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RISC-V is an emerging instruction set architecture that is already in use in constrained
devices. As these devices are now more interconnected than ever before, the need for
operating system (OS) security is fundamental. The RISC-V physical memory protection
(PMP) unit offers hardware assistance for memory protection schemes at an OS level.
Can embedded OSes utilize the PMP to implement additional security schemes? Does
the limited availability of computation resources present an obstruction? To investigate,
I built a prototype for the IoT operating system RIOT. Since RIOT is open source, I
was able to contribute parts of this prototype into its source tree. I implemented data
execution prevention and thread stack overflow detection within this prototype. I found
that the RISC-V PMP is suitable for constrained devices, but the integration into existing
software stacks is challenging. Consequently, hardware-based security schemes should be
considered during the design of embedded software.
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1 Introduction

Microcontroller units continue to gain more power and sophistication as advanced fea-
tures and peripherals are added, while maintaining a similar silicon size [3, p. 100]. With
the integration of the memory management unit (MMU), important security features
such as privileged execution and memory protection are now available on some of these
systems. Employing memory protection schemes for tasks, such as detecting software
faults and stack overflows, is vital to ensure the security of connected and constrained
devices.

1.1 Motivation

Listing 1.1: Example code that contains a possible buffer overflow. The function con-
catenates two strings "hello: " and a provide name, e.g. "Bob" to obtain
"hello: Bob". The buffer is then printed to the screen. Since the length of the
buffer is fix and the length of the name is not checked, a very long name will
overflow the buffer during memory copy.

void print_name (char ∗ name) {
const char ∗ HELLO = " h e l l o : ␣" ;
char bu f f e r [ 1 0 0 ] ;
memcpy( bu f f e r , HELLO, s t r l e n (HELLO) ) ;
memcpy( bu f f e r+s t r l e n (HELLO) , name , s t r l e n (name ) ) ;
puts ( bu f f e r ) ;

}

To this day, memory corruption is the most prominent used type of exploitation [4]. A sig-
nificant reason is the use of memory-unsafe languages with manual memory management,
such as C or C++ [5, p. 51]. Human error is unavoidable, therefore, it is unsurprising that
a majority of vulnerabilities are caused by memory unsafety. E.g. for 2021, the Google
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1 Introduction

Project Zero [6] concluded that attackers have no need for new exploitation methods as
the common memory corruption-based exploits are still sufficient - even though we have
known about these attack surfaces, like buffer overflows, for over 55 years [7]. Further,
Project Zero showed that 67% of the vulnerabilities they found are memory-corruption-
based.

Shown in Listing 1.1 is a typical C code that contains a buffer overflow. In C it is the
task of the developer to check bounds of buffers. Accessing (reading or writing) out of
bounds memory is undefined behaviour in C [5, p. 51]. Here a required length check of the
input parameter was overlooked, making it possible to overflow the intermediate buffer
by providing a very long input name to the function.

Modern programming languages like Rust [8] provide certain memory safety guarantees,
which makes it very hard to recreate traditional buffer overflow based vulnerabilities
[4, Sec. IV]. Using these memory-safe languages is considered as a strong step forward
towards more secure systems [5, p. 48].

Since RIOT is mostly written in C, memory-corruption is a major concern. Therefore
it is important to deploy security mechanisms to reduce the surface and impact of such
defects.

1.2 Thesis Objective

In this thesis, the RISC-V physical memory protection is used to deploy memory protec-
tion schemes on constrained devices. Due to the limitations of constrained devices and
the new but scarce availability of the PMP, the feasibility of this deployment on top of
an embedded operating system is unclear. This thesis provides a first insight into this
feasibility.

For this purpose, a case study is made by implementing a driver for the RISC-V PMP
within the RIOT operating system. The implementation of various memory protection
schemes are explored using this driver and their effectiveness is evaluated. This thesis
focuses on the 32-Bit RISC-V instruction set architecture (ISA) RV32 only.

2



1 Introduction

1.3 Research Questions

Data execution prevention and thread stack overflow detection are se-
curity mechanisms capable of reducing the impact of certain memory-corruption defects.
This leads to the following research questions in the context of constrained devices:

1. Can data execution prevention be implemented with RISC-V PMP? Which chal-
lenges need to be overcome and what kind of overhead remains?

2. Can stack overflow detection be implemented with RISC-V PMP?Which challenges
need to be overcome and what kind of overhead remains?

1.4 Outline

First, required background information will be introduced in chapter 2. This encom-
passes specifying what is meant by ’Constrained Devices’ and offering a broad outline of
RISC-V. The relevant memory protection schemes are introduced as well. In chapter 3,
an overview of related work is given. The conceptual preparations such as selecting an
adequate testing platforms are discussed in chapter 4. The implementation of the selected
memory protection schemes is described in chapter 5. Thereafter the effectiveness and
shortcomings are evaluated in chapter 6. The conclusion is provided in chapter 7. Lastly,
a short outlook into future work is provided in chapter 8.
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2 Background

This section gives an introduction to constrained devices and the RISC-V ISA. The focus
is on the privilege architectures and related features. Additionally, the RIOT operating
system is introduced.

2.1 Constrained Devices

In RFC 7228 [9], constrained devices are described as “small devices with limited CPU,
memory, and power resources”, which can be found in the Internet of Things. The IoT is
only loosely defined, but typically describes physically and virtually connected devices,
often using wireless technologies while powered by batteries. Hence the IoT is one of the
influential factors for the design and development of constrained devices today.

Constrained devices usually consist of a microcontroller unit with attached sensors and
other peripherals. Typical CPU clock speeds range from a few MHz up to a few hun-
dred MHz and memory capacities in the order of kilobytes for both long term storage
and working memory. Theses constrained computing systems often lack periphery that
is considered standard in the conventional computing world. One of these peripherals are
MMUs, which provide virtual memory. Virtual memory is universally found on smart-
phones, laptops and gaming consoles [10, p. 253], but is missing in constrained devices
[11, p. 17].

2.2 RISC-V

RISC-V is an open standard Instruction Set Architecture [12]. As such, it is freely avail-
able to academia and industry. It is a general purpose ISA, suitable for hardware imple-
mentation. One of the core design principles is simplicity. It allows ease of use for research
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2 Background

and educational purposes as well as for implementations. Unlike competing ISAs, e.g.
ARM, RISC-V is not the intellectual property of a single company. This makes it easier
for small organisations and companies to develop a chip using RISC-V [13]. Another core
aspect of the ISA is extensibility, allowing companies to add their own special purpose
hardware for domain specific tasks [14].

An executing hardware thread in a RISC-V CPU is called a hart.

2.2.1 RISC-V Extensions

A RISC-V base integer ISA is defined as the minimal ISA that must be present in any
implementation. It is a minimal set of integer only instructions, sufficient to provide
a ‘reasonable‘ execution environment for compilers, assemblers, linkers and operating
systems [12, p. 4]. The RISC-V family consists of four base ISAs:

• RV32I, 32 Bit

• RV64I, 64 Bit

• RV32E subset of RV32I with limited register count

• RV128I, 128 Bit

As a ’reduced instruction set computing’ architecture, RISC-V features fewer instructions
than established ISAs such as x86.

Base ISAs can be extended with a couple of standard definitions:

• M: Integer Multiplication and Division

• A: Atomic Instructions

• F: Floating-point Support

• D: Double-precision Floating-point

• C: Compressed Instructions

• Zicsr: Control and Status Registers

• Zifencei: Instruction-fetch Fencing

5



2 Background

Number of Levels Supported Modes Suggested Use-case

1 M Simple embedded systems
2 M, U Secure embedded systems
3 M, S, U Conventional computing

Table 2.1: Supported combination of privilege modes as defined in the RISC-V privileged
architecture [1, 1.2 p. 3]

Level Encoding Name Abbreviation

0 00 User/Application U
1 01 Supervisor S
2 10 Reserved
3 11 Machine M

Table 2.2: Privilege levels as defined in the RISC-V privileged architecture [1, 1.2 p. 3]

If an implementation supports all standard extensions, as for example RV32IMAFD_-
Zicsr_Zifencei it is called a ’general-purpose’ ISA and can be shortened to ’RV32G’.

2.2.2 Privileged Architecture

The RISC-V privileged architecture introduces privilege levels as shown in Table 2.2. A
hart is always executing in exactly one privilege level at any given point in time. These
levels provide protection of different components in the software stack [1, 1.2 p. 2]. If
software attempts to perform an operation that is not allowed in the current privilege
level, an exception will be raised by the hart. The highest privileges are available to code
running in Machine-Mode (M-Mode), followed by the Supervisor-Mode (S-Mode) and the
least privileges has code in the User-Mode (U-Mode). A minimal RISC-V implementation
must at least implement the Machine-Mode. The systems of interest for this thesis provide
Machine- and User-Mode, but not the Supervisor-Mode (compare Table 2.1).

System and hart specific settings such as the aforementioned privilege levels are controlled
via the control and status registers (CSR).

6



2 Background

2.2.3 Privileged Instructions

Certain instructions require elevated privileges to execute as they affect the overall system
integrity and security. These include all instructions which read or write the CSRs as
well as the ecall/ebreak. The later is used to trigger an exception by software on
the current executing hart. This is usually used to initiate a system call, often called
syscall.

To switch from the most privileged M-Mode to the least privileged U-Mode, the Machine-
Previous-Privilege (MPP) bits in the mstatus register are set to 0b11 (representing
Machine-Mode) and the exception return instruction mret is executed. During mret,
the privilege mode is switched depending on the MPP bit field and execution is continued
on the address stored in the MEPC (machine exception programm counter) register. The
switch is typically done during a context switch in scheduling.

2.2.4 Physical Memory Protection

RISC-V Physical Memory Protection is described in the privileged specification section
3.7 Physical Memory Protection. A direct comparison with the more common
ARM MPU is shown in Table 2.3. The PMP is capable of setting the memory area
access attributes read, write and execute. Areas can be as small as 4 bytes in size. Each
access rule consist of one configuration register and a corresponding address register as
shown in Figure 2.1. The ISA allows to implement either 16 or 64 such rules. Each rule
can also be locked, which marks the configuration registers as read-only until the next
hart reset. Additionally, a locked rule is not only enforced on user-mode level threads,
but also applies to Machine-Mode privilege threads. The PMP configuration registers are
part of the Control and Status Registers and are therefore not mapped into the physical
address space. Instead, special CSR instructions need to be used to access them. These
instructions are available to Machine-Mode only. PMP violations are trapped precisely
by the hart and erroneous accesses never succeed.

Any address stored in the PMP address registers must be shifted two bits to the right. As
the smallest granularity is four bytes, this does not lead to loss in accuracy. Instead, it is
used to allow defining access rules for a 34 bit address space. The address register supports
three addressing modes: Top of range (TOR), Naturally aligned four-byte region (NA4)
and Naturally aligned power-of-two region, >= 8 bytes (NAPOT). When choosing TOR,

7
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Figure 2.1: The organisation of the PMP registers in the RISC-V privileged specification.
The priority is descending, therefor the lowest PMP configuration register
(pmp0cfg) has the highest priority. Each pmpXcfg is 8 bit wide and has
one corresponding 32 bit pmpaddrX register. An access to the configuration
register is 32 bit wide and is able to manipulate four pmpXcfg at once. Hence
the existence of the combined pmpcfgX register.

the address register forms the upper address (excluded) of the memory region, while
the previous address register forms the lower (included) boundary. If TOR is chosen for
the first address register, which has no preceding address register, the lower bound is
0x00000000. In the NA4 mode, which is a special case of NAPOT, the address must be
aligned to four byte and the memory region is exactly 4 bytes in size. In order to use the
NAPOT mode, the address must be aligned to the requested/intended area size, where
the size must be a power of two, but at least 8 bytes. As the result of the alignment, the
lower bits of the address are always zero and are repurposed to encode the size of the
memory region.

2.3 Operating System Security

Operating system security needs to be distinguished from general computer and infor-
mation security. In this thesis I focus on operating system security, as a subsection of
computer security which emphasises the protection of operating system assets such as
memory, processes and I/O control. In this context, ’protection mechanisms’ are specific
mechanisms provided by the operating system used for safeguarding the information on-
and the integrity of the computing system [10].

8



2 Background

RISC-V PMP ARM MPU
Smallest region size 4 Bytes 32 Bytes
Maximum region size 32 GB 4 GB
Region granularity Configurable (>= 4 Bytes) 32 Bytes
Privileged / unprivileged settings Hybrid / Mixed Independent
Supported memory attributes R/W/X R/W/X
Maximum number of regions 16 16 (8 for privileged,

8 for unprivileged)

Table 2.3: Comparison of RISC-V PMP and ARM MPU main features following Lu [2,
p. 9].

2.4 MMU and MPU

In the conventional computing area, memory management units (MMUs) are ubiquitous.
They provide inter-process memory protection by separating processes into different ad-
dress spaces [10, p. 186], realising process isolation. This is typically achieved by using
virtual memory with a technique called paging [10, p. 194]. However, these MMU sys-
tems come at the cost of complexity both at the operating system integration level and
in the hardware design of the CPU. This makes them unsuitable for constrained devices.
Instead a smaller subset of the MMU is used: The MPU.

Memory protection units (MPU) protect the system from certain faults like buffer over-
flows. They do this by providing special hardware which oversees memory accesses and
validates them according to preset rules. If a violation of these rules is encountered, an
exception is generated and a kernel panic stops the execution1. Imagine, the memory
protection unit gets configured by the operating system to disallow write access to a
given buffer. If a write attempt into this buffer is encountered, an exception is generated
and the buffer is not written to.

Isolation of process memory is needed for stability, security and privacy. Segregation
into privilege modes/levels enhances security by containing faults and malicious actors
in none critical areas.

1Typical behaviour, the exact response depends on the specific hardware and software in use.
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2.5 The RIOT Operating System

RIOT [15] is a real-time multi-threaded operating system that targets microcontrollers
with an emphasis on the IoT. One of its core requirements is to maintain a low memory
footprint, which is an important aspect for most constrained devices. The development
of RIOT is undertaken by an international open source community, which is not linked
to individual vendors. The software is licensed under the copyleft license LGPLv2.1. An
other attribute of RIOT is the modular nature of the underlying code base. This makes
it easy to integrate new features and extensions.

RIOT is actively used in academic research. As such, it has often been used for security
related research. The on-going activity in academia is highlighted with a short selection
of recent security related publications:

• Automated Detection of Spatial Memory Safety Violations for Constrained Devices
from 2022 discovered seven memory safety violation within RIOTs network stack
[16].

• Usable Security for an IoT OS: Integrating the Zoo of Embedded Crypto Compo-
nents Below a Common API from 2022 implemented an abstract cryptography
API in RIOT [17]. With it, the usability, portability and performance overhead of
cryptographic support in the IoT was evaluated.

• PUF for the Commons: Enhancing Embedded Security on the OS Level from 2023
designed and analyzed the integration of physically unclonable functions into RIOT
[18].

2.5.1 Problems in Deploying Memory Protection in RIOT

As of today, RIOT rarely uses advanced memory protection schemes and in particular
“RIOT is lacking essential protection mechanisms known from conventional operating
systems” [19, p. 63-64]. On platforms where the ARM memory protection unit (MPU) is
available, stack overflow detection and data execution prevention schemes are available
although their effectiveness is limited [20]. Additionally, these mechanisms might not
be active automatically thereby requiring supplemental effort and awareness from the
executing developer [19, p. 63].
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Currently, RIOT does not support the RISC-V physical memory protection (PMP) spec-
ification, even though multiple system on a chip (SoC) supported by RIOT implement
the PMP. Additionally, RIOT also fails to utilise privileged execution environments on all
platforms where this security feature is available. This includes the User- and Machine-
Mode privilege level provided in the RISC-V privileged specification.

2.6 Data Execution Prevention

Buffer overflows remain one of the most prominent types of exploitation. A common
way to exploit buffer overflows is the direct execution of the attacker-controlled payload
using an overwritten return address. This can be prevented using the data execution
prevention (DEP) security scheme. DEP is also known as executable space pro-

tection [19] or, when in the context of conventional computing platforms like x86, the
No-eXecute-Bit (NX-Bit) [10, p. 644]. This protection disables instruction fetches
from configurable addresses ranges including RAM. As such, hardware and software sup-
port is needed for this protection mechanism.

It is possible to use the PMP to mark the whole address space of the RAM as non-
executable. On constrained devices, the operating system typically boots from Flash/ROM
and keeps executing form it. Within RIOT, the execution is never passed to RAM. During
the exploitation of a vulnerable buffer overflow, the malicious payload, that is overflowing
the buffer, is stored on the stack in RAM [21]. Upon success of the attack, execution is
typically passed to the attacker-controlled payload in RAM. On a system that marked
the RAM as non-executable, this will trigger an exception at the CPU, bringing the
control flow back to the operating system. In this situation, RIOT typically performs a
kernel panic - stopping the attack immediately.

2.6.1 Security Limitations

Data execution prevention can be circumvented with Return-To-Libc or more generally
with Return-Oriented-Programming (ROP). ROP is more difficult to execute on RISC-V
compared to x86, as the program counter (PC) is not directly writeable and there are
no distinct stack-return instructions, but the threat remains [22]. Since the attacker has
some or full control of the stack, he can overwrite the return addresses of functions inside
the stackframes. The attacker then returns the flow of control to, e.g., the driver of the
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Example address Function

0x80000100 Canary
0x800001. . . Thread data
0x800001D0 Stack pointer sp
0x800001FF Thread control block

Table 2.4: Example thread stack composition on RIOT. Note how the stack grows toward
the canary as the stack space is filled.

memory protection unit with the argument registers setup to disable the data execution
prevention.

2.7 Detection of Thread Stack Overflows

Listing 2.1: RIOT stack C-struct as found in thread.h. Various optional extensions not
shown. The stack canary, located at char *stack_start, is only included
when needed. For example, when the PMP-based stack overflow detection is
in use, as indicated by the MODULE_PMP_STACK_GUARD define.

struct _thread {
char ∗ sp ; /∗∗< thread ’ s s t a c k po in t e r ∗/
thread_status_t s t a tu s ; /∗∗< thread ’ s s t a t u s ∗/
uint8_t p r i o r i t y ; /∗∗< thread ’ s p r i o r i t y ∗/

kernel_pid_t pid ; /∗∗< thread ’ s proces s id ∗/

c l i st_node_t rq_entry ; /∗∗< run queue entry ∗/

#i f de f ined (DEVELHELP) | | IS_ACTIVE(SCHED_TEST_STACK) \
| | de f i ned (MODULE_MPU_STACK_GUARD) \
| | de f i ned (MODULE_PMP_STACK_GUARD) \
| | de f i ned (DOXYGEN)
char ∗ s tack_star t ; /∗∗< s tack s t a r t address ∗/

#endif

#i f de f ined (DEVELHELP) | | de f i ned (DOXYGEN)

12
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int s tack_s i ze ; /∗∗< thread ’ s s t a c k s i z e ∗/
#endif
} ;

It is desirable to guard the stacks of each thread against overflowing. RIOT currently
does this by adding a canary value at the end of the stack as shown in Table 2.4. When
the software-based overflow detection is used (DEVELHELP), the canary is the address of
the canary itself. This reduces the chance that an attacker can guess the canary value
and trick RIOT into not recognising the overflow. Additionally, the canary check can be
calculated on the fly and does not need a compile time static magic value or otherwise
access to any other values except the canary itself. The thread control block (TCB) is
located at the start of the stack, followed by setup data such as function arguments. The
thread usable stack space starts at the stack pointerr (SP) and spans up to the canary
value. The location of the canary is also saved within the thread control block, as shown
in Listing 2.1. If a fault starts overflowing the stack, it will attempt to write beyond
the end of the stack, overwriting the canary. At the next scheduling, RIOT checks the
correctness of the canary value and issues a kernel panic, if it is incorrect.

2.7.1 Security Limitations

The utility of stack overflow detection predominantly manifests during the development
of software. Its primary benefit lies in easing the development and debugging processes
by promptly identifying issues such as inadequate stack space or memory leaks. While
it offers a certain security advantage, it is imperative to acknowledge that this benefit
is constrained. The canary can potentially be bypassed, and its effectiveness is notably
specific, rather than constituting a comprehensive security measure.

2.8 Thread Isolation

In traditional general purpose computing, processes are isolated from each other via
virtual addressing [10, p. 194], often utilising paging. Isolation provides “a protection
against unwanted information flow” as described by Biskup [23]. This is a safe and prac-
tical solution but comes at the cost of significant software and hardware complexity.
On constrained devices, this is undesirable as low cost and small size of the MCU are
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significant requirements for the typical use case/deployment. Instead, embedded devices
often feature only a flat physical address space and only support threads as a lightweight
alternative for processes [10, p. 97]. With memory protection units, it becomes feasi-
ble to isolate threads from each other even without processes. During scheduling, the
real-time operating system (RTOS) would only mark the next thread memory region as
read-/writeable in the memory protection unit and disallow all other system memory
access. This isolates threads from each other.
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3.1 Usage of the ARM MPU in Embedded Systems

In Good Motive but Bad Design: Why ARM MPU Has Become an Outcast in Embedded
Systems [20] the authors Wei Zhou et. al. show that the physical presence of the ARM
MPU alone is insufficient to achieve additional security on embedded devices. During
their investigation they identified some non-technical reasons as limiting factors in its
wide spread adoption.

• The ARM MPU increases the transistor count and complexity of a given system on
a chip. This in turn increases the price and the power demands, which contradicts
common requirements of the IoT.

• Increased time-to-market pressure for the manufacturers as the IoT market grows,
which encourages the reuse of existing code bases without ARM MPU integration.

• Developing new software leveraging the ARM MPU may cause compatibility issues.

• Most companies are reluctant to invest into security, when the existing code still
works.

Technical reasons include the limited number of available regions, making it unnecessarily
hard to use the MPU efficiently. Additionally, without further and deep OS integration,
the security benefits can be easily circumvented as embedded OS typically do not offer
process isolation. The performance overhead is considered too high for frequent context
switches.
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Relation to this work

While the authors had a focus on the FreeRTOS operating system, they believe that their
observations apply to other operating systems because the demonstrated pitfalls root in
the fundamental design drawbacks of MPU [20, 7, p. 4].

3.2 Memory Safety Using ARM MPU in RIOT

In 2014, Famulla explored the integration of the ARM MPU into RIOT in his thesis
[24]. His proposed implementation featured memory protection through thread isolation
and privileged execution. Significant changes to RIOT were required, including memory
management and system call infrastructure. These heavy changes in the core component
of RIOT prevented the integration of Famullas proposal at time.

Relation to this work

While this thesis does not implement thread isolation nor privileged execution, some of
the challenges encountered during the integration of the RISC-V PMP into RIOT might
be comparable to the challenges overcome by Famulla.

3.3 Checked C

The security of embedded devices can also be enhanced without special hardware features.
One approach could be the usage of spatial memory safe programming language, such
as Rust or the C dialect Checked C. The Checked C programming language enables a
more precise articulation of a programmers intention regarding pointer utilization and
the memory range encompassed by the data to which a pointer refers. Subsequently,
this provided information serves as a basis for implementing runtime checks to identify
instances where inadvertent access to incorrect data occurs, thus preventing errors from
transpiring silently and evading detection. This comes at the cost of runtime performance
and code size. Tempel and Bruns showed how Checked C can be integrated into RIOT
[25].
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Relation to this work

As the attack vector of this thesis assumes the usage of a memory unsafe programming
language, this related work highlights one potential defense strategy and its possible
integration into RIOT. It does not replace the protection mechanisms introduced in this
thesis, but can be used as an additional measure.

3.4 Operating System Security in the Internet of Things

In his master thesis, Tempel showed through experimental testing and evaluation, whether
the protection mechanisms provided by RIOT are sufficient [19]. He concluded that the
lacking utilisation of security mechanisms (including hardware based) is a key contrib-
utor to his finding of multiple potentially software issues - which could have partially
mitigated, if RIOT had implemented such protection mechanisms.

Relation to this work

Memory protection is among the protection mechanisms that were found by Tempel to
be missing in RIOT [19, p. 26]. In this thesis, the memory protection unit based, data
execution prevention and thread stack overflow detection are implemented for the RISC-
V platform. Thereby partially addressing the shortcomings identified by Tempel.

3.5 Improvement of Stack Canaries

Hardware assisted buffer protection mechanisms can be an effective tool against mali-
cious attacks as shown by Asmit De and co-authors [26]. They employed a Physically
Unclonable Function (PUF)-based randomized canary generation technique to sidestep
common challenges found in canary based protection mechanisms.
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Relation to this work

One of the challenges is to choose a canary that cannot be guessed easily or predicted
by an attacker. In this thesis, the software-based stack overflow detection using a canary
is replaced by an hardware-based approach using the RISC-V PMP. This eliminates the
concern of choosing a suitable canary.
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Certain requirements need to be solved before the memory protection schemes can be
implemented. When selecting an appropriate development target, it is critical to accu-
rately assess the shortcomings of this target. If not accounted, such shortcomings can be
mistaken for deficits in the PMP specification itself.

4.1 Evaluation Platforms

One ore more evaluation platforms need to be selected in order to verify and test the
PMP-based memory protection schemes. At time of this thesis, RIOT supports multiple
RISC-V based systems. Of those systems, only the HiFive1 Rev B and the ESP32-C3
feature a PMP.

4.1.1 HiFive1 Revision B by SiFive

The HiFive1 Revision B, manufactured by SiFive, is an evaluation board for the SiFive
FE310-G002 microcontroller. It implements the RV32IMAC ISA, has PMP, and contains
16 kB of SRAM as well as 8 kB of flash memory [27, 28]. It is pictured in Figure 4.1.

The PMP of the FE310-G002 does not comply with the RISC-V specification: First of all,
it implements only 8 regions instead of the 16 or 64 regions mandated by the specification
[28]. Second, the FE310-G002 has a silicon bug that causes the locking of a region to
always prohibit writing to the address register of the previous region as well, independent
of the selected mode. This is the correct behaviour if the TOR mode had been selected,
but is invalid for all other modes. This bug can be worked around by leaving an unused
region before any locked region [29, FU-885].

The Hifive1 was selected as a testing platform.
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Figure 4.1: On the left: The HiFive1 Rev B development board. On the right: The ESP32-
C3 development kit.

4.1.2 ESP32-C3-DevKitM-1 by Espressif Systems

The ESP32-C3-DevKitM-1 [30], devoloped by Espressif Systems, implements the RV32IMC
ISA in it’s SoC, including a PMP with 16 regions. It provides 400 kB of SRAM and 386
kB flash ROM. Care must be taken in regards to the PMP, as the manual clearly states
that Espressif Systems’ implementation differs from the ISA: Static priorities of the re-
gions are not supported, meaning overlapping or concurrent regions behave erroneous
compared to the ISA specification. Additionally, the maximum NAPOT range is limited
to 1 GB.

The bootloader provided by Espressif Systems already uses and locks all available PMP
regions. In order to use them from within RIOT, the bootloader must be patched ac-
cordingly.

Limitations of the ESP32-C3 integration of RIOT

RIOT supports various CPUs and boards through a modular framework to reduce du-
plicate code. In particular, the module cpu/riscv_common contains code needed to
support CPUs implementing the RISC-V ISA.

However, the RIOT support for the ESP32-C3 does not use this module, but is im-
plemented in the module cpu/esp32 instead. This module adds support for all CPUs
made by Espressif through the vendor-provided software development kit (SDK), called
“Espressif IoT Development Framework (ESP-IDF)” [31]. Espressif manufactures CPUs
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implementing either the RISC-V or Extensa ISA, so the SDK abstracts over this ISA
difference. As the module cpu/riscv_common is not used, the PMP driver must be
made available to a ESP32-C3 RIOT project manually by the developer.

In addition, the SDK sets up the hardware, including the PMP, before handing off the
control to the RIOT initialisation. The rules set in the PMP are fairly reasonable, for
example disallowing writing into ROM areas. Because all entries are locked, they prohibit
(re-)configuration of the PMP by my code. In order to run my implementation on the
ESP32-C3, the SDK must be patched to not lock up the PMP configurations.

Fixing these integration issues is out of scope for this thesis. Due to this and the incom-
plete PMP implementation, the ESP32-C3 was not used for the evaluation of this thesis
later on.

4.1.3 RISC-V Virtual Prototype

The RISC-V Virtual Prototype (VP) [32], developed by the Arbeitsgruppe Rechnerar-
chitektur (AGRA) of the University Bremen, implements RV32GC and RV64GC. Re-
cently, experimental PMP support was implemented for which I got early access. The
VP can simulate different hardware setups. I chose the Hifive1 Rev b, to keep my setups
more comparable.

During a short experimentation phase, the VP frequently crashed and often exhibited
incorrect behaviour in the PMP aspects. Due to this and the fact that the PMP support
was not yet public (and with this, not final & reproducible), the VP was not used for the
evaluation of this thesis later on.

4.2 Survey of PMP Specification Compliance

Both implementations of the PMP (by SiFive and Espressif Systems) are not compliant
with the RISC-V PMP specification. The differences are listed in Table 4.1. Most notably
is the deviation of the behaviour in case of overlapping regions, in which the ESP32-C3
does not behave correctly according to the specification. In addition, the HiFive1 Rev b
does not support 16 (or 64) regions but 8, which is prohibited by the specification.
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RISC-V Spec Hifive1 Rev b ESP32-C3

Smallest region size 4 Bytes 4 Bytes 4 Bytes
Maximum region size 32 GB 32 GB 1 GB
Region granularity >= 4 Bytes 4 Bytes 4 Bytes
Number of regions 16/64 8 16
Overlapping regions Yes Yes No
Static priority by number Ascending Ascending No

Table 4.1: Comparison of RISC-V PMP specification and different implementations. The
behavior of a compliant PMP is described in detail in subsection 2.2.4.

4.3 The PMP Driver

During the development of the PMP driver, I encountered a potential shortcoming in
the RISC-V architecture. Per ISA specification, it is not possible to select the target’s
register address of CSR read/write via a source register. Instead, the targets CSR address
is encoded as an immediate value directly in the instruction. The immediate value can not
be set at runtime via the default assembly and C ABI. Hence, a workaround was chosen,
where all possible CSR read/write accesses needed for the PMP driver were collected
within a switch statement as shown in Listing 4.1. Here, the compiler is emitting all
required instructions with appropriate immediate values, which can then be selected at
runtime.

The driver got merged into RIOT in pull request #19712 [33].

Listing 4.1: Example code showing the usage of a switch statement to choose the CSR
register at runtime. Note how the CSR register address (0x3b0..) is statically
provided at compile time within a string.

void write_pmpaddr ( uint8_t reg_num , uint32_t value )
{

a s s e r t ( reg_num < NUM_PMP_ENTRIES) ;
switch ( reg_num) {
case 0 :

__asm__ volat i le ( " csrw␣0x3b0 , ␣%0" : : " r " value ) ;
break ;

case 1 :
__asm__ volat i le ( " csrw␣0x3b1 , ␣%0" : : " r " value ) ;
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break ;
/∗ Up to 15/63 . . . ∗/
}

}

4.4 Caching for PMP Regions

During the evaluation, as later explained in subsection 6.3.3, I experienced a certain
performance bottleneck when deploying stack overflow detection using the PMP. In order
to minimise the runtime penalty, I implemented a caching algorithm for the PMP region
configurations, specific to RIOT OS scheduling.

The caching is a classical last-recently-used (LRU) algorithm. During scheduling, it is
checked if the next thread is the same as the previous thread (not the current). If so, no
reconfiguration of the PMP regions is necessary. The algorithm marks this caching entry
as recently used and the current entry is now considered the oldest entry. Should the
next thread not be cached, the oldest entry is reconfigured for the next thread. Pseudo
code of this algorithm is shown in Listing 6.6.

4.5 Thread Isolation

An isolated thread should be unable to access (reading/writing) memory outside its own
stack space. While the necessary PMP rule is trivial, which disallows all memory access
except for the current stack, the necessary infrastructure needed to enable lower privileged
threads is not. For a rudimentary proof of concept of thread isolation, RIOT must be
extended with a system call infrastructure as well as a way to store the information which
threads are lower privilege. The information is needed during scheduling to determine
the next privileges after the context switch completed.

Another issue with unprivileged execution within RIOT is the use of privileged instruc-
tions within numerous kernel functions. These instructions and with them their contain-
ing functions cannot be executed by the unprivileged thread and will throw an excep-
tion when attempting to execute them. While some functions can be avoided others are
necessarily required by RIOT’s design such as in the thread_yield() function. The
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function is used to yield the currents thread execution to the scheduler and uses privi-
leged instructions to write certain CSRs with the goal of disabling IRQs before entering
the scheduler. For such functions, syscalls must be implemented.
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This chapter explains my implementation of the the data execution prevention and the
thread stack overflow detection.

5.1 Data Execution Prevention using PMP

Listing 5.1: The RISC-V initialisation function of RIOT. If the PMP based data execu-
tion prevention is enabled, the PMP driver is used to permanently revoke
the execution permission of the RAM address space.

void r i s c v_ i n i t (void )nm
{

r i s cv_fpu_in i t ( ) ;
r i s c v_ i rq_ in i t ( ) ;

#ifde f MODULE_PMP_NOEXEC_RAM
/∗ This marks the (main ) RAM reg ion as non
∗ e x e cu t a b l e . Using PMP entry 0 .
∗/

write_pmpaddr (0 , make_napot (CPU_RAM_BASE, CPU_RAM_SIZE) ) ;

/∗ Lock & s e l e c t NAPOT, only a l l ow wr i t e and read ∗/
set_pmpcfg (0 , PMP_L | PMP_NAPOT | PMP_W | PMP_R) ;

#endif
}

To prevent execution from RAM, the PMP driver was used to revoke the execution
permission of the RAM memory addresses, for all privileged modes during startup of the
system.
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The implementation uses the RIOT provided RAM addresses. To make them always
available at compile time, I slightly modified the build system [34]. The data execution
prevention setup is located in the generic RISC-V startup code, as shown in Listing 5.1.
The NAPOT addressing mode was chosen as many embedded systems feature a naturally
aligned RAM address space. The configuration is locked to prevent further tampering as
the locking bit (PMP_L) makes further writes to this configuration impossible until the
next CPU reset. Additionally, the locking ensures that this configuration applies to all
privilege levels, including Machine-Mode, which is RIOT’s only used mode.

This implementation of data execution prevention does not work on the ESP32-C3 plat-
form because RIOT’s build system does not utilise the RISC-V common CPU modules
(cpu/riscv_common/) for this platform. Instead, RIOT relies on the proprietary ven-
dor provided software development kit for startup and basic hardware abstraction.

The data execution prevention got merged within the same pull request as the PMP
driver which is #19712 [33].

5.2 Thread Stack Overflow Detection using PMP

Listing 5.2: Subsection of the RISC-V initialisation function of RIOT.

void r i s c v_ i n i t (void )nm
{

. . .
#ifde f MODULE_PMP_STACK_GUARD

/∗ Make sure t ha t none−l o c k ed r u l e s a l s o app ly to M−Mode ∗/
c l ea r_cs r ( mstatus , MSTATUS_MPP) ;
set_csr ( mstatus , MSTATUS_MPRV) ;

#endif
}

Listing 5.3: Subsection of RIOT’s scheduling routine showing the configuration of the
PMP based stack overflow protection.

thread_t ∗__attribute__ ( ( used ) ) sched_run (void )
{

. . .
#ifde f MODULE_PMP_STACK_GUARD
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write_pmpaddr (3 , ( u intptr_t ) next_thread−>stack_star t ) ;
set_pmpcfg (3 , PMP_NA4 | PMP_R) ;

#endif
. . .

}

As explained in section 2.7, the software based stack overflow detection in RIOT only
acts when the scheduler is called. An obvious disadvantage of this is, that overflows can
only be detected after the fact. This might already be too late to even gracefully display
an error and stop the system. As soon as a defective code starts overflowing the stack it
might overwrite critical data structures of the operating system. The RISC-V PMP can
be used to detect stack overflows the exact moment code tries to write past the end of the
stack, onto outside memory. This ensures that RIOT crashes gracefully as the overflowing
code does not get a chance to corrupt critical data structures. This promptness eases the
debugging of the underlying defect.

In this implementation the four byte canary value is marked as read-only. The canary is
the same as in the case for the software based approach. This way, the thread control block
struct does not need to be adjusted specifically for this implementation. See Listing 2.1
in section 2.7 for details. In case the stack overflows and attempts to write into the read-
only canary, the PMP raises a store access-fault exception immediately [1, Sec. 3.7.1, p.
58]. Since the canary is specific to the current active thread, the stack guarding settings
in the PMP need to be reconfigured during scheduling if the thread is switched. The
configuration procedure of the PMP for the next active thread is done during scheduling,
as shown in Listing 5.3. Conveniently, the PMP_NA4 addressing mode can be used, which
specifies a naturally aligned, 4 byte memory area, which matches exactly the properties
of the stack canary. The access right is set to PMP_R, which translates to read-only.

In addition, the effective memory privilege is set to User-Mode once during startup in
the RISC-V initialisation function, as shown in Listing 5.2. This ensures that the PMP
restricts memory accesses even though RIOT executes all code in Machine-Mode level
privilege. By default, PMP rules only apply to the least privileged User-Mode. It is not
possible to ensure that my stack guarding is in effect by locking the corresponding PMP
rule, as I did for the data execution prevention: Locked rules can not be reconfigured
until the RISC-V hart is reset, but the rule needed for stack overflow detection needs to
be changed on every context switch. This leaves lowering the effective memory privilege
as the only viable option for RIOT, as implemented here.
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My use of the RISC-V PMP for stack overflow detection is similar to the RIOT feature
MODULE_MPU_STACK_GUARD, which makes use of the ARM memory protection unit
(MPU). Instead, the ARM MPU based stack overflow detection marks 32 bytes as read-
only, presumably because it is the smallest possible granularity (see Table 2.3) of the
ARM MPU. This is significantly more occupied memory compared to my PMP based
implementation, which only marks the four bytes of the stack canary. While it often is a
good idea to keep behavior consistent between platforms, I chose to limit the amount of
bytes used for stack guarding in order to reduce the memory footprint.

My implementation of stack overflow detection using the RISC-V PMP for RIOT is
available as GitHub pull request #19821, which has not yet been merged into RIOT as
of December 8th, 2023. [35]
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In this chapter, the evaluation of the run time performance impact of the two deployed
memory protection schemes is shown.

6.1 Measurement Setup

Listing 6.1: Test program, which repeatedly turns a GPIO on and off indefinitely. Allows
to measure the time it takes to toggle a GPIO.

int main (void )
{

while (1 ) {
gpio_set (GPIO_PIN(0 , 2 2 ) ) ;
gp io_c lear (GPIO_PIN(0 , 2 2 ) ) ;

}
return 0 ;

}

Listing 6.2: This measures the minimum (lower bound) run time overhead, but it is ex-
pected that it will increase under real world conditions.

int main (void )
{

while (1 ) {
gpio_set (GPIO_PIN(0 , 2 2 ) ) ;
set_pmpcfg (0 , PMP_NA4 | PMP_R) ;
gp io_c lear (GPIO_PIN(0 , 2 2 ) ) ;

}
return 0 ;

}
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Listing 6.3: Based on the IPC-Pingpong example. The main thread creates a second
thread before going into an endless loop in which the GPIO is first turned
off and then the execution is yielded to the scheduler. The second thread
also runs in an endless loop. It first turns the GPIO on and then yields its
execution to the scheduler. With this program, the time spent inside the
scheduler can be measured externally, by observing the time the GPIO is on
high.

void ∗ second_thread (void ∗ arg )
{

(void ) arg ;
while (1 ) {

gpio_set (GPIO_PIN(0 , 2 2 ) ) ;
thread_yie ld ( ) ;

}

return NULL;
}

char second_thread_stack [THREAD_STACKSIZE_MAIN] ;

int main (void )
{

gp io_in i t (GPIO_PIN(0 , 22) , GPIO_OUT) ;

thread_create ( second_thread_stack , s izeof ( second_thread_stack ) ,
THREAD_PRIORITY_MAIN − 1 , THREAD_CREATE_STACKTEST,
second_thread , NULL, "pong" ) ;

while (1 ) {
gp io_c lear (GPIO_PIN(0 , 2 2 ) ) ;
thread_yie ld ( ) ;

}
}

The measurements were conducted using an oscilloscope (RIGOL DS1054) which ob-
served the frequency that one GPIO pin could be toggled by any given setup, an example
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Setup GPIO high time

GPIO toggle only 29.20 ns
Writing a PMP config 220 ns
Writing a PMP address 1.860 µs
Thread context switch 940 ns

Table 6.1: Reference speed measurements on the Hifive1 Rev B. Compiled with DEVEL-
HELP = 0.

Figure 6.1: Measurement of the reference setup where only a single PMP configuration
is written. The screenshot is taken on a RIGOL DS1054 oscilloscope. Writing
one PMP configuration takes approximately 220 ns.
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measurement is shown in Figure 6.1. This indirectly measures the time spent on a given
task by the system. Assessing performance by measuring the time taken to complete a
task (task completion time) is the only viable way of evaluating and comparing the speed
of computing systems as shown by Patterson et al “Execution time is the only valid and
unimpeachable measure of performance” [36, p. 54]. Other indicators have been proposed
such as ’instruction count’ or ’instructions per clock cycle’ but those are inadequate [36,
p. 32f]. For example, two tasks might have the exact same instruction count, but one
regularly stalls the CPU pipeline, resulting in much poorer performance compared to the
other task.

For reference in Table 6.1, the minimal time requirements for GPIO switching, PMP
access and thread context switches were measured. The measurements contain the time
it takes to loop from the end of a task back to the beginning. Since these time spans are
minimal and are also constant for all tasks and setups, they do not influence the relative
comparison of task completion times later on.

6.2 Data Execution Prevention

Listing 6.4: A unit test that tests the correct operation of the data execution prevention.
First, a small buffer is allocated and filled with values that, when interpreted
as RISC-V instructions, are illegal instructions. Next, inline assembly is used
to craft a jump instruction which targets this buffer. When the data execution
prevention works, an exception will be raised by the RISC-V hart due to the
memory access fault. Otherwise, an illegal instruction fault exception will be
raised.

#define JMPBUF_SIZE 3

int main (void )
{

uint32_t buf [JMPBUF_SIZE ] ;

/∗ F i l l t he b u f f e r wi th i n v a l i d i n s t r u c t i o n s ∗/
for (unsigned i = 0 ; i < JMPBUF_SIZE; i++) {

buf [ i ] = UINT32_MAX;
}
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text data bss
Without data execution prevention 8766 884 2312

With data execution prevention 9148 1072 2312
Overhead 382 188 0

LTO; Without data execution prevention 8054 872 2312
LTO; With data execution prevention 8126 996 2312

Overhead 72 124 0

Table 6.2: Size in bytes of the text, data and bss section of the pmp_noexec_ram
unit test when compiled for board hifive1b with or without data execution
prevention.

puts ( "Attempting␣ to ␣jump␣ to ␣ stack ␣ bu f f e r ␣ . . . \ n" ) ;
__asm__ volat i le ( " j r ␣%0" : : " r " ( ( uint8_t∗)&buf ) ) ;

return 0 ;
}

6.2.1 Unit Test

To ensure that the data execution prevention works as intended and actually provides the
security benefit discussed in section 2.6, a unit test was written and introduced to RIOT
as shown in Listing 6.4. The unit test forces execution from a buffer placed in RAM, that
is filled with illegal RISC-V instructions. Assuming that the data execution prevention
works, the RISC-V hart will immediately raise a memory access fault exception resulting
in a RIOT panic. In case that the data execution prevention does not work, the hart will
instead raise an illegal instruction fault exception and the test will fail.

6.2.2 Memory Consumption

The memory footprint was measured by building the unit test twice, once with data exe-
cution prevention enabled and once without. Then the size difference of the relevant ELF
sections (.text, .data and .bss) was calculated as shown in Table 6.2. In this case,
the total size difference was 570 bytes and 196 bytes when utilising link time optimisa-
tions (LTO). A compiler can use LTO to infer which code paths are actually executed in
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between compilation units. The memory consumption mainly results from the inclusion
of the PMP driver. The overall size difference is lower when RIOT utilise LTO. LTO is
currently not enabled by default. In this specific case, only one PMP region is being used
and no format strings are needed, leaving a lot of room for link time optimisations.

6.2.3 Performance Limitations of Data Execution Prevention

The code needed, to implement the data execution prevention, is executed only once
on startup. Therefore the run time overhead is expected to be negligible and was not
measured.

6.2.4 Summary

Data execution prevention is a widely used security measure in general purpose computing
(see section 2.6). DEP was successfully implemented using the RISC-V PMP and it’s
behaviour was tested to be correct on a constrained device. No run time overhead could
be observed. The memory footprint is minimal (see Table 6.2). As shown, this measure
can be used on constrained devices as well and enabling DEP is strongly recommended.

6.3 Stack Overflow Detection

Listing 6.5: A unit test that tests the correct operation of the PMP-based stack overflow
detection. An infinite recursion is used to repeatedly push saved registers
onto the thread’s stack. When the stack overflows, the overflow detection
should immediately detect it and force RIOT into a kernel panic based on a
memory access fault. In all other cases, the test is considered to have failed.

#define CANARY_VALUE 0xdeadbeef

static struct {

char overflow_buffer[128];

unsigned int canary;

char stack[THREAD_STACKSIZE_MAIN];

} buf;

static inline unsigned int __get_SP(void) {

unsigned int __tmp;
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__asm__ volatile ("mv %0, sp" : "=r"(__tmp));

return __tmp;

}

static int recurse(int counter) {

printf("counter =%4d, SP = 0x%08x, canary = 0x%08x\n", counter,

(unsigned int)__get_SP(), buf.canary);

if (buf.canary != CANARY_VALUE) {

printf("canary = 0x%08x\nTest failed.\n", buf.canary);

for (;;)

thread_sleep();

}

counter++;

/* Recursing twice here prevents the compiler from optimizing-out the recursion. */

return recurse(counter) + recurse(counter);

}

static void *thread(void *arg) {

(void) arg;

recurse(0);

return NULL;

}

int main(void) {

puts("\nPMP Stack Guard Test\n");

puts("If the test fails, the canary value will change unexpectedly");

puts("after ~50 iterations. If the test succeeds, the MEM MANAGE HANDLER");

puts("will trigger a RIOT kernel panic before the canary value changes.\n");

#ifdef MODULE_PMP_STACK_GUARD

puts("The pmp_stack_guard module is present. Expect the test to succeed.\n");

#else

puts("The pmp_stack_guard module is missing! Expect the test to fail.\n");

#endif

buf.canary = CANARY_VALUE;

thread_create(buf.stack, sizeof(buf.stack), THREAD_PRIORITY_MAIN - 1, 0,

thread, NULL, "thread");

return 0;

}
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text data bss
Without stack overflow detection 9028 1236 3724

With stack overflow detection 9332 1396 3724
Overhead 304 160 0

LTO; Without stack overflow detection 8402 1224 3724
LTO; With stack overflow detection 8522 1352 3724

Overhead 120 128 0

Table 6.3: Size in bytes of the text, data and bss section of the pmp_stack_gurad
unit test when compiled for board hifive1b with or without stack overflow
detection.

6.3.1 Unit Test

In order to verify the proper functionality of the stack overflow detection and its ability to
promptly identify the occurrence of an overflow as soon as it occurs, I have incorporated
a unit test. As shown in Listing 6.5, the unit test utilities an infinite recursion of function
calling. In particular, the recurse() function calls itself before terminating, resulting
in an infinite call tree. Each time a function is called, the currently used registers are
pushed onto the threads stack to prevent the called function from overwriting them.
This process is often called ‘saving‘. Upon return of the function, the ‘saved registers‘
are restored by popping them from the stack. However, because the recursion is infinite,
no function ever returns and so this step is not performed (in this particular case). Each
time registers are saved, the stack grows to accommodate the space needed. Eventually,
the threads stack space is exhausted and the process of saving the registers overflows the
stack. This should be immediately detected by the PMP-based stack overflow detection,
forcing RIOT into a kernel panic based on a memory access fault. In that case, the unit
test passed. All other behaviours are considered failed.

6.3.2 Memory Consumption

Again, as with subsection 6.2.2, the memory footprint was measured by building the
unit test twice, once with stack overflow detection enabled and once without. Then the
size difference of the relevant ELF sections (.text, .data and .bss) was calculated
as shown in Table 6.3. In this case, the total size difference was 464 bytes and 248 bytes
with LTO enabled. Since the overhead is close to the observation with DEP, it is clear
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that most of the memory usage originates from the PMP driver. The run time memory
consumption in RAM is minor.

6.3.3 Run Time Overhead of Stack Overflow Detection

Adding stack overflow detection using the PMP is expected to add a run time overhead
because the frequently called scheduler gets extended in complexity. During scheduling,
the PMP gets reconfigured, adding at least the overhead observed in Table 6.1 to the run
time. I conducted additional measurements to see if the observed (lower bound) overhead
increases during scheduling. Secondly, the measurements enable the comparision of the
PMP-based stack overflow detection with the software-based one.

For the measurements, the code from Listing 6.3 is used with different compilation op-
tions. The code is being used as an example task in which two threads are scheduled al-
ternating. One thread pulls the GPIO to high, while the other clears it, thereby enabling
measuring the GPIO high time externally using an oscilloscope to determine the time
needed to perform one context switch. Three setups are being measured: The pure time
it takes to do one context switch. This is used as a baseline for comparison. Second, the
existing software-based stack overflow detection present in RIOT. It is enabled by pass-
ing SCHED_TEST_STACK=1 to RIOT using the CFLAGS during compilation. Lastly, the
PMP-based stack overflow detection is enabled using USEMODULE += PMP_STACK_-

GUARD and measured.

The results in Table 6.4 show a neglectable overhead of the software-based stack over-
flow detection and an overhead of 3.63 µs for the PMP-based. The relative overhead is
calculated by subtracting the GPIO high time of the baseline from the GPIO high time
of the individual task setup.

As the overhead is constant per context switch, the run time penalty strongly depends
on the application in question. For example, if context switches are infrequent and a lot
of CPU time is spend within a thread before yielding, the run time overhead can be
considered minor or even be neglected all together.

One reason for the relative big overhead could be the design of the CPU present on the
Hifive1 Rev B board. On this CPU, the FE310 G002, regular CSR reads have a three
clock cycle result penalty. A CSR write additionally flushes the CPU pipeline with a five
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Task Setup GPIO high time Relative overhead

No features 940 ns baseline
Software-based stack overflow detection 940 ns 0.0 µs
PMP-based stack overflow detection 4.57 µs 3.63 µs

Table 6.4: Performance measurements of the testing task on the Hifive1 Rev B.

cycle penalty. This means that during each context switch the pipeline is flushed and
with it the instruction fetch cache [28, p. 17, 3.3].

6.3.4 Caching

When using a simple last-recently-used (LRU) caching strategy, the performance can be
enhanced. The caching works by having two PMP rules active at once: the next active
thread and the last thread. When switching between threads, no reconfiguration of the
PMP is needed when the next active thread is the same as the last thread. Otherwise, the
PMP needs to be reconfigured. The cache is updated on each context switch. Pseudocode
of this algorithm is shown in Listing 6.6.

Listing 6.6: Pseudo code showing the caching algorithm as executed during scheduling.

i f next_thread != cached_thread :
setup_pmp( next_thread )

cached_thread = last_thread
last_thread = next_thread

The question arises as to why not cache an even larger number of entries. This limitation
is primarily due to the constrained availability of regions, necessitating their resourceful
utilization. Furthermore, employing more intricate caching algorithms can introduce addi-
tional overhead during context switches, potentially negating the time savings achieved by
abstaining from CSR read/writes. Additionally, there is the challenge of managing cache
invalidation when application threads are terminated and their stack space is freed.

While a short proof of concept showed that such a caching algorithm can reduce the
relative overhead, it was not further pursued in this thesis. Measuring the efficiency of
caching strategies is far from trivial as care must be taken to disambiguate best-, worst-
and average case scenario in relation to common workloads.
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6.3.5 Summary

It is feasible to implement thread stack overflow detection. The memory overhead showed
in Table 6.3 is within the common limits of constrained devices.

The promptness of the PMP-based approach is a great advantage over the software-based
detection. Due to the direct intervention by the CPU (via an exception) as soon as the
canary would be overwritten, it is no longer necessary to await a context switch to verify
the correctness of the canary. Thereby saving time and increasing the chance that a fault
is found early in development. In addition, execution is stopped (or the flow of control
diverted) before the overflowing memory access can influence the stability of the overall
system. This is especially important for embedded and real time application, which might
have tight couplings with physical processes.

Depending on the application, the overhead introduced during scheduling might not be
tolerable. In these cases the feature can be selective turned on during development and
be disabled in production, thereby, completely removing any penalty on the constrained
device in deployment.
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In this work, I successfully built a prototype that utilises the RISC-V physical memory
protection from within the RIOT operating system. The PMP has low demands in terms
of processing speed and memory size. Using two exemplary memory safety schemes, it
was shown in chapter 6 that the PMP can feasibly be utilised by constrained devices.

Data execution prevention was implemented with no negative impact on the performance
of the constrained device. Together with the negligible size overhead and the added
restriction to the exploitability of common vulnerabilities, it is a good candidate to be
always enabled on default.

The RISC-V PMP was used to enhance the usability and accuracy of the stack overflow
detection, thereby increasing its usability as a developer tool. Developer must take the
added overhead during context switch into account, depending on the intended applica-
tion.

7.1 Drawbacks of RISC-V PMP

The limitations associated with the RISC-V Physical Memory Protection predominantly
result from non-technical factors. Its availability is limited, as only a small number of
platforms offer support for it. Frequently, the physically realized PMP, as executed by ven-
dors, exhibits substantial deviations from the specification. The integration of advanced,
PMP-based security measures, such as thread isolation, proves to be a challenging, es-
pecially when incorporating it into pre-existing codebases. This observation matches the
conclusion of Wei Zhou et. al. that operating system integration is one of the major
limiting factors, in the adoption of the ARM MPU [20].
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7.2 Limitations of Thread Stack Overflow Detection and
Data Execution Prevention

Even with stack overflow detection and data execution prevention, there are numerous
ways for an attacker to access private information or gain control over the flow of ex-
ecution in the event of a memory corruption vulnerability. One prominent one, return
oriented programming, is significantly harder on RISC-V, but as shown by Cloosters et.
al. [22], it is still a feasible attack vector.

Proper thread isolation would add a significant barrier to the exploitation of common
programming errors. This is especially important for RIOT as its code base is overwhelm-
ingly written in the memory unsafe language C.
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This chapter provides an outlook on points of interest for future research.

8.1 Obstacles to Thread Isolation in RIOT

The RISC-V PMP, together with the privilege modes, is suited for implementing thread
isolation. Thread isolation can be used in addition to DEP to further increase the security
of the system. With it, the PMP is used to disallow any given thread to access other
threads memory. This includes the stack overflow detection scheme as a side effect of the
isolation.

RIOT misses certain building blocks which are needed in order to implement thread
isolation:

8.1.1 Memory Maps not Generalised

The RIOT operating system does not have the memory layout per system programmat-
ically available. Since e.g. the address and size of RAM sections are needed at runtime
to configure the data execution prevention, it is unnecessary hard to implement these
feature in a generalised way, that is easy to be used and adopted for different systems.
With thread isolation this issue is even more challenging as access rights become stricter
and more spatially segmented.

One solution could be devicetrees1. A devicetree is a data structure that describes the
hardware of a device. As an example, the IoT focused operating system Zephyr2 already
utilities devicetrees to configure the operating system for a given device.

1See https://www.devicetree.org/.
2See https://docs.zephyrproject.org/latest/build/dts/index.html.
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8.1.2 Missing Concept of Privilege Modes

The concept of different execution privileges is not present in RIOT. This means that even
if a thread with lower privileges is run, it is impossible to know which kernel functions can
be called in the given privilege level. Some functions might not execute in a lower privilege
mode as they require access to special peripherals or depend on privileged instructions.

8.1.3 Missing Syscall Infrastructure

With system calls (syscalls), lower privileged threads could ’ask’ higher privileged ones
to execute certain operations for them. The RIOT operating system does not implement
nor provide infrastructure for syscalls.

8.1.4 Ownership of Shared Memory

Shared memory and inter process communication between threads becomes a challenge
when thread isolation is used. RIOT does not have a concept of memory ownership,
making it difficult to implement thread isolation. In the current state, all threads own
all memory simultaneously. At any given time a thread can send a message to any other
thread by writing into its memory. This would not work under isolation, as the thread
can no longer access other threads memory. RIOT’s IPC mechanisms need to be reworked
to accommodate for this.

Another issue that needs to be solved is globally shared variables in the .data segment
of the binary. Global variables are typically located outside the current threads stack and
are thus not accessible due to the isolation constraints.

8.2 Generic API Abstraction for Memory Protection
Units

Given the similarities of the ARM MPU and the RISC-V PMP, the idea of implementing
an abstraction API seems promising. Most tasks performed with a memory protection
unit are logically and functional identical between different hardware implementations.
A generic API would decouple the operating system design and the implementation of
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memory protection schemes from the underlying hardware, simplifying the assessment
and transportability of RIOT’s MPU-based security schemes on different hardware tar-
gets (boards).

Developing this generic API to serve as an abstraction layer for the ARM MPU and
the RISC-V PMP might appear to be a straightforward. However, several key challenges
need to be considered:

8.2.1 Dynamic Tracking of (Un-)Utilized Regions

The need to dynamically monitor, which memory regions were in use at runtime, poses a
significant challenge. The necessity to combine static (compile-time) and dynamic rules
within the API introduces an additional layer of complexity. Balancing these two types
of rules while ensuring smooth interaction presents a non-trivial task.

8.2.2 Ordering of Rules

The order, in which memory protection rules are applied and stored in hardware, is crucial
due to the priority logic depending on it. However, the ordering differs for each specific
hardware backend. Managing this variability adds intricacy to the APIs development.

8.2.3 Granularity and Alignment Variations

One additional challenge results from the disparities in minimal region size, granularity,
and alignment requirements between different hardware architectures. These discrepan-
cies require careful consideration and accommodation in the API design. For example, a
common task could be to mark the smallest possible region as read-only, as it is the case
for the canaries of the stack overflow detection. On the PMP this is typically four bytes,
while the ARM MPU consumes at a minimum of 32 bytes.

In light of these complexities, the development of a generic memory protection API de-
manded additional planning and a deep understanding of the intricacies of the underlying
hardware architectures and was not further pursued in this thesis.
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