layer services of the
iPhone Core Audio API. When doing audio processing, looking for the right documentation
and example from Apple is sometime a challenge (in the time of this writing). From our ex-
perience, there is at the moment many books on the iPhone programming which cover many
different interfaces for doing different tasks, but there is no or very limited information on the
low layer audio processing techniques. Lastly, there are challenges for enhancing the QoS
in the playback experience.

With the result from our work, we have shown the feasibility in realizing a large scale
audio streaming application without any server deployment. PAN4i allows users to self-
organize an overlay P2P network without any server interaction. Any user can receive and
contribute music or live performed Karaoke stream to a shared, multi-channel application.
Any user may select a song on the local file system, or play the song and mix with the
singing voice to produce a live performed karaoke music for streaming to his or her own,

7 CONCLUSION AND OUTLOOK 100

Figure 60: Explaining the PAN4i concepts to the visitors

personally created channel on the overlay network. All other users - when subscribing to this
channel - will be able to receive and listen to live stream karaoke music.

PAN4i implementation follows the Three-tier Dabek model. On tier-0, the open source
project Chimera is used to provide the KBR service. Chimera protocol and its KBR service
are similar to Pastry, but it does not offer the Pastry proximity property. Upon Chimera, Scribe
ALM for audio streaming is implemented in tier-1. The create, join, leave and multicast func-
tions of Scribe are implemented. On the application layer (tier-2), via using the iPhone Core
Audio API, the audio processing units for mixing Karaoke and playback are implemented.
Furthermore, the open source library oRTP is used for integrating the adaptive jitter buffer
into the application, and a simple GUI is created for application testing.

For the future work on this project, the following improvement can be considered. Firstly,
the tree repairing function of Scribe including the replication of group state information on RP
nodes to their leaf set nodes needs to be implemented. Having this, the streaming tree can
operate and be robust under peer churn. Secondly, a suitable codec should be used for the

7 CONCLUSION AND OUTLOOK 101

Karaoke stream (currently in PCM). Since the iPhone OS provides only MP3 decoder and
not encoder, Apple also warns that the MP3 encoding process would be expensive for the
battery resource, and MP3 codec is not free, so that other codecs may be in consideration
(e.g., Ogg Vorbis [58]). To make the PAN4i more interesting and an interacting entertainment
platform, one could add more functionalities to it. Sophisticated audio processing can be
applied to produce good music, e.g., changing echo, key tone, etc. It may allow that the
source senders send meta information about the singer (e.g., name, location, foto etc.),
lyrics of the streaming song, and also allow audience to give feedbacks (e.g., grading, etc.)
to the artists. A group communication function can be implemented for different purposes
(e.g., voice chat, conferencing). The GUI needs to be improved. Since Skype claims that
over 50% of residential computers are behind NATs or firewalls, in order to enable the PAN4i
usage ability to a larger group of users, an approach for traversing NATs and firewalls should
be implemented. To improve the streaming efficiency on which the QoS of playback partly
depends, PAN4i should consider the proximity and heterogeneity properties of each peer
on the overlay to construct efficient streaming trees, e.g., the fan-out degree of a peer, or
the peer selection not only depends on the key, but also considers the power resource and
bandwidth properties, etc.

When having all these features, PAN4i would be a very promising entertainment platform
that would attract a huge number of users worldwide. The idea of having a live or achrive
audio/video streaming entertainment or communication platform, that it allows each user to
create his or her own streaming channel, has been implemented in several existing systems,
e.g., Youtube, Skype, USTREAM [59], Justin [60], etc., but the idea that PAN4i would like
to bring to its users is the ability not only to be entertained, but also to entertain, to interact
between audience and artists, to create personal styles and taste that are all carried out in
real-time and mobility. For an usage scenario example that PAN4i can bring, one can create
some kind like a "Germany Next Super Karaoke Star" contest on the PAN4i network, where
there are candidates, examiners, and audience around the world. The candidate singing,
examiner discussion and comments can be streamed to all audience live. And the statis-
tical votes and feedbacks for each candidate from the audience can be soon resulted and
available to all participants. PAN4i would be successful without or with very low deployment
cost.

REFERENCES 102

References

[1] Thomas C. Schmidt, “The Mindstone projectpage,” http://inet.cpt.haw-
hamburg.de/projects/mindstone, 11 2009.

[2] YouTube, “The Youtube homepage,” http://www.youtube.com, 11 2009.

[3] Spotify Ltd, “The Spotify homepage,” http://www.spotify.com/, 11 2009.

[4] Zattoo, “The Zattoo homepage,” http://zattoo.com/, 11 2009.

[5] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord: A scalable
peer-to-peer lookup service for internet applications,” in SIGCOMM ’01: Proceedings
of the 2001 conference on Applications, technologies, architectures, and protocols for
computer communications. New York, NY, USA: ACM Press, 2001, pp. 149–160.

[6] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object location and routing
for large-scale peer-to-peer systems,” in IFIP/ACM International Conference on Dis-
tributed Systems Platforms (Middleware), ser. LNCS, vol. 2218. Berlin Heidelberg:
Springer–Verlag, Nov. 2001, pp. 329–350.

[7] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker, “A Scalable Content-
Addressable Network,” in SIGCOMM ’01: Proceedings of the 2001 conference on Appli-
cations, technologies, architectures, and protocols for computer communications. New
York, NY, USA: ACM, 2001, pp. 161–172.

[8] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph, “Tapestry: An Infrastructure for Fault-
tolerant Wide-area Location and,” University of California at Berkeley, Technical Report
UCB/CSD-01-1141, April 2001.

[9] Apple Inc., “The Apple Inc. homepage,” http://www.apple.com/, 11 2009.

[10] ——, “The iPhone homepage,” http://www.apple.com/iphone/, 11 2009.

[11] ——, “The iPod Touch homepage,” http://www.apple.com/ipodtouch/, 11 2009.

[12] ——, “iPhone, iPod Touch billion applications countdown,”
http://www.apple.com/itunes/billion-app-countdown/, 11 2009.

[13] Thomas C. Schmidt, “The Mobile Audio Video Network Hamburg projectpage,”
http://inet.cpt.haw-hamburg.de/projects/mobinet/, 11 2009.

[14] “The Skype homepage,” http://www.skype.com, 11 2009.

REFERENCES 103

[15] Thomas C. Schmidt, “The Moviecast projectpage,”
http://www.realmv6.org/moviecast.html, 11 2009.

[16] The Unofficial Apple Weblog (TUAW), “iPhone gets native P2P torrent software,”
http://www.tuaw.com/2008/03/02/iphone-gets-native-p2p-torrent-software/, 11 2009.

[17] iphonefreakz.com, “iSlsk P2P music sharing on your iPhone or iPod Touch,”
http://iphonefreakz.com/2008/05/14/islsk-p2p-music-sharing-on-your-iphone-or-ipod-
touch/, 11 2009.

[18] K. Puttaswamy et al., “Chimera - a light-weight C implementation of a "next-generation"
structured overlay that provides similar functionality as prefix-routing protocols Tapestry
and Pastry,” http://current.cs.ucsb.edu/projects/chimera/, 11 2009.

[19] Linphone.org, “Open source package for RTP/RTCP,”
http://www.linphone.org/index.php/eng/
code_review/ortp, 12 2009.

[20] S. Deering, “Host extensions for IP multicasting,” IETF, RFC 1112, Aug. 1989, updated
by RFC 2236.

[21] Thomas C. Schmidt, “Lecture slides on group communication in Internet,”
http://inet.cpt.haw-hamburg.de/teaching/ws-2009-10/technik-technologie/mcast.pdf, 11
2009.

[22] A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel, “Scribe: The Design of
a Large-Scale and Event Notification Infrastructure,” in Networked Group Communi-
cation. Third International COST264 Workshop, NGC 2001. Proceedings, ser. LNCS,
J. Crowcroft and M. Hofmann, Eds., vol. 2233. Berlin Heidelberg: Springer–Verlag,
2001, pp. 30–43.

[23] Thomas C. Schmidt, “Lecture slides on Introduction to Peer-to-Peer Sys-
tems,” http://inet.cpt.haw-hamburg.de/teaching/ws-2009-10/internet-technologies/intro-
p2p.pdf, 11 2009.

[24] ——, “Lecture slides on Structured Peer-to-Peer Networks,” http://inet.cpt.haw-
hamburg.de/teaching/ws-2009-10/internet-technologies/structured-p2p-p.pdf, 11 2009.

[25] K. Katrinis and M. May, “Application–Layer Multicast,” in Peer–to–Peer Systems and Ap-
plications, ser. LNCS, R. Steinmetz and K. Wehrle, Eds. Berlin Heidelberg: Springer–
Verlag, 2005, vol. 3485, ch. 11, pp. 157–170.

[26] S. Rhea et al., “Bamboo-DHT,” http://www.bamboo-dht.org/, 11 2009.

REFERENCES 104

[27] P. Druschel et al., “FreePastry,” http://www.freepastry.org/, 11 2009.

[28] I. Baumgart, B. Heep, S. Krause, and S. Mies, “The OverSim P2P Simulator,”
http://www.oversim.org, 11 2008.

[29] S. Götz, S. Rieche, and K. Wehrle, “Selected DHT Algorithms,” in Peer–to–Peer Sys-
tems and Applications, ser. LNCS, R. Steinmetz and K. Wehrle, Eds. Berlin Heidelberg:
Springer–Verlag, 2005, vol. 3485, ch. 8, pp. 95–117.

[30] F. Dabek, B. Y. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica, “Towards a Common API
for Structured Peer-to-Peer Overlays,” in Peer-to-Peer Systems II, Second International
Workshop, IPTPS 2003, Berkeley, CA, USA, February 21-22,2003, Revised Papers,
ser. LNCS, M. F. Kaashoek and I. Stoica, Eds., vol. 2735. Berlin Heidelberg: Springer–
Verlag, 2003, pp. 33–44.

[31] M. Hosseini, D. T. Ahmed, S. Shirmohammadi, and N. D. Georganas, “A Survey
of Application-Layer Multicast Protocols,” IEEE Communications Surveys & Tutorials,
vol. 9, no. 3, pp. 58–74, 2007.

[32] J. Liu, S. Rao, B. Li, and H. Zhang, “Opportunities and Challenges of Peer-to-Peer
Internet Video Broadcast,” in Proceedings of the IEEE, 2008, pp. 11–24.

[33] C. Diot, B. N. Levine, B. Lyles, H. Kassem, and D. Balensiefen, “Deployment Issues for
the IP Multicast Service and Architecture,” IEEE Network Magazine, vol. 14, no. 1, pp.
78–88, 2000.

[34] Y. Liu, Y. Guo, and C. Liang, “A survey on peer-to-peer video streaming systems,” Peer-
to-Peer Networking and Applications, vol. 1, no. 1, pp. 18–28, Mar. 2008.

[35] Y.-H. Chu, S. G. Rao, and H. Zhang, “A case for end system multicast,” in Joint Interna-
tional Conference on Measurement and Modeling of Computer Systems. New York,
NY, USA: ACM, 2000, pp. 1–12.

[36] V. Venkataraman and P. Francis, “Chunkyspread: Multi-tree Unstructured Peer-to-Peer
Multicast,” in Proceedings of the V. Internetational Workshop on Peer–to–Peer Systems
(IPTPS’06), 2006.

[37] N. Magharei, R. Rejaie, and Y. Guo, “Mesh or Multiple-Tree: A Comparative Study of
Live P2P Streaming Approaches,” in INFOCOM 2007. 26th IEEE International Confer-
ence on Computer Communications. IEEE, 2007, pp. 1424–1432.

[38] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A Transport Protocol
for Real-Time Applications,” IETF, RFC 3550, Jul. 2003.

REFERENCES 105

[39] M. Baugher, D. McGrew, M. Naslund, E. Carrara, and K. Norrman, “The Secure Real-
time Transport Protocol (SRTP),” IETF, RFC 3711, Mar. 2004.

[40] Fraunhofer-Gesellschaft, “MP3 working principle,” http://www.iis.fraunhofer.de/EN/
bf/amm/products/mp3/mp3workprinc.jsp/, 11 2009.

[41] “The Speex projectpage,” http://www.speex.org, 11 2009.

[42] S. Andersen, A. Duric, H. Astrom, R. Hagen, W. Kleijn, and J. Linden, “Internet Low Bit
Rate Codec (iLBC),” IETF, RFC 3951, Dec. 2004.

[43] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron, “SCRIBE: A large-scale
and decentralized application-level multicast infrastructure,” IEEE Journal on Selected
Areas in Communications, vol. 20, no. 8, pp. 100–110, 2002.

[44] A. R. Bharambe, S. G. Rao, V. N. Padmanabhan, S. Seshan, and H. Zhang, “The Im-
pact of Heterogeneous Bandwidth Constraints on DHT–Based Multicast Protocols,” in
Peer–to–Peer Systems IV. 4th International Workshop, IPTPS 2005, Ithaca, NY, USA,
February 24-25, 2005, Revised Selected Papers, ser. LNCS, M. Castro and R. van
Renesse, Eds., vol. 3640. Berlin Heidelberg: Springer–Verlag, 2005, pp. 115–126.

[45] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. I. T. Rowstron, and A. Singh,
“SplitStream: High-Bandwidth Content Distribution in Cooperative Environments,” in
Peer-to-Peer Systems II. Second International Workshop, IPTPS 2003 Berkeley, CA,
USA, February 21-22, 2003 Revised Papers, ser. LNCS, M. F. Kaashoek and I. Stoica,
Eds., vol. 2735. Berlin Heidelberg: Springer–Verlag, 2003, pp. 292–303.

[46] “Skype Statistical Analysis,” https://dl.getdropbox.com/u/223873/OnlineData.htm, 11
2009.

[47] Sugih Jamin, “Zattoo presentation slides for the Terena Networking Conference 2008,”
http://tnc2008.terena.org/core/getfile.php?file_id=459, 11 2009.

[48] Hui Zhang, “The End System Multicast projectpage,” http://esm.cs.cmu.edu/, 11 2009.

[49] S. A. Baset and H. G. Schulzrinne, “An analysis of the skype peer-to-peer internet tele-
phony protocol,” in INFOCOM 2006. 25th IEEE International Conference on Computer
Communications. Proceedings, 2006, pp. 1–11.

[50] M. Wählisch and T. C. Schmidt, “Multicast Routing in Structured Overlays and
Hybrid Networks,” in Handbook of Peer-to-Peer Networking, X. Shen, H. Yu,
J. Buford, and M. Akon, Eds. Berlin Heidelberg: Springer Verlag, January 2010, to
appear. [Online]. Available: http://www.springer.com/computer/communications/book/
978-0-387-09750-3

http://www.springer.com/computer/communications/book/978-0-387-09750-3
http://www.springer.com/computer/communications/book/978-0-387-09750-3

REFERENCES 106

[51] S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear Network Coding,” IEEE Transactions on
Information Theory, vol. 49, no. 2, pp. 371–381, 2003.

[52] Apple Inc., “iPhone OS Technology Overview,” http://developer.apple.com/IPhone/library/
documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview, 11 2009.

[53] ——, “Core Audio Overview,” http://developer.apple.com/IPhone/library/
documentation/MusicAudio/Conceptual/CoreAudioOverview/Introduction/, 11 2009.

[54] ——, “Audio Queue Programming Guide,” http://developer.apple.com/mac/library/
documentation/MusicAudio/Conceptual/AudioQueueProgrammingGuide/, 11 2009.

[55] ——, “Audio File Stream Services Reference,” http://developer.apple.com/mac/library/
documentation/MusicAudio/Reference/AudioStreamReference/, 11 2009.

[56] ——, “Audio Unit Processing Graph Services Reference,”
http://developer.apple.com/IPhone/library/
documentation/AudioToolbox/Reference/AUGraphServicesReference/, 11 2009.

[57] ——, “Audio Queue - Offline Rendering (Technical Q&A QA1562),”
http://developer.apple.com/iphone/library/qa/qa2009/qa1562.html, 11 2009.

[58] Xiph.Org, “The audio Ogg Vorbis projectpage,” http://www.vorbis.com/, 12 2009.

[59] Ustream.TV, “USTREAM, Free Live Video Streaming, Online Broadcasts,”
http://www.ustream.tv/, 12 2009.

[60] Justin.tv, “Live Video and Chat for Everyone,” http://www.justin.tv/, 12 2009.

LIST OF FIGURES 107

List of Figures

1 Unicast (source [21]) . 5
2 Broadcast (source [21]) . 6
3 Multicast (source [21]) . 6
4 Client-Server Topology (source [23]) . 8
5 Centralized P2P Topology (source [23]) . 9
6 Pure P2P Topology (source [23]) . 9
7 Hybrid P2P Topology (source [23]) . 10
8 Complexity of different P2P models (source: [24]) 11
9 Use case scenario in DHT-based P2P . 13
10 Comparison Table for Client-Server and different P2P models (source: [23]) . 15
11 A 4-bit Pastry identifier space with six keys mapped onto five nodes. Numeric

closeness is an ambiguous metric for assigning keys to nodes as illustrated
for key K03 (source: [29]) . 16

12 Pastry node state for node 103220 in a 12-bit identifier space and a base of
4 (k = 12, b = 2). The routing table lists nodes with the length of the common
node identifier prefix corresponding to the row index. (source: [29]) 17

13 Basic abstractions and APIs, including Tier 1 interfaces: distributed hash ta-
bles (DHT), decentralized object location and routing (DOLR), and group any-
cast and multicast (CAST) - (source from [30]) 21

14 a) IP multicasting scenario and b) an overlay multicast tree (sender S, router
R, destination D) (source [31]) . 23

15 Taxonomy of architectures for ALM (source [32]) 24
16 a) A graph with link costs; b) shortest path tree; c) minimum spanning tree

(source [31]) . 25
17 A hierarchical cluster of nodes with cluster size 4 (source [31]) 26
18 Nodes of a multicast streaming group in a single-tree 28
19 Scenario when a node leaves the multicast tree 29
20 Repaired tree after a node leaves . 29
21 An example of multi-tree streaming topology 31
22 Narada - Optimizing Mesh Quality (source [35]) 33
23 Peer list retrieval from the tracker server (source [34]) 34
24 Buffer map exchange and data pull among peers (source [34]) 35
25 A snapshot of the scheme at time 40. Users belonging to the same ses-

sion form an application-level multicast tree together with the server. Users
in session 3 have Þnished patch retrieval; while 3 clients in session 4 are still
receiving the patch stream from their parent patch servers (source: [34]) . . . 37

LIST OF FIGURES 108

26 DirectStream system. a) DirectStream system with two clusters – one headed
by client A and the other headed by client F . b) DirectStream system after
the departure of client A. No service from the server is required from now on
(source: [34]) . 38

27 Scribe streaming tree built on the Pastry overlay P2P network 41
28 Scribe implementation of forward (source: [43]) 42
29 Scribe implementation of deliver (source: [43]) 43
30 Group management (creation) in Scribe . 43
31 Joining a multicast group in Scribe . 44
32 A case for a constructed Scribe multicaset tree 45
33 Sending multicast message in the Scribe multicast tree 46
34 Repairing the Scribe multicast tree . 47
35 Skype Network. There are three main entities: supernodes, ordinary nodes,

and the login server (source: [49]) . 51
36 Zattoo’s overlayt topology-aware characteristic (source: [47]) 52
37 Zattoo’s overlay topology-aware characteristic in case there are nodes behind

NATs or Firewalls (source: [47]) . 53
38 The Zattoo Player (source: [47]) . 54
39 Steps to watch a channel in Zattoo (source: [47]) 55
40 Zattoo’s underlay infrastructure architecture (source: [47]) 56
41 Layers of iPhone OS (source [52]) . 58
42 The three API layers of Core Audio (source [53]) 60
43 The playback process of AQS (source [54]) 62
44 Converter unit . 64
45 Multichannel mixer unit . 65
46 I/O unit (or called RemoteIO unit) . 65
47 Audio processing chain using Audio Unit Processing Graph interfaces 67
48 Usecase diagram of the PAN4i application 69
49 The main functional units and their dependences of PAN4i 76
50 The PAN4i Three Tiers Dabek model . 77
51 Communication protocol at a source sending node 80
52 Communication protocol at a forwarding node or a destination node 81
53 PAN4i GUI . 82
54 Communication protocol at a source sending node 84
55 Chimera system design architecture (source [18]) 86
56 The PAN4i GUI for testing (source [32]) . 96
57 PAN4i introduction slice . 97
58 Establishing the PAN4i overlay and a streaming group 98
59 Performing the PAN4i live karaoke streaming 99
60 Explaining the PAN4i concepts to the visitors 100

LIST OF TABLES 109

List of Tables

1 Comparison of central server, flooding search and distributed indexing
(source: [25]) . 14

2 Conceptual comparison of IP multicast and ALM (source [31]) 23
3 Audio codec comparison . 40
4 iPhone OS audio formats supported by hardware-assisted codecs (source: [53]) 67
5 iPhone OS audio formats supported by software codecs (source: [53]) 67
6 iPhone OS: recording audio formats (source: [53]) 68

LISTINGS 110

Listings

1 Deliver callback invoked by the KBR . 88
2 Join function for sending SCRIBE_JOIN message 89
3 Join forward handler invoked by the forward callback 90
4 Join deliver handler invoked by the deliver callback 91
5 Implementation of the remoteIO playback callback function 93

Acronyms

PAN4i Mobile P2P Audio Network for the iPhone and iPod Touch

OS Operating System

GUI Graphical User Interface

PC Personal Computer

AQS Audio Queue Services

TV Television

P2P Peer-to-Peer

ALM Application Layer Multicast

DHT Distributed Hash Table

RIAA Recording Industry Association of America

TTL Time To Live

API Application Programing Interface

KBR Key-based Rounting

XML Extensible Markup Language

VoIP Voice over Internet Protocol

RP Rendezvous Point

Declaration

I declare within the meaning of section 25(4) of the Examination and Study Regulations of
the International Degree Course Information Engineering that: this Master report has been
completed by myself independently without outside help and only the defined sources and
study aids were used. Sections that reflect the thoughts or works of others are made known
through the definition of sources.

Hamburg, December 7th, 2009 Tran, Thanh Minh Tu

	1 Introduction
	1.1 Motivation
	1.2 General P2P Application Introduction
	1.3 The PAN4i Application Introduction
	1.4 Organization of the Report

	2 Streaming Technologies on the Overlay
	2.1 General Background
	2.2 Overlay P2P Network
	2.2.1 Unstructured P2P
	2.2.2 Structured P2P - DHT-based approach
	2.2.3 Pastry - a DHT-based P2P approach

	2.3 The Dabek model for Structured P2P Overlays
	2.4 Application Layer Multicast
	2.5 P2P audio/video streaming
	2.5.1 P2P live streaming
	2.5.2 P2P video-on-demand
	2.5.3 Base technologies
	2.5.4 Scribe - a DHT-based ALM approach

	2.6 P2P Streaming Systems
	2.6.1 Skype
	2.6.2 Zattoo

	2.7 Conclusion and discussion

	3 Audio Processing on the iPhone and iPod Touch
	3.1 iPhone OS Technologies
	3.2 Core Audio Overview
	3.2.1 Audio Queue Services
	3.2.2 Audio File Stream Services
	3.2.3 Audio Unit Services
	3.2.4 Audio Processing Graph Services

	3.3 Audio codecs

	4 PAN4i Concepts and Design
	4.1 User requirements
	4.2 Functional requirements
	4.3 Software concepts
	4.4 Application design

	5 PAN4i Implementation
	5.1 Pastry - KBR
	5.2 Scribe - ALM
	5.3 Application Layer

	6 Testing
	6.1 Test setup and running
	6.2 PAN4i in the Nacht des Wissens 2009

	7 Conclusion and Outlook
	List of Figures
	List of Tables
	List of Source Code Snippets

