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Abstract

A recent development in the field of embedded systems is the emergence of heterogeneous 

architectures, which combine multiple types of processors on a single chip. The Raspberry 

Pi RP2350 is one such architecture, combining two ARM Cortex M33 and two Hazard3 

RISC-V cores, along with a Programmable Input/Output (PIO) subsystem. Currently, 

RIOT OS, a popular operating system for embedded devices, does not support such 

architectures.

This thesis, explores the challenges and opportunities involved in porting RIOT OS to 

the RP2350. It focuses on understanding the architecture, implementing the necessary 

low-level support, and evaluating the advantages of such a system, including multicore 

processing in embedded applications.
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Kurzzusammenfassung

Eine aktuelle Entwicklung in der Welt der eingebetteten Systeme ist das Vorhanden

sein heterogener Architekturen, die mehrere Prozessortypen auf einem einzigen Chip 
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kombinieren. Der Raspberry Pi RP2350 ist eine solche Architektur, die zwei ARM 

Cortex M33- und zwei Hazard3 RISC-V-Kerne sowie ein PIO Subsystem kombiniert. 

Derzeit werden solche Architekturen in RIOT OS, einem beliebten Betriebssystem für 

eingebettete Geräte, nicht unterstützt.

Diese Arbeit untersucht die Herausforderungen und Chancen der Portierung von RIOT 

OS auf den RP2350, wobei der Schwerpunkt auf dem Verständnis der Architektur, der 

Implementierung der erforderlichen Low-Level-Unterstützung und der Bewertung der 

Vorteile eines solchen Systems liegt. Dabei ist auch ein Fokus auf die Möglichkeiten die 

Multi-Core Verarbeitung in eingebetteten Anwendungen bietet.
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1 Introduction

1.1 Motivation

In recent years, ARM has dominated the embedded systems industry, offering relatively 

fast Microcontroller Units (MCUs) such as the Cortex-M series, at comparatively low 

prices.

The emergence of RISC-V has challenged that dominance by offering an open alternative, 

which allows anyone to design and manufacture their own RISC-V-based MCUs without 

paying licensing fees to ARM. This has led to a surge of innovation in the field of MCUs, 

with many new designs and architectures being developed [2].

To ease developers into the usage of RISC-V based devices, Raspberry Pi released the 

RP2350 MCU. This MCU combines the legacy and wide adoption of the ARM Cortex-

M33 with the flexibility of the new RISC-V architecture using a Hazard3 open-source 

core [3].

This heterogeneous dual-core design is unified through an MCU architecture that 

emphasizes a shared environment, including common board peripherals, memory, and 

programmable I/O (PIO) blocks. This makes the RP2350 a unique platform for experi

menting with heterogeneous architectures in the embedded systems world.

RIOT OS is an open-source operating system designed for low-end IoT devices. It is 

known for its modularity, efficiency, and broad hardware support. It is designed to 

be hardware-agnostic and portable across different architectures and boards [4]. Still, 

RIOT OS currently does not support MCUs with heterogeneous architectures such as 

the RP2350.
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1.2 Objective

This thesis explores the process of porting RIOT OS to the RP2350 MCU, leveraging 

its unique dual-core architecture to enhance the capabilities of RIOT. The goal is to 

implement a functional port that allows RIOT OS to run seamlessly on the RP2350, 

taking advantage of its heterogeneous architecture while maintaining the modularity and 

efficiency that RIOT OS prides itself on [4].

The main objective of this work is to create a unified abstraction layer for both archi

tectures that allows seamless switching between RISC-V and ARM with minimal code 

redundancy. This entails exploring methods of integrating with the existing codebase 

of RIOT while also conforming to the unique peculiarities of the RP2350, such as the 

custom interrupt controller which the Hazard3 RISC-V processor includes.

In this thesis, we will also take a first glance at multicore processing within RIOT OS, 

exploring how a heterogeneous dual-core architecture can be utilized in an embedded 

operating system context. The objective of this thesis is to have a functional RIOT OS 

port for the RP2350 that can serve as a foundation for future work and exploration of 

heterogeneous architectures in embedded systems.

1.3 Outline

Section 2 provides the relevant background information on the RP2350 architecture, and 

relevant concepts, such as heterogeneous architectures and programmable I/O, as well 

as its multicore processing. It also gives an introduction to the RIOT operating system 

and design principles.

A review of related work in Section 3 follows next. In it, both related academic work 

and existing implementations of the RP2350 on other operating systems and libraries are 

discussed, with differences and similarities in our approach and goals being explained.

In Section 4 the thesis analyzes the RP2350 in more detail to explore the requirements 

and design considerations that are relevant for the porting process. We examine the 

boot process, multicore startup sequence, and interrupt system in detail. We also explore 

RP2350-specific details such as the picobin image format and Hazard3 custom extensions.

After diving into these details, we then describe the implementation of the port in 

Section 5. Detailing the steps taken to implement low-level support for the RP2350 

architecture, including clock configuration. Describing the approach that was taken to 
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implement multicore support and a unified abstraction for both architectures. We also 

discuss our approach to integrating the RP2350 interrupt controller with the existing 

RIOT interrupt handling system.

In Section 6, we evaluate the functionality and performance of the RIOT OS port on the 

RP2350. Showcasing the benefits that a second core can bring to an embedded operating 

system. We also compare differences in performance and size between the ARM and 

RISC-V cores when running RIOT-OS.

Finally, Section 7 wraps up the thesis by summarizing the key findings and contributions 

of this work. We reflect on the challenges faced during the porting process and how they 

were addressed. We also discuss the implications of our work for the future of RIOT 

OS and heterogeneous architectures in embedded systems. Followed by a discussion of 

potential future directions and improvements that can be made based on the work of 

this thesis in Section 8.
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2 Background

2.1 RISC-V

RISC-V is an open-standard Instruction Set Architecture (ISA) based on established 

principles of Reduced Instruction Set Computing (RISC) [5].

The RISC design philosophy aims to simplify the processor design by using a small set 

of simple and general instructions. This allows for easier implementation, lower power 

consumption, and higher performance by moving complexity from the hardware to the 

software, such as compilers and assemblers that can optimize instruction usage.

RISC-V expands on this concept by being open and extensible, allowing anyone to design, 

manufacture, and sell RISC-V processors without any licensing agreements. This has led 

to a wide range of adoptions, from small MCUs to high-performance processors, including 

the Hazard3 open-source core used by the RP2350.

RISC-V is still a relatively new architecture compared to architectures such as ARM and 

x86. However, it has gained significant traction in recent years, experiencing a 276.8% 

growth from 2022 to 2023 with market analysts such as the SHD Group forecasting 

continuing rapid growth over the next decades [6].

2.2 ARM-M

The ARM-M family comprises RISC processors designed by ARM Holdings plc. Unlike 

RISC-V, ARM is a proprietary architecture, requiring companies to license the technology 

from ARM Holdings plc when used in their products1.

1ARM licensing information can be found here (Accessed 30.10.2025): https://www.arm.com/
products/licensing
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The ARM-M family is designed for low-power, cost-efficient processors, making it ideal 

for embedded systems and IoT devices. It features a simplified instruction set, a limited 

number of registers, and other optimizations intended for embedded systems.

The ARM-M architecture also includes various security features, such as TrustZone tech

nology, which allows for the creation of secure and non-secure execution environments, 

as has been explored for RIOT OS in “Integration and Evaluation of a Secure Firmware 

for Arm Cortex-M Devices in RIOT OS”[7].

While RISC-V is gaining traction in the embedded systems industry [6], ARM-M remains 

a dominant architecture for low-power embedded systems due to its maturity, extensive 

ecosystem, and wide range of available tools and libraries, including the Cortex-M series 

of processors, such the RP2350 Cortex-M33 core.

2.3 RIOT OS

RIOT OS is an open-source Operating System (OS) for low-end embedded devices in the 

Internet of Things (IoT). It is vendor-neutral and lightweight on as little as 3.2 kB of 

ROM and 2.8 kB of RAM under minimal configurations [4].

The focus of RIOT on modularity and modifiability facilitates the easy integration of 

new features, including new MCUs and boards. Accompanied by a comprehensive set of 

tutorials and documentation to help new users get started with the OS2.

RIOT also offers a vast number of packages that can be utilized by newly ported boards 

after the initial setup. Currently, RIOT does not support heterogeneous architectures or 

multicore systems.

RIOT does, however, support both ARM and RISC-V architectures, including a com

prehensive abstraction for architecture specific common code, which makes it a good 

candidate for the RP2350.

2.3.1 RIOT OS Support for New MCUs

RIOT OS adopts a modular approach to peripheral and module support. Each peripheral 

or module is implemented as a separate driver that can be included or excluded depending 

on the target board or MCU [4, Chapter 6].

2RIOT OS documentation can be found here (Accessed 30.10.2025): https://guide.riot-os.org/
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The minimal support level RIOT OS requires of any added MCU is a bootable system 

capable of running a basic application, preferably including threading, though under 

special circumstances, a single-threaded system is also acceptable [4, Chapter 5].

From there, additional peripherals and most essential functionality can be added incre

mentally, such as interrupts, timers, GPIO, and UART.

2.3.2 RIOT Principles

Figure 1: RIOT OS modular architecture showcasing the kernel, drivers, and applications. 

Going from highly hardware-dependent modules to hardware-agnostic ones.

RIOT separates hardware-dependent code from hardware-agnostic code through a lay

ered architecture where each layer only interacts with the layer directly above or below 

it, rarely crossing layers as seen in Figure 1.

In essence, hardware-dependent code is limited to the MCU cpu drivers and boards board. 

The MCU driver, depending on the MCU and board, provides access to peripherals 

periph such as GPIO, timers, UART, SPI, and I²C. The board file then maps these 

peripherals to physical pins and configures any board-specific settings, such as UART 

baud rate or LED active high/low.

These components use a common peripheral API drivers / periph defined by RIOT 

OS. This API enables hardware-agnostic code, such as network stacks, file systems, and 
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applications, to use these peripherals without knowledge of the underlying hardware [4, 

Chapter 6c].

Another useful side effect of this modularity is that swapping out hardware becomes 

easier. Provided the new hardware has a RIOT OS MCU driver and a board file, the 

remainder of the system usually remains unchanged.

RIOT also offers third-party packages through the pkg directory. These packages can 

be added to a RIOT OS project through a simple USEPKG directive in the Makefile, 

enabling the integration of new functionality without the need to modify the core RIOT 

OS codebase. Examples include libraries, such as lvgl for graphical user interfaces, 

micropython for Python scripting support, or tinyusb for USB support3.

First-party packages are also modular and can be included from the sys directory. This 

includes essential functionality such as networking, file system, and cryptography.

The core directory contains the RIOT OS kernel and essential services such as the 

scheduler, memory management, and inter-process communication. This layer is hard

ware-agnostic and can run on every supported MCU4.

RIOT ensures that all the aforementioned layers are well tested through a comprehensive 

suite of unit and integration tests. This testing helps to maintain the stability and 

reliability of the system as new features and MCU support are added, and existing 

components are modified5.

2.4 RP2350

2.4.1 RP2350 Overview

The RP2350 is a low-cost MCU developed by Raspberry Pi. The Raspberry Pi Pico 2 

serves as the reference board for the RP2350. Throughout this thesis, the terms RP2350 

and Raspberry Pi Pico 2 are used interchangeably.

The RP2350 features both a dual-core ARM Cortex-M33 and a dual-core Hazard3 RISC-

V processor, which can be switched between while retaining full access to peripherals 

and memory. Both processors run at 150MHz on the Pico 2 board [3, Chapter 1]. The 

3A comprehensive list of available packages can be found here (Accessed 30.10.2025): https://github.
com/RIOT-OS/RIOT/tree/master/pkg

4More information about the RIOT OS structure can be found here (Accessed 30.10.2025): https://
guide.riot-os.org/general/structure/

5CI can be accessed here (Accessed 29.10.2025): https://ci.riot-os.org/details/branch/master
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Pico 2 board includes 520 kB of SRAM, 4 MB of onboard QSPI flash, two UARTs, two 

SPI controllers, two I2C controllers, 24 PWM channels, 26 GPIO pins, and three PIO 

subsystem blocks, each supporting four state machines [8].

The RP2350 is the first heterogeneous architecture developed by Raspberry Pi [9]. It 

succeeds the RP2040, which includes dual ARM Cortex-M0+ cores, 264kB of SRAM, 

and the first version of PIO [10]. RIOT OS already includes support for the RP2040, 

however, the RP2350 drastically changes the architecture by introducing RISC-V cores 

and a more advanced Cortex-M33 core, thus requiring a new port.

The RP2350 is designed for low-power applications and is suitable for use in a wide range 

of embedded systems, including IoT devices, wearables, and home automation systems. 

At the time of writing, three public revisions of the RP2350 exist: RP2350 A2, RP2350 

A3, and RP2350 A4, released in July 2025. These mostly contain bug fixes and security 

improvements [3, Appendix C]. This thesis is based on revision RP2350 A3 of the RP2350, 

as revision A4 was released after the initial research phase.

2.4.2 Hazard3

Hazard3 is a three-stage pipelined RISC-V processor used by Raspberry Pi in the RP2350 

MCU. It was designed by Luke Wren and is open-source [16]. The Hazard3 includes 

various extensions that introduce new CSRs and instructions, as listed in Table 1.

Although the Hazard3 is designed with modularity in mind, this thesis assumes that all 

of the above extensions are present, given that they are all implemented by the RP2350 

[3, Chapter 3.8].

2.4.2.1 Physical Memory Protection (PMP)

Physical Memory Protection (PMP) is a security feature of RISC-V that allows the 

definition of memory regions with specific access permissions [14, Chapter 3.7].

Although the Hazard3 supports 16 PMP regions [1, Chapter 3.3], the RP2350 implemen

tation is configured for only eight PMP regions at 32-byte granularity, followed by three 

hard-wired regions [3, Chapter 10.4].

The RIOT implementation of PMP follows the ISA specification, where only 16 or 64 

regions are supported [17, Chapter 2.2.4].

2.4.3 Cortex-M33

The Cortex-M33 is the first three-stage pipelined Armv8-M based processor and stands 

as one of the more powerful ARM MCUs [18].
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Extension Description

RV32I v2.1 Base integer instruction set with 32-bit registers [5]

M v2.0 Integer multiplication and division instructions [5]

A v2.1 Atomic memory operations [5]

C v2.0 Compressed 16-bit instructions for reduced code size [5]

Zicsr v2.0 CSR read/write instructions [5]

Zifencei v2.0 Instruction-fetch fence for self-modifying code [5]

Zba v1.0.0 Address generation bit manipulation instructions [11]

Zbb v1.0.0 Basic bit manipulation instructions [11]

Zbc v1.0.0 Carry-less multiplication instructions [11]

Zbs v1.0.0 Single-bit manipulation instructions [11]

Zbkb v1.0.1 Bit manipulation for cryptography [12]

Zcb v1.0.3-1 Code size reduction with additional compressed instructions [13]

Zcmp v1.0.3-1 Push/pop and double move compressed instructions [13]

Machine ISA v1.12 Machine-mode privileged instructions [14]

Debug v0.13.2 External debug support [15]

Xh3bextm Custom bit extraction multiple instructions (h3.bextm, 

h3.bextmi)

Xh3irq Custom interrupt controller

Xh3pmpm Custom CSRs for M-mode Physical Memory Protection (PMP) 

enforcement

Xh3power Custom power management with msleep CSR and hint instruc

tions

Table 1: RISC-V extensions supported by Hazard3

The RP2350 supports both Secure and Non-Secure states through the ARM TrustZone 

technology [3, Chapter 3.7.2]. This thesis focuses on the Non-Secure state of the Cortex-

M33, as RIOT does not have a merged integration of this technology [7], and the Hazard3 

exclusively supports Non-Secure mode. Thus, the Non-Secure mode is the only common 

denominator between the two architectures.
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Figure 2: Overview of a PIO state machine. Showcasing the shared instruction memory, 

access to the FIFO buffer, and interrupts.

2.4.4 Programmable Input/Output (PIO)

Programmable Input/Output (PIO) is a distinctive feature of the Raspberry Pi Pico 

MCU family. It was first introduced in the RP2040 and has been updated in the RP2350 

[3, Chapter 11.1.1].

The RP2350 contains three identical PIO blocks. Each block includes four state machines 

programmable in a custom assembly language. The state machines can operate indepen

dently or in parallel, allowing complex I/O operations to be offloaded from the main 

processors.

In total, the PIO assembly language has nine instructions, as explained in Table 2, 

that, when combined, allow for fairly complex operations, such as generating precise 

waveforms, handling serial protocols, or bit-banging custom interfaces. [3, Chapter 11.4].

Each state machine (Figure 2) can read and write to a FIFO buffer, which can be used 

to communicate with the main processors. In total, each state machine has eight 32-

bit buses, by default configured as four inputs and four outputs. This design allows for 

flexible communication between the state machines and the main processors.
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Instruction Description

JMP Jump to address if condition is true

WAIT Stall until condition is met (GPIO/pin/IRQ/jmppin)

IN Shift data from source into Input Shift Register

OUT Shift data from Output Shift Register to destination

PUSH Push ISR contents to RX FIFO

PULL Pull data from TX FIFO into OSR

MOV Move data between registers

IRQ Set or clear IRQ flags

SET Set pins or register to immediate value

Table 2: PIO assembly instructions

For high bandwidth operations, the RP2350 supports eight unidirectional 32-bit buses, 

allowing for eight input or eight output buses exclusively [3, Chapter 11.5.3].

Each state machine can also trigger and respond to interrupts. In total, there are eight 

IRQ flags shared among all state machines. State machines can both trigger and wait for 

these IRQ flags [3, Chapter 11.4.11].

In total, each state machine has four registers:

• The X and Y registers are general-purpose registers that can be used for arithmetic 

and logic operations.

• The Input Shift Register (ISR) and Output Shift Register (OSR) are used for serial 

data input and output operations.

The instruction memory is shared between all state machines in a block. Holding a total 

of 32 instructions per block.

PIO runs on the system clock. This would, however, be too fast for most I/O operations. 

To mitigate this, each state machine has a configurable clock divider that can be used to 

slow down the execution of instructions.

The clock divider modifies the number of clock cycles that count as one execution cycle 

of the state machine, instead of reducing the clock frequency [3, Chapter 11.5.5].

2.4.5 Inter-Processor Communication

The RP2350 features a few different mechanisms that enable synchronization and 

communication between its cores.
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2.4.5.1 Spinlocks

The RP2350 includes 32 hardware spinlocks and an additional 32 software locks for 

Secure mode. Each spinlock is a single flag bit that can be set or cleared by either core. 

If a core tries to acquire a lock that is already held by the other core, it will spin in a 

loop until the lock is released [3, Chapter 3.1.4].

2.4.5.2 Atomic Memory Operations

The RP2350 supports atomic access to SRAM based on the Armv8-M Global Exclusive 

Monitor mechanism. The implementation covers nearly all atomic RISC-V operations 

as defined in the atomicity PMA specification, except for the Load-Reserved/Store-

Conditional (LR/SC) RsrvEventual option [3, Chapter 2.1.6].

Load-Reserved/Store-Conditional (LR/SC) is a pair of instructions used in RISC-V to 

implement read-modify-write operations. The LR instruction loads a value from memory 

and marks the address as “reserved”. The SC instruction attempts to store a new value 

to the same address, but only if it is still marked as reserved (i.e., no other writes have 

occurred to that address since the LR). If the store is successful, it indicates that the 

operation was atomic; otherwise, it fails, and the operation must be retried [5].

There are three support levels for LR/SC PMA reservability:

• RsrvNone: No LR/SC operations are supported (locations are not reservable)

• RsrvNonEventual: LR/SC operations are supported, but the reservation may be lost

• RsrvEventual: LR/SC operations are supported and guarantee eventual success

The RISC-V Privileged Architecture specification recommends support for RsrvEventual 

and states that RsrvNonEventual support should include fallback mechanisms when lack 

of progress is detected [14, Chapter 3.6.3.2].

Raspberry Pi justifies not supporting RsrvEventual by noting that while artificial 

scenarios without progress guarantees can be theoretically constructed, practical imple

mentations with properly bounded atomic sequences typically complete quickly without 

requiring additional fallback mechanisms [3, Chapter 2.1.6].

2.4.5.3 Doorbell

The RP2350 features a core-local doorbell interrupt (identified as SIO_IRQ_BELL at IRQ 

26) that can be triggered by either core or by itself. This mechanism enables event 

signaling between cores in scenarios where event ordering is not critical or where multiple 

events can be processed within a single interrupt handler [3, Chapter 3.1.6].
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2.4.5.4 Inter-Processor FIFOs

The primary inter-processor communication mechanism consists of two hardware FIFOs, 

each 32 bits wide and four elements deep. Each FIFO is readable by one core and writable 

by the other. The FIFOs support interrupt generation when non-empty (for the reading 

core) or non-full (for the writing core) [3, Chapter 3.1.5].

These FIFOs are utilized by both the RP2350 bootloader and the multicore startup 

procedure, as discussed further in Section 5.3
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3 Related Work

This chapter reviews existing work relevant to the implementation of RIOT OS support 

for the RP2350. It examines prior efforts in porting operating systems to embedded archi

tectures, security analyzes of the RP2350 platform, and alternative operating systems 

and frameworks that support the RP2350. These works provide context for the design 

decisions and implementation approaches taken in this thesis.

3.1 Inferno OS on ARMv7-M

A relevant contribution in this field is the masters thesis “Porting Inferno OS to ARMv7-

M and Cortex-M7” by Petter Duus Berven [19]. In that work, the author ported the 

Inferno operating system, a distributed non-real-time OS derived from Plan 9, to the 

ARMv7-M architecture used in Cortex-M MCUs.

Plan 9 is an operating system developed at Bell Labs in 1992, designed with a focus on 

distributed computing and simplicity [20]. In Plan 9 only the most core and essential 

components are part of the kernel6, while most other functionality is run outside the 

kernel7. Inferno OS, similar to RIOT OS, allows a fairly modular design, with a small 

kernel.

The thesis focused on extending the custom compiler toolchain of Inferno to generate 

ARM Thumb instructions, implementing low-level hardware support for the Teensy 4.1 

board, and adapting core kernel components. In his thesis, Berven highlights common 

challenges including incomplete compiler backends, limited instruction-set coverage, and 

the need to redesign low-level exception handling, memory layout, and startup code.

While Berven’s project targeted a homogeneous ARM-based environment, this work is 

relevant to the current thesis as it provides insights into the complexities of porting an 

6Called ‘devices’ in Plan 9 [20].
7Called ‘servers’ in Plan 9 [20].
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operating system to a different architecture, which can inform the approach taken for 

porting RIOT OS to the RP2350.

3.2 Security through Transparency: Tales from the RP2350 
Hacking Challenge

In “Security through Transparency: Tales from the RP2350 Hacking Challenge” [21], 

the authors discuss the security aspects of the RP2350 architecture that were found 

in the process of a hacking challenge organized by Raspberry Pi Ltd. They analyze 

various vulnerabilities and attack vectors, providing insights into the security challenges 

associated with heterogeneous architectures. In it, the authors discuss attacks on the 

One-Time Programmable (OTP) Power State Machine (PSM), vector boot and signature 

verification to bypass secure boot.

While the main focus of the paper is on exploring the security of the RP2350 and methods 

to defeat it, the paper provides a comprehensive overview of the underlying hardware 

and boot sequence of the RP2350, which aids in understanding the low-level initialization 

of the RP2350 when implementing RIOT OS support.

Although this thesis does not focus on security aspects, as discussed in Section 2.4.3, 

RIOT OS TrustZone support is out of scope and not yet merged into mainline RIOT OS, 

understanding the security features of the RP2350 remains important for future work 

building upon this thesis.

3.3 Evaluation of RISC-V Physical Memory Protection in 
Constrained IoT Devices

In “Evaluation of RISC-V Physical Memory Protection in Constrained IoT Devices” [17], 

Bennet Blischke explores the use of the RISC-V Physical Memory Protection (PMP) 

unit in the context of constrained IoT devices running RIOT OS. In his thesis, Blischke 

implements data execution prevention and thread stack overflow detection using the 

RISC-V PMP, evaluating its effectiveness and performance impact.

While this does not directly relate to the RP2350 porting effort, his work serves as a 

foundation for demonstrating the benefits of enabling RIOT OS support on the RP2350 

platform, as it allows leveraging the RISC-V PMP features on the Hazard3 core with 

minimal additional effort.
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One of the conclusion of this work is that most existing PMP implementations do not 

properly comply with the specifications, we will extend the findings of this work in 

Section 6 when evaluating the PMP implementation of the Hazard3 core in the RP2350.

3.4 ArielOS

In “Ariel OS8: An Embedded Rust Operating System for Networked Sensors & Multi-Core 

Microcontrollers,” the authors present ArielOS a new operating system for embedded 

devices, written in Rust. It aims to provide a safe and secure environment for IoT 

applications, including support for multicore MCUs [22]. While still retaining much of 

the design philosophy of RIOT OS, ArielOS focus on multicore systems differentiates it 

from RIOT OS.

ArielOS includes support for the RP2350 from the beginning, making it an interesting 

point of comparison for this thesis. It was designed with the RP2350 and similar systems 

in mind [22, Chapter 1]. RIOT OS, on the other hand, was designed at a time when single-

core 8 bit and 16 bit MCUs were fairly common in the embedded space [4, Section 2], 

which is something that ArielOS does not target or support.

Under the hood, ArielOS differs significantly from RIOT OS. It leverages the pre-existing 

Rust ecosystem for embedded systems, using libraries such as Embassy as building 

blocks for the operating system [22, Chapter 5]. This is in contrast to RIOT OS, which 

implements most of its functionality from scratch in C.

Embassy is an asynchronous runtime for embedded systems in Rust, providing abstrac

tions for concurrency and hardware access9. In the case of the RP2350, ArielOS uses 

Embassy for the underlying hardware access, binding the implementation offered by the 

embassy_rp crate to its own abstractions10.

Referring to Figure 1 as explained in Section 2.3.2, this means that compared to RIOT 

OS, ArielOS still offers abstraction layers, but the underlying implementation of cpu, 

drivers, and peripherals is provided by Embassy rather than being originated from the 

OS11. ArielOS then provides core system services such as multicore task scheduling, inter-

8ArielOS can be found here (Accessed 28.10.2025): https://github.com/ariel-os/ariel-os
9Embassy can be found here (Accessed 28.10.2025): https://github.com/embassy-rs/embassy
10embassy_rp can be found here (Accessed 30.10.2025): https://github.com/embassy-rs/embassy/

tree/main/embassy-rp/
11The implementation of the RP2350 in ArielOS can be found here (Accessed 30.10.2025): https://

github.com/ariel-os/ariel-os/tree/main/src/ariel-os-rp
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Figure 3:  ArielOS Scheduler Architecture. After startup, Core 0 initializes the system 

and starts Core 1 via the FIFO (See Section 2.4.5.4). Then, both cores run the same 

scheduler, triggered through FIFO messages from either core to handle task scheduling.

process communication, and memory management on top of Embassy, similar to how 

RIOT OS builds its core services on top of its own hardware abstractions.

The scheduler in ArielOS is designed as a continuation of the tickless real-time scheduler 

of RIOT OS with preemptive priority scheduling, extended to support multicore systems. 

The exploration of multicore scheduling is further expanded in the original master’s 

thesis “Multicore Scheduling and Synchronization on Low-Power Microcontrollers using 

Embedded Rust” by Elena Frank in which she explores the design and implementation 

of a multicore scheduler for RIOT-rs, which later evolved into ArielOS [23].

ArielOS utilizes a global scheduling approach, as shown in Figure 3, where tasks are not 

bound to a specific core (though they can have a core affinity if desired), together with a 

shared mutually-exclusive kernel design [22, Chapter 5D]. The authors argue that such 

a global scheduling approach is acceptable on IoT MCUs given the low number of cores 

and limited parallelism [22, Chapter 5B].

On the RP2350, it uses the same process to start both cores as described in Section 5.3. 

After the startup process, it uses the FIFO to pass scheduler invocations between the two 

cores [22, Chapter 6B]. Specifically, when the scheduler needs to be invoked in a multicore 
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system, ArielOS uses a global spinlock through the RP2350 FIFO to synchronize a global 

critical section for all cores [22, Chapter 5F].

ArielOS represents a different approach to supporting the RP2350 compared to the work 

done in this thesis as it modifies the concept of the RIOT OS scheduler to support 

multicore systems directly, rather than building around the existing RIOT OS scheduler 

design, which is inherently single-core. Nonetheless, given its similarity to the RIOT OS 

scheduler, ArielOS provides a valuable comparison for the multicore design decisions 

made in this thesis and how they can be improved in future work. ArielOS also demon

strates that supporting the RP2350 in an embedded operating system is feasible and 

can provide a solid foundation for further exploration of heterogeneous architectures in 

embedded systems.

3.5 Pico SDK

Pico SDK is the official software development kit for the Raspberry Pi Pico12. Compared 

to RIOT OS or other operating systems, the Pico SDK is designed solely for the Pico 

series, similar to other vendor SDKs such as esp-idf from Espressif13.

The SDK aims to be a development framework rather than a full operating system, 

providing low-level access to the hardware and basic libraries for common tasks, but not 

including the benefits that come with a full operating system.

Given that this is a vendor SDK, it offers the widest support for RP2350 hardware 

features. It uses a CMake build system for building applications. The user must manually 

specify which modules to include in their application, similar to how RIOT OS allows 

users to select modules at compile time.

3.5.1 Abstraction

One of the core themes of this thesis is the abstraction of architectural differences between 

the ARM and RISC-V cores in the RP2350. The Pico SDK uses compile-time flags to 

differentiate between the two architectures.

It also shares a common abstraction layer between the RP2040 and RP2350, mostly 

sharing headers and higher-level libraries. The RP2040 was the predecessor of the 

RP2350, sharing most peripherals, though having a different purely ARM Cortex-M0+ 

12PicoSDK can be found here (Accessed 28.10.2025): https://github.com/raspberrypi/pico-sdk
13esp-idf can be found here (Accessed 28.10.2025): https://github.com/espressif/esp-idf
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dual-core architecture. While not supporting all peripherals, RIOT OS does also offer 

support for the RP2040.

While this approach works well for a vendor SDK, it lacks the modularity and flexibility 

of RIOT OS. The Pico SDK approach is hardware-dependent by design, making it less 

suitable for applications that require portability across different architectures and boards.

Throughout the technical specification and documentation of the RP2350, the Pico SDK 

is often referenced to explain hardware details, making it an important resource when 

implementing support for the RP2350 in RIOT OS. This influenced various parts of the 

implementation described in Section 5.

3.6 ZephyrOS

In contrast to the Pico SDK, ZephyrOS is a full-fledged operating system for embedded 

devices, very similar to RIOT OS14. ZephyrOS is maintained by the Linux Foundation 

and has a large community of contributors.

While RIOT OS is historically largely developed in the context of academic research 

through volunteer contributions, ZephyrOS is backed by major industry players such as 

Google, Meta, ARM, Intel, Texas Instruments, Nordic, STMicroelectronics, and others15.

This allows ZephyrOS to have vastly larger support for hardware platforms, architectures, 

and features compared to RIOT OS, supporting 881 boards as of October 202516.

While working on this thesis, ZephyrOS added support for the RP2350, including Hazard3 

support, by the end of September 202517. While this did not directly influence the work 

done in this thesis, it supported decisions made throughout the implementation process, 

as the approach in ZephyrOS aligned with the approach taken in this thesis regarding 

the abstraction of architectural differences between the ARM and RISC-V cores and 

handling the Hazard3 xh3irq interrupt controller (see Section 5.2).

14ZephyrOS can be found here (Accessed 30.10.2025): https://github.com/zephyrproject-rtos/zephyr
15ZephyrOS project members (Accessed 28.10.2025): https://www.zephyrproject.org/project-

members/
16ZephyrOS supported boards (Accessed 30.10.2025): https://docs.zephyrproject.org/latest/boards/

index.html
17ZephyrOS RP2350 Hazard support PR (Accessed 30.10.2025): https://github.com/zephyrproject-

rtos/zephyr/pull/89758
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In this chapter we analyze potential design considerations and requirements for porting 

RIOT OS to the RP2350 MCU.

This includes the bootup sequence, interrupt controller, clock system, and threading 

model. This gives us a good framework to then implement the necessary low-level support 

and ensure that RIOT OS can effectively utilize the capabilities of the RP2350.

4.1 Bootup Sequence

4.1.1 Bootrom

The RP2350 features a built-in bootrom that is executed on power-up [3, Chapter 5.2.2]. 

This bootrom is stored directly at 0x0 in a 32 kB immutable memory region and flashed 

onto the device during manufacturing [3, Chapter 4.1].

The bootrom has a wide range of responsibilities, from boot slot selection to rollback 

protection, intended for secure applications [3, Chapter 5]. However, for the context of 

this thesis, the most relevant parts of the bootrom are:

• Image and partition definition using picobin blocks

• Bootloader

• Architecture switching

• Core 0 boot code

• Core 1 launch preparations

4.1.2 Flashing

This thesis focuses on two primary flashing methods for the RP2350: OpenOCD and 

Picotool. These cover the most common use cases for flashing RIOT OS onto the RP2350, 

either through a SWD debugger or through USB mass storage device mode, thus offering 

flexibility for different development setups.
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The RIOT build system abstracts the flashing process through the PROGRAMMER variable, 

allowing users to select their preferred flashing method through the build system, making 

it easy to switch between different flashing methods without dealing with the underlying 

implementation details.

An MCU must simply declare their supported programmers, and offer relevant config 

options, such as the OpenOCD target file.

4.1.2.1 OpenOCD / Debugprobe

OpenOCD (Open On-Chip Debugger) is a popular open-source tool for debugging and 

programming embedded devices using JTAG/SWD interfaces, including acting as a 

remote target for GDB18.

The RP2350 allows for flashing and debugging through a SWD interface. Raspberry Pi 

recommends using their Debugprobe19 or a secondary Raspberry Pi Pico 1/2 as a SWD 

debugger flashed with a debugprobe firmware20 [24, Appendix A].

OpenOCD support for the RP2350 is, as of October 2025, still not integrated into any 

mainline OpenOCD release, requiring a custom build with RP2350 support21. RIOT OS 

already has support for OpenOCD as a flashing method, thus, as long as the custom 

OpenOCD build is used, no additional changes are required to support OpenOCD flashing 

for the RP2350.

4.1.2.2 Picotool

picotool is a custom command-line tool developed by Raspberry Pi for interacting 

with Raspberry Pi Pico series over USB22. RIOT already had support for elf2uf2, a 

predecessor to picotool, used for converting ELF files to the UF2 format used by the 

RP2040. Picotool support is thus a natural extension of this existing functionality and 

can reuse a significant portion of the existing integration codebase within RIOT OS.

UF2 (USB Flashing Format) is a file format developed by Microsoft designed for flashing 

MCUs over USB mass storage device mode. It allows users to simply drag and drop 

firmware files onto the device when it appears as a USB drive23.

18OpenOCD official website (Accessed 03.11.2025): http://openocd.org/
19Debugprobe product link (Accessed 30.10.2025): https://www.raspberrypi.com/products/debug-

probe/
20The debugprobe firmware can be downloaded here (Accessed 28.10.2025): https://github.com/

raspberrypi/debugprobe
21The RP2350 OpenOCD fork can be found here (Accessed 23.10.2025): https://github.com/

raspberrypi/openocd
22Picotool official repository (Accessed 30.10.2025): https://github.com/raspberrypi/picotool
23UF2 repository (Accessed 28.10.2025): https://github.com/microsoft/uf2
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Upon selecting picotool as the PROGRAMMER, the RIOT build system will automatically 

clone and build picotool. It then converts the compiled binary into the UF2 format, 

verifies that the UF2 file is valid, and finally uses picotool to flash the UF2 file onto the 

RP2350 over USB.

4.1.3 Image and Partition Definition (Picobin)

4.1.3.1 Background

For the bootrom to load an application from flash, it needs to understand the specifics 

of the image in question, given the heterogeneous nature of the RP2350. To allow such 

specifications the bootrom uses picobin blocks [3, Chapter 5.1.4].

The block described in Table 3 should be placed within the first 4kB of flash memory. 

The bootrom will parse this block to determine which image to load based on the current 

architecture and security state of the core [3, Chapter 5.1.5.1].

A single binary can have multiple picobin blocks to support different architectures and 

security states. The Next Block Pointer field indicates the relative position.

Field Description

Block Start Marker Marks the beginning of a picobin block (Magic Value)

Item Type Type of items in the block (e.g. Image Definition)

Item Size Block size in words

Image Type Flags • Bit 0-3: Image Type (e.g. Executable, Data)

• Bit 4-5: Security (e.g. Secure, Non-Secure)

Bit 6-7: Reserved

• Bit 8-10: CPU Architecture (e.g. RISC-V, ARM)

Bit 11: Reserved

• Bit 12-14: Chip (e.g. RP2350, RP2040)

• Bit 15: Try Before You Buy (TBYB) Image

Last Item Marker Marks the last item in the block

Last Item Size Size of last item in words

Next Block Pointer Relative pointer to next block (0 = self = no more blocks)

Block End Marker Marks the end of the picobin block (Magic Value)

Table 3: Picobin block structure for RP2350 image definition
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4.1.3.2 Design Considerations

Incorporating a picobin block into the RIOT OS build process involves a few key design 

considerations. First, the build system must be able to generate the picobin block with 

the correct fields based on the target architecture and security settings. This includes 

setting the appropriate Image Type Flags to indicate whether the image is for ARM or 

RISC-V and then link that binary blob into the final firmware image.

To achieve this, we must first look into how RIOT OS handles the build process and 

most notably how it manages linker scripts for different architectures.

The CPU defines a custom linker script under the ldscripts directory. In the case of 

the ARM version of the RP2350, this file would be ldscripts/rp2350_arm.ld. However, 

since both the ARM and RISC-V versions use an even higher abstraction layer through 

the cortexm_common and riscv_common module respectively, the actually important linker 

script is provided by these common modules, thus ldscripts/rp2350_arm.ld simply uses 

the INCLUDE directive to include the relevant common linker script.

This, however, poses a challenge as the aforementioned common linker scripts do not 

provide any hooks for adding custom sections, such as the picobin block. As such, there 

are two different approaches to solve this problem:

• Modify the common linker scripts to include hooks for custom sections.

• Create a new linker script specifically for the RP2350 that includes the picobin block.

Since these common modules are used by multiple MCUs, modifying them could poten

tially introduce issues for other platforms. In the case of the cortexm_common module, the 

linker script is fairly lengthy and complex.

4.2 Interrupt Controller

Interrupt handling on the RP2350 is complex due to the heterogeneous design. Each 

architecture has its own interrupt controller, with the ARM cores using a NVIC and the 

Hazard3 cores using the XH3IRQ controller [3, Chapter 3.8.4.2].

To facilitate cross-architecture compatibility, the RP2350 keeps the identical Interrupt 

Requests (IRQs) numbers for both, including support for platform-specific interrupts on 

both architectures [3, Chapter 3.2].
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The RISC-V Machine-mode timer interrupt SIO_IRQ_MTIMECMP, for instance, is a standard 

privileged interrupt for RISC-V RV32I. However, both on the Hazard3 and Cortex-M33, 

the IRQ is mapped to the value 29 and is functional [3, Chapter 3.1.8].

In total, the RP2350 defines 52 IRQ signals. The first 46 IRQ signals are connected to 

peripheral interrupt sources, while the remaining 6 are intentionally hardwired to 0 for 

forceful self-interrupts via software [3, Chapter 3.2].

4.2.1 Nested Vectored Interrupt Controller (NVIC)

NVIC is a nested vectored interrupt controller designed by ARM for their Cortex-M 

series of processors. It provides a flexible and efficient way to manage interrupts, allowing 

for prioritization and preemption of ISRs. It also handles context saving and restoring 

during interrupt handling. The NVIC design uses a vector table to map IRQ numbers 

to their corresponding ISR addresses, in which the first entries are reserved for system 

exceptions, followed by device specific interrupts [25].

On the Cortex-M33, the NVIC allows up to 480 interrupts to be managed with a 

preemption level of 0 to 255, whereby a lower level signals a higher priority [26]. As 

opposed to the custom XH3IRQ controller on the Hazard3 core, the NVIC on the RP2350 

Cortex-M33 follows the standard ARM design without any modifications.

4.2.2 XH3IRQ Controller

To minimize architectural differences, the Hazard3 core includes an interrupt controller 

extension called XH3IRQ. This extension adds a new set of Control and Status Registers 

(CSRs) and instructions to the core that enable an interrupt handling mechanism similar 

to ARM NVIC.

To facilitate this, the XH3IRQ controller adds 6 custom CSRs, as described in Table 4.
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CSR Description

meiea Machine External Interrupt Enable Array (enables/disables interrupts)

meipa Machine External Interrupt Pending Array (status of interrupts)

meifa Machine External Interrupt Force Array (force interrupts)

meipra Machine External Interrupt Priority Array (priority levels for interrupts)

meinext Machine External Interrupt Next (pointer to next highest priority pending 

interrupt)

meicontext Machine External Interrupt Context (Saves/informs about context during 

interrupt handling)

Table 4: XH3IRQ custom CSRs for interrupt management [1, Chapter 4.1]

The XH3IRQ controller handles enabling, status, priority, and forced pending through a 

window system, as shown in Table 5.

Bits Name Description

31:16 window 16-bit read/write window into the external interrupt array (1 bit per 

interrupt)

15:5 - Reserved

4:0 index Write-only, self-clearing field (no value is stored) used to control which 

window of the array appears in the window

Table 5: XH3IRQ CSRs register fields for Interrupt Pending Array (meipa), Interrupt 

Enable Array (meiea), Force Interrupt Array (meifa)

This window system, described in Table 5 allows the XH3IRQ controller to manage 512 

interrupts while only using a 32-bit CSR. Thus, at 1 bit per interrupt, each window can 

manage 16 interrupts with 32 total windows [1, Chapter 3.8.1].

Bits Name Description

31:16 window 16-bit read/write window into the external interrupt array (4 bits per 

interrupt)

15:5 - Reserved

6:0 index Write-only, self-clearing field (no value is stored) used to control which 

window of the array appears in window

Table 6: XH3IRQ CSRs register fields for the Interrupt Priority Array (meipra)
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To allow 16 preemption levels, the interrupt priority array CSR uses a 7-bit index instead 

with a 4-bit value per interrupt, as described in Table 6. Thus, each window can manage 

4 interrupts with a total of 128 windows [1, Chapter 3.8.4].

The XH3IRQ controller supports two operational modes: direct and vectored. In direct 

mode, the interrupt handler address is fixed, and all interrupts jump to the same handler. 

In vectored mode, each interrupt can have its own handler address [1, Chapter 4.1].

The XH3IRQ controller also includes a context-saving mechanism that allows the current 

execution context to be saved and restored when handling interrupts. This is done using 

the meicontext CSR and can optionally be enabled [1, Chapter 3.8.6].

Once the context is saved, the interrupt handler can be executed. After the handler 

is finished, the context can be restored and execution can continue from where it was 

interrupted through a mret call after completing the ISR [1, Chapter 3.2.9].

This is similar to the way ARM NVIC handles context saving and restoring during 

interrupt handling, as both controllers automatically save the execution context when 

an interrupt occurs, allowing the processor to jump to the interrupt handler. After the 

handler completes, the original context gets restored, and execution resumes from the 

point of interruption. Additionally, both support preemption priorities, for which higher-

priority interrupts can interrupt lower-priority ones, ensuring critical tasks are handled 

promptly.

4.2.3 Design Considerations

When designing the interrupt handling for the RP2350 port in RIOT OS, the goal is 

to create a unified abstraction layer that could handle interrupts for both architectures 

seamlessly. At the same time though, conforming to existing interrupt handling mecha

nisms of RIOT for both architectures. Specifically, this means that we first needed to 

understand the existing interrupt handling mechanisms for both architectures in RIOT 

OS.

4.2.3.1 Cortex-M Interrupt Handling

The cortexm_common module in RIOT already includes support for the NVIC, thus the 

design considerations for the RP2350 port were mostly about ensuring that the imple

mentation we intend to provide for the Hazard3 XH3IRQ controller conforms to the 

existing design patterns used in the cortexm_common module, at least in a way that allows 

architecture-agnostic code to work seamlessly across both architectures.
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In RIOT the NVIC implementation uses a macro-based approach, in which the 

cpu module provides an extension to the interrupt vector table. Each vector that 

should be included in the final vector table gets a .vector label assigned using the 

__attribute__((used,section(".vectors." # x ))) attribute. These attributes are then 

collected at the linking stage using a KEEP(*(SORT(.vectors*))) and sorted based on the 

assigned x value.

This way cortex_common ensures that common Cortex-M IRQ handlers can be defined in 

a platform-agnostic way, while still allowing platform-specific handlers to be defined in 

the respective cpu module.

4.2.3.2 RISC-V Interrupt Handling

The interrupt handler of the riscv_common module functions in a fairly different way 

compared to the cortexm_common module. The riscv_common module uses a single trap 

handler function that manages all interrupts and exceptions, opposed to the direct vector 

table jumps typical to NVIC. Depending on the enabled systems, such as Platform Level 

Interrupt Controller (PLIC) or Core Local Interrupt Controller (CLIC), the trap handler 

then passes the interrupt to the relevant sub-handler.

Given that the XH3IRQ controller needs a custom handling mechanism and the Cortex-M 

does not use a custom interrupt controller, the design consideration here was to imple

ment the XH3IRQ handler in a way that fits into the existing trap handler mechanism of 

the riscv_common module while still allowing the RP2350 interrupt vector to be defined 

similarly to the vector table that the NVIC uses for direct jumps.

4.2.3.3 Abstracting

Thus, the final design proposal for the interrupt handling abstraction uses an interrupt 

vector table similar to the one used by the NVIC on the ARM side, while on the RISC-V 

side the trap handler function checks whether the interrupt originated from the XH3IRQ 

controller and then looks up the relevant handler in the vector table to call, as shown in 

Figure 4.

While this does introduce some overhead that the XH3IRQ controller theoretically could 

avoid through direct vector jumps (See Section 4.2.2), this design allows seamless inte

gration into the existing interrupt handling mechanisms of RIOT for both architectures 

while still allowing architecture-agnostic code to define ISR handlers in a unified way. 

The trap handler of the RISC-V implementation also goes beyond the scope of direct 

vector jumps the XH3IRQ controller handles, as it also deals with the scheduler, ecalls, 

faults and context switching.
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Figure 4: Diagram showing the design proposal for the route a hardware interrupt takes 

through the abstraction layers. Starting from the external trigger to the final user-defined 

ISR handler. Orange boxes are shared/common, blue boxes are ARM, green boxes are 

RISC-V.

Thus, the alternative of replacing the entire RISC-V interrupt handling mechanism within 

RIOT with a direct vector jump system for the RP2350 would have introduced significant 

complexity and maintenance burden of two competing interrupt handling mechanisms 

that would both need to be maintained in the future.
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4.3 Clocks

The RP2350 provides a flexible clocking system that allows for multiple clock sources 

and configurations. The main internal clock sources are the ROSC, XOSC, and LPOSC 

[3, Chapter 8.1.2].

These clock sources then get routed through a series of dividers to allow for a wide range 

of clock frequencies for internal components, such as the system clock used for processors 

and memory, the peripheral clock used by UART and SPI, or the reference clock used 

by the watchdog and timers [3, Chapter 8.1].

4.3.1 Ring Oscillator (ROSC)

On startup, the ROSC is used as the main clock source. Since hardware revision RP2350 A3 

the ROSC operates at a randomized frequency on each power cycle to improve glitching 

attack resistance. The intended nominal frequency provided to the reference clock by 

the ROSC is 11 MHz, but due to the aforementioned randomization, it can vary largely. 

Without randomization, the RP2350 guarantees a speed in-between 4.6 MHz and 19.6 

MHz, depending on the operating voltage and temperature.

On revision RP2350 A2 ROSC is set to a randomized frequency between 4.6 MHz and 

24.0 MHz. The RP2350 A3 and later revisions quadruple the ROSC frequency by reducing 

the divisor of the system clock to 2. This increases the standard range of the system 

clock to 18.4 MHz to 96.0 MHz. Given that this is substantially higher than the nominal 

frequency of 11 MHz, RP2350 A3 and later revisions increase the divisor of the reference 

clock to compensate [3, Chapter 8.3.1].

Due to the volatility of the ROSC frequency, it is not suitable for applications that 

require a stable clock source. Therefore, while not technically required, Raspberry Pi 

recommends to switch to the XOSC after the initial boot sequence [3, Chapter 8.3.4].

4.3.2 Crystal Oscillator (XOSC)

The XOSC on the RP2350 uses an external 12 MHz ABM8-272-T3 ceramic SMD crystal to 

provide a stable clock source. This is the recommended clock source for most applications, 

especially those that require precise timing [3, Chapter 8.2.1]. It should be noted that 

the RP2350 has a specified XOSC support range of 1 MHz to 50MHz if a different crystal 

is used [3, Chapter 8.2.1].
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To allow XOSC to stabilize, it is advisable to wait for at least 1 ms after enabling it 

before switching the system clock to it. This can be done through a specialized startup 

delay timer set within the CTRL_ENABLE register [3, Chapter 8.2.3].

4.3.2.1 XOSC Counter

The XOSC COUNT register is relevant to this thesis as it allows for accurate hardware-

based delays by counting the number of XOSC cycles. Given the stable 12 MHz frequency 

of the XOSC, this allows for precise timing without relying on software-based delays that 

can be affected by interrupts [3, Table 603].

4.3.3 Low Power Oscillator (LPOSC)

To enable low power operation while the core is dormant, the RP2350 includes a low 

power oscillator (LPOSC) running at a nominal 32.768 kHz. Compared to the XOSC, 

there is no configuration required to use the LPOSC. When the system detects that the 

XOSC is powered down for low power operations, it will automatically switch to the 

LPOSC to keep the always-on logic running [3, Chapter 8.4].

4.3.4 Design Considerations

When designing the clock system support for the RP2350 port in RIOT OS, the startup 

flow needed to be considered carefully. After evaluating all available clock sources, we 

decided to implement the clocks as shown in Figure 5.

IoT devices are often used in scenarios where battery and by that power consumption 

are a limiting factor. In works such as “Sense Your Power: The ECO Approach to Energy 

Awareness for IoT Devices” by Michel Rottleuthner [27], it has been shown that energy 

awareness can significantly improve the battery life of IoT devices. In the work, the 

authors propose an energy-aware design that allows the system to adapt its performance 

based on the current energy budget. This includes dynamically adjusting the clock speed 

to balance performance and power consumption. While an implementation as presented 

in the work is out of scope for this thesis, allowing for the user to easily change the 

clock speed is relevant and important for the RP2350 port in RIOT OS and lays the 

groundwork for future energy-aware designs.
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Figure 5: Proposed clock startup sequence for RP2350 port in RIOT OS. First, while 

running via ROSC, the XOSC is enabled. After a delay to allow it to stabilize, the system 

clock is switched to the XOSC for stable operation.

4.4 Multi-Core Support

4.4.1 Background

When RIOT was initially designed, it was built around the concept of a single core with 

a few MHz of processing power [4, Chapter 2].

The RP2350 and most other modern IoT MCUs however, significantly exceed these 

initial assumptions. Thus, in order to make use of these new capabilities, we first must 
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understand how RIOT handles threading and scheduling in its current form and then 

adapt our approach accordingly.

RIOT uses a fixed-priority fixed-preemption scheduling model. Each thread is only 

interrupted through IRQs, otherwise, threads execute to completion [4, Chapter 5b]. The 

main approaches to multi-core scheduling in the IoT OS field are global scheduling and 

partitioned scheduling. In global scheduling, one singular task queue is shared across all 

cores, and tasks are distributed onto available cores. In partitioned scheduling each core 

has its own task queue, and tasks are assigned to specific cores [22, Chapter 2].

ArielOS adapts this scheduling model to a multi-core environment by implementing a 

global scheduler (a single scheduler managing threads across all cores) that can distribute 

tasks across both cores, as explained in Section 3.4.

While changing the scheduler of RIOT to a similar design as in Figure 3 is theoretically 

possible, scheduler modifications were avoided in the design process. Fitting such a critical 

code change into the scope of this thesis exceeded the scope, given the complexity of 

multi-core scheduling and integrating it into the existing architecture of RIOT.

Figure 6: Proposed “Worker Core” multi-core model for RIOT OS. The main core (Core 

0) offloads specific tasks to the secondary core (Core 1) which runs them independently 

without any scheduler intervention.
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4.4.2 Design Proposal

Thus, a method was required to start both cores and have them run independently 

without any scheduler intervention. To achieve this, the secondary core is effectively 

isolated from the main RIOT OS environment as a worker core. It executes only what 

is directly assigned to it through inter-core communication mechanisms, as shown in 

Figure 6.

Naturally, this design does come with drawbacks compared to Figure 3 (See Section 3.4) 

would not have. The user is forced to design their application around this limitation, 

compared to a scheduler-based approach where the user can simply trust the scheduler 

to distribute tasks across both cores.

On the other hand, this design significantly reduces the complexity and maintenance 

burden of the implementation, as the entire multi-core logic can be contained within the 

RP2350 cpu module, which was the deciding factor for this design choice.

4.5 Programmable Input/Output (PIO)

The official pico sdk uses a pioasm assembler tool to assemble PIO instructions. Since 

RIOT aims to be vendor neutral, integrating the pioasm tool directly into RIOT is not 

ideal. However, any user wanting to use the pioasm tool should still be able to do so 

easily. The output format of the pioasm tool itself is however not compatible with RIOT 

as it also produces additional functions that rely on the Pico SDK. However, for our use 

case, we only require the raw assembled binary data to be loaded into the PIO memory.

Given the relatively small amount of instructions that can be stored in the PIO memory 

(32 instructions per state machine), it can be reasoned that programming PIO using C 

macros is feasible for most use cases. Thus, we propose a design where the user can define 

their PIO programs using C macros that directly encode the required instructions into 

binary data, as shown in Figure 7. The developer would then simply manually execute 

the required setup at runtime to load the assembled binary into the PIO memory and 

launch the state machines [3, Chapter 11.2.1].

One notable design goal with this is that PIO should integrate into the existing RIOT 

GPIO driver abstractions so the user can easily switch between using standard GPIO 

pins and PIO-controlled pins without changing their application code significantly and 

reducing code duplication, thus increasing maintainability. The PIO support we aim to 

provide is meant as a foundational layer for future more advanced PIO abstractions, such 
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as a dedicated PIO driver that can manage state machines, load programs, and handle 

interrupts in a more user-friendly way.

PIO Assembly
Instructions C Macros Assembled Output

Binary Data
included in RIOT

application

Figure 7: Proposed design for integrating pioasm into the RIOT build system. The pioasm 

tool is built from the Pico SDK and then used to assemble PIO assembly files into raw 

binary data that can be included in the RIOT build process.
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In this chapter, we discuss the implementation of the RP2350 port in RIOT OS. Going 

through the various notable components that were implemented, including the module 

setup, interrupt handling, multicore support, and clock configuration.

The full source code of the implementation can be found on GitHub for Picotool24, ARM 

support25, Multicore26 and RISC-V support27.

5.1 Module Setup and Abstraction

RIOT OS already has support for both ARM and RISC-V architectures in the form of 

shared common folders.

In order to avoid code duplication, the RP2350 includes a secondary common abstraction 

module. This module, referred to as rp2350_common, contains nearly all the code that is 

shared between both architectures. This includes peripheral drivers, riot-specific defini

tions, and general initialization functions.

5.1.1 Module Structure

The standard procedure of adding new MCUs or boards to RIOT OS is to create a CPU-

specific module within the cpu directory and a board specific module within the boards 

directory. These modules then include the common code from the common directory. They 

can also offer peripheral support from the periph directory, such as GPIO or UART 

drivers.

24The picotool integration PR (Accessed 21.10.2025): https://github.com/RIOT-OS/RIOT/pull/
21269

25The ARM RP2350 port PR (Accessed 21.10.2025): https://github.com/RIOT-OS/RIOT/pull/21545
26The Multicore code (Accessed 21.10.2025): https://github.com/AnnsAnns/RIOT/blob/pico2_riscv/

cpu/rp2350/core.c
27The RISC-V and Interrupts RP2350 port PR (Accessed 21.10.2025): https://github.com/RIOT-OS/

RIOT/pull/21753
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Figure 8: RIOT OS RP2350 module folder structure. Blue denotes architecture-specific 

modules. Orange denotes CPU module definitions. Green denotes board module defin

itions.

The general layout of the implementation of the RP2350 support in RIOT can be seen 

in figure Figure 8. The rpi-pico-2 board includes its architecture-specific module, which 

then includes the shared rp2350_common module.

5.1.2 Build System Architecture Abstraction

The shared rp2350_common configures itself based on the defined architecture, either ARM 

or RISC-V, through defines provided by the RIOT build system, including the import of 

the architecture-specific common folder.

Architecture-specific function calls are handled through abstraction layers via define flags 

provided by the RIOT build system. For example, IRQ enabling is done through the 

rp_irq_enable function, which inlines the appropriate function call based on the current 

architecture, as shown in Listing 1. Using static inline allows the compiler to optimize 

away the function call overhead, resulting in efficient architecture specific code generation 

while still maintaining a clean and centralized abstraction.

This centralized design allows for the architecture-specific code to be kept to a minimum. 

The CPU module itself has to create the cpu_init function, which is called by the 
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/**

 * @brief     Enable the given IRQ

 * @param[in] irq_no IRQ number to enable

 */

static inline void rp_irq_enable(uint32_t irq_no)

{

#ifdef RP2350_USE_RISCV

    xh3irq_enable_irq(irq_no);

#else

    NVIC_EnableIRQ(irq_no);

#endif

}

Listing 1: Example of architecture-specific IRQ enabling through abstraction in 

rp2350_common.

RIOT kernel during startup. The ARM implementation only requires Listing 2 within 

the architecture-specific CPU module.

This function then calls both the architecture-specific initialization function and the 

shared rp2350_init initialization function (Listing 3), which handles the initialization of 

the RP2350 itself.

5.1.3 Build System

The build system of RIOT is built upon the Makefile system. Each module can provide a 

Makefile.include, Makefile.dep, Makefile.features, and a general Makefile file, which 

is then included by the RIOT build system when the module is used. This allows for easy 

configuration of the build system, including the addition of source files, include paths, 

and defines.

#include "cpu.h"

#include "periph_cpu.h"

void cpu_init(void)

{

    cortexm_init();

    rp2350_init();

}

Listing 2: Example of the ARM cpu_init function within the rp2350_common module.
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/**

 * @brief Initialize the CPU, set IRQ priorities, clocks, and peripherals

 */

void rp2350_init(void)

{

    /* Reset GPIO state */

    gpio_reset();

    /* Reset clock to default state */

    clock_reset();

    /* initialize the CPU clock */

    cpu_clock_init();

    /* initialize the early peripherals */

    early_init();

    /* trigger static peripheral initialization */

    periph_init();

    /* initialize the board */

    board_init();

}

Listing 3: The shared rp2350_init function within the rp2350_common module. Initializes 

clocks, GPIO, and peripherals.

The main purpose of the per-CPU module is to provide the correct values for the 

architecture. For example, the RISC-V version needs to define that it supports the RISC-

V specific xh3irq and PMP peripherals as shown in Listing 4.

CPU_CORE := rv32imac

CPU_FAM     := RP2350

CPU_MODEL   = rp2350_hazard3

FEATURES_PROVIDED += periph_pmp

FEATURES_PROVIDED += periph_xh3irq

include $(RIOTCPU)/rp2350_common/Makefile.features

include $(RIOTCPU)/riscv_common/Makefile.features

Listing 4: Example of the RISC-V CPU module Makefile including the shared 

rp2350_common and riscv_common feature files.
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5.1.4 Picobin Integration

To avoid the maintenance burden of a custom linker script, we chose the design in 

Section 4.1.3 to modify the common linker script to include a hook for the picobin section 

using the KEEP directive to ensure that the picobin block is not discarded during the 

linking process, but not included when building for other platforms, being an optional 

addition.

The picobin block must be located within the first 4kB of flash memory. To ensure this, 

we place the picobin block directly after the interrupt vector table, which is typically 

located at the beginning of the flash memory region, as shown in the excerpt from the 

modified linker script in Listing 5.

sfixed = .;

_isr_vectors = DEFINED(_isr_vectors) ? _isr_vectors : . ;

KEEP(*(SORT(.vectors*)))

KEEP(*(SORT(.picobin_block*))) /* Keep picobin block used by RP2350 */

*(.text .text.* .gnu.linkonce.t.*)

Listing 5: Excerpt of modified linker script from cortexm_common module to include 

picobin block

We do a similar modification (Listing 6) for the RISC-V linker script within the 

riscv_common module to ensure that both architectures support picobin when building 

for the RP2350. Since RISC-V does not have a vector table at the start of flash, we 

simply place the picobin block at the beginning.

.text           :

{

  KEEP(*(SORT(.picobin_block*)))

  *(.text.unlikely .text.unlikely.*)

  *(.text.startup .text.startup.*)

  *(.text .text.*)

  *(.gnu.linkonce.t.*)

} >flash AT>flash :flash

Listing 6: Excerpt of modified linker script from riscv_common module to include picobin 

block

The picobin block itself is a pure Assembly file called picobin.s that the RIOT build 

system automatically includes when building the RP2350 as described in Listing 7.
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.section .picobin_block, "a" /* "a" means "allocatable" (can be moved by the 

linker) */

/* PICOBIN_BLOCK_MARKER_START */

.word 0xffffded3

    /* ITEM 0 START based on 5.9.3.1 */

    .byte 0x42 /* (size_flag == 0, item_type == 

PICOBIN_BLOCK_ITEM_1BS_IMAGE_TYPE) */

    .byte 0x1 /* Block Size in words */

    /* image_type_flags (2 bytes) [See 5.9.3.1 / p419] */

    /* 15 -> 0 (1 for "Try before you buy" image */

    /* 12-14 -> 001 (RP2350 = 1) */

    /* 11 -> 0 (Reserved) */

    /* 8-10 -> 001 (EXE_CPU_ARM == 000) || (EXE_CPU_RISCV == 001) */

    /* 6-7 -> 00 (Reserved) */

    /* 4-5 -> 10 (2) EXE Security */

    /* 0-3 // 0001 IMAGE_TYPE_EXE */

    .hword 0b0001000100100001

    /* ITEM 0 END see 5.1.5.1 for explanation and 5.9.5.1 for the value / 

structure */

    .byte 0xff /* PICOBIN_BLOCK_ITEM_2BS_LAST */

    .hword 0x0001 /* Size of the item in words (predefined value) */

    .byte 0x00 /* Padding */

    /* Next Block Pointer */

    .word 0x00000000 /* Next block pointer (0 means no more blocks) */

/* PICOBIN_BLOCK_MARKER_END */

.word 0xab123579 /* Marker for the end of the picobin block */

Listing 7: Assembly code for the picobin block used in RP2350 builds, based on the 

definitions in Section 4.1.3.

If in the future this structure needs to be appended, e.g., to support both RISC-V and 

ARM with a single binary, this file can be easily modified to include multiple picobin 

blocks as needed based on the settings explained in Section 4.1.3.
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5.2 Interrupt Handling

To facilitate an easy abstraction to registering ISRs for both architectures, rp2350_common 

provides a shared vector table full of function pointers. Given that typical programs will 

not want to define all 51 ISRs, all entries are initialized to a default handler that causes 

a core panic.

To make these functions rewritable, all of them are defined with the weak and alias 

attributes. When the compiler sees a function with the same name defined elsewhere, it 

will use that function instead of the default one.

For example, if the user wants to define a ISR for the UART0 peripheral, they can define 

a function with the name isr_uart0 and the compiler will use that function instead of 

the default one.

5.2.1 RISC-V Interrupt Handling

On initialization, the riscv_common startup function riscv_init sets the standard trap 

entry point through the mtvec CSR to the trap_entry function. This function is then 

called on every interrupt or exception (commonly referred to as traps in RISC-V).

The trap_entry then saves the stack and calls the trap_handler function, which then 

handles the actual interrupt. On other RISC-V devices, this function would then call 

the handler for PLIC or CLIC, however, since the RP2350 uses the custom XH3IRQ 

controller, it was necessary to implement our own handler.

To make future ports of Hazard3-based devices easier, the port implements the handler 

within the riscv_common module itself. This allows for easier reuse of the code in future 

projects, thus reducing implementation effort.

Similar to PLIC and CLIC, the XH3IRQ controller can be enabled through the common 

RIOT periph abstraction layer. Any device that runs on RISC-V and includes the 

XH3IRQ controller can include the periph_xh3irq feature in its CPU module and get 

support for the XH3IRQ controller.

When enabled, the trap_handler checks the xh3irq_has_pending function whether the 

Machine Interrupt Pending CSR has any pending interrupts, as shown in Listing 8. If 

this is the case, the trap_handler in Listing 9 then calls xh3irq_handler, which uses the 

shared vector table to call the appropriate ISR for the pending interrupt depending on 

the highest priority written within the MEINEXT CSR.
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/**

 * Hazard3 has internal registers to individually filter which

 * external IRQs appear in meip. When meip is 1,

 * this indicates there is at least one external interrupt

 * which is asserted (hence pending in mieipa), enabled in meiea,

 * and of priority greater than or equal to the current

 * preemption level in meicontext.preempt.

 */

#define MEIP_OFFSET 11

/*

* Get MEIP which is the external interrupt pending bit

* from the Machine Interrupt Pending Register address

*/

uint32_t mip_reg = read_csr(0x344);

uint32_t meip = bit_check32(&mip_reg, MEIP_OFFSET);

Listing 8: Checking the Machine Interrupt Pending CSR for pending interrupts in 

trap_handler.

/*

* Get MEINEXT at 0xbe4, which is the next highest interrupt to handle (Bit 

2-10).

* This will also automatically clear the interrupt (See 3.8.6.1.2.)

*

* Contains the index of the highest-priority external interrupt

* which is both asserted in meipa and enabled in meiea, left-

* shifted by 2 so that it can be used to index an array of 32-bit

* function pointers. If there is no such interrupt, the MSB is set.

*/

uint32_t meinext = (read_csr(0xBE4) >> MEINEXT_IRQ_OFFSET) & MEINEXT_MASK;

void (*isr)(void) = (void (*)(void)) vector_cpu[meinext];

Listing 9: Fetching the highest priority pending interrupt from the MEINEXT CSR and 

calling the appropriate ISR from the shared vector table in xh3irq_handler.
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5.2.2 ARM Interrupt Handling

As with the RISC-V interrupt handling, the port aims to conform to the existing RIOT-

OS abstractions as closely as possible.

The cortexm_common module already includes the necessary setup for the NVIC, including 

the default vector table and the cortexm_init function, which is called during startup to 

initialize the NVIC.

To allow amendments to the vector table, cortexm_common uses an attribute system to 

give all vector table amendment arrays the section(".vectors." # x ) attribute that 

the linker script can then sort and properly place within the final binary.

5.3 Multicore Implementation

The very first step is to wake up the secondary core. The secondary core remains dormant 

after the initial boot sequence and expects a specific sequence of events for wake up. For 

that, the RP2350 needs to release the reset state of the core. This can be done by a simple 

write to the FRCE_ON register of the PSM, followed by polling the DONE register of the 

PSM till the software has a confirmation that the reset has completed [3, Chapter 7.4.4].

At this point, the secondary core is in a known state, awaiting further instructions. 

The port then uses the inter-processor FIFOs described in Section 2.4.5.4 to send the 

necessary startup information to the secondary core to boot it up. In total, the startup 

sequence sends six 32-bit values to the secondary core in the order specified in Table 7.

Value Description

1-3 0, 0, 1

4 Pointer to ISR vector

5 Initial stack pointer

6 Entry point address (Trampoline function)

Table 7: Values sent to the secondary core via inter-processor FIFO during boot.

A trampoline function is a small piece of code that sets up the environment for the actual 

function to be called, thus allowing for more complex setups, such as setting up the stack 

or registers before jumping to the actual function. Thus the handler functions also writes 

the function and argument to the stack of the secondary core before sending the stack 

pointer value. To send these values, it follows a specific sequence of steps to ensure that 

the secondary core receives them correctly. After Listing 10 has completed, the secondary 
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core should be awake and running the trampoline function at the provided entry point 

address.

The trampoline function then calls the architecture-specific initialization function, pops 

both values from the stack, and jumps to the provided entry point function with the 

provided argument. In the design of this entry function interface, we decided to conform 

to the way threads are started in RIOT OS. In essence, this means that the entry 

function needs to have a signature of void *(*core_1_fn_t)(void *arg). The current 

implementation is designed to offload a specific, blocking task to the secondary core as 

described in the analysis in Section 4.4.
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uint32_t seq = 0;

/** We iterate through the cmd_sequence till we covered every param

 * (seq does not increase with each loop, thus we need to while loop this) */

while(seq < 6) {

    uint32_t cmd = cmd_sequence[seq];

    /* If the cmd is 0 we need to drain the READ FIFO first*/

    if(cmd == 0) {

        /* Drain READ FIFO till it is empty */

        while(SIO->FIFO_ST & 1<<SIO_FIFO_READ_VALID_BIT) {

            (void) SIO->FIFO_RD; /* Table 39 FIFO_RD*/

        };

        fifo_unblock_processor();

    }

    /* Check whether queue is full */

    while (!(SIO->FIFO_ST & 1<<SIO_FIFO_SEND_READY_BIT)) {

        /* Wait for queue space */

    }

    SIO->FIFO_WR = cmd; /* Write data since we know we have space */

    fifo_unblock_processor(); /* Send event */

    /* This is eq. to the SDK multicore_fifo_pop_blocking_inline*/

    /* We check whether there are events */

    while(!(SIO->FIFO_ST & 1<<SIO_FIFO_READ_VALID_BIT)) {

        /* If not we wait */

        fifo_block_processor();

    };

    /* Get the event since this is our response */

    volatile uint32_t response = SIO->FIFO_RD;

    /* move to next state on correct response (echo-d value)

     * otherwise start over */

    seq = cmd == response ? seq + 1 : 0;

};

Listing 10: Sequence to send the necessary boot values to the secondary core via inter-

processor FIFO. First, draining the read FIFO if the value to send is 0, then sending the 

value and waiting for an echoed response before proceeding to the next value. On each 

incorrect response, the sequence is restarted.
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5.4 Implementation of Clocks

The RP2350 provides multiple clock sources, initially running from the ROSC (See: 

Section 4.3.1). The implementation provides a clock initialization function within 

rp2350_common that handles the switch to the more stable XOSC (See: Section 4.3.2) and 

then switch the system clock, reference clock, and other clocks to the desired frequencies.

This function first initializes the XOSC by setting the appropriate bits within the XOSC 

CTRL register to enable it and waits for it to stabilize. The RP2350 uses 12-bit magic 

value codes for this to protect against accidental writes. These differ depending on the 

desired frequency range of the crystal being used [3, Chapter 8.2.8]. After configuring 

the startup delay timer based on the crystal frequency and desired stabilization time [3, 

Chapter 8.2.4], the XOSC can be enabled and polled until stable.

At this point, the initialization sequence configures the PLL to run off the XOSC as the 

reference clock. The feedback and post divider values are calculated based on the desired 

VCO frequency and final PLL output frequency of 125 MHz [3, Chapter 8.1.6.1]. The 

port then sets the system clock to run off the PLL output and the peripheral clock to run 

through the lower line provided by the system clock. The complete clock initialization 

sequence is encapsulated in the cpu_clock_init() function within rp2350_common, as 

shown in Listing 3.

To allow for modifications to the set clock speed, the port provides all these values 

as #define flags, allowing for easy adjustments to the clock speed if the user desires a 

different configuration, e.g. to save power by running at a lower frequency as discussed 

in Section 4.3.4. The implementation then asserts that any entered values are within the 

valid ranges specified in the RP2350 datasheet to avoid misconfigurations that could lead 

to undefined behavior or at worst hardware damage.

5.5 Programmable Input/Output (PIO) Support

PIO support requires some modification to existing RIOT OS drivers, most notably the 

GPIO driver. PIO state machines can have direct access to GPIO pins, which requires the 

GPIO driver to configure the pins accordingly. In RIOT OS, the GPIO driver gpio_init 

function takes two arguments, the pin number and the mode. The mode is defined as 

a set of flags that configure the pin as input/output, pull-up/down, etc., however, PIO 

functionality serves as an additional mode.

46



5 Implementation

The easiest way to do this is to redefine these aforementioned flags to include PIO func

tionality. The RIOT design already considered such scenarios and wrapped the definition 

with #ifndef HAVE_GPIO_MODE_T guards, allowing us to redefine the gpio_mode_t enum 

within the rp2350_common module, adding additional flags for PIO0/PIO1 respectively. 

We can then simply check for these flags within the gpio_init function and configure the 

pin accordingly for PIO functionality by setting the appropriate bits within the PIO_CTRL 

register of the RP2350. The user can then configure the desired pins as PIO0/PIO1 and 

use the existing PIO driver to configure and use the PIO state machines as needed.

5.5.1 Abstracting PIO Instruction Generation

To facilitate usage of PIO within RIOT OS, we implemented an abstraction layer for 

generating PIO instructions. This layer provides a set of functions that allow users to 

create PIO programs without needing to write raw PIO assembly code. Specifically, we use 

C Macros to define common PIO instructions, making it easier to construct PIO programs 

programmatically, as shown in Listing 11 for the uncondition JMP jump instruction.

This ensures that the generated instructions are correct and reduces the likelihood of 

errors when writing PIO programs as compared with writing raw binary values.

#define PIO_JMP_COND_ALWAYS     (0)     /**< Always jump */

/**

 * @brief JMP instruction encoding

 *

 * Set program counter to address if condition is true.

 *

 * @param[in] cond      Condition (PIO_JMP_COND_*)

 * @param[in] addr      Target address (0-31)

 */

#define PIO_JMP(cond, addr) \

    (0b0000000000000000 | (((cond) & 0b111) << 5) | ((addr) & 0b11111))

/**

 * @brief JMP - unconditional jump

 *

 * @param[in] addr  Target address (0-31)

 */

#define PIO_JMP_ALWAYS(addr)    PIO_JMP(PIO_JMP_COND_ALWAYS, (addr))

Listing 11: Example of C macros to generate PIO instructions, specifically the JMP 

instruction with conditional and unconditional variants.
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The resulting macro output can then be directly written into the instruction memory of 

the PIO state machines. Alternatively, if users want to use the pico sdk PIO assembler, 

they can still do so by including the necessary headers. This way, our own PIO support 

remains vendor agnostic and does not rely on the pico sdk while still allowing users to 

leverage existing tools if desired.

5.5.2 PIO Usage Example

Through the abstractions provided, a simple PIO program such as Listing 12 can be 

created with minimal effort fully within RIOT OS, without a need to write raw PIO 

assembly code or binary values. The code in the example initializes a PIO program that 

generates a square wave on GPIO0 by setting the pin high and low in a loop. While not a 

complex example, it demonstrates the ease of use provided by the PIO abstraction layer 

within RIOT OS.
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static const uint16_t squarewave_program_instructions[] = {

    PIO_SET_PINDIRS(1),

    PIO_SET_PINS(1),

    PIO_SET_PINS(0),

    PIO_JMP_ALWAYS(1),

};

int main(void) {

    // Load instructions

    for (uint32_t i = 0; i < 4; ++i) {

        *(&PIO0->INSTR_MEM0 + i)

            = squarewave_program_instructions[i];

    }

    // Set the Clock Divider for SM0

    PIO0->SM0_CLKDIV = (uint32_t) (1.0f * (1 << 16)); //12.5 MHz

    // Configure the Pin Control for SM0

    PIO0->SM0_PINCTRL = (1 << PIO_SM0_PINCTRL_SET_COUNT_LSB) |

        (0 << PIO_SM0_PINCTRL_SET_BASE_LSB);

    // Initialize GPIO0 for PIO usage

    gpio_init(0, GPIO_PIO0);

    // Set SM0 to enabled

    atomic_set(&PIO0->CTRL, 1 << PIO_CTRL_SM_ENABLE_LSB);

}

Listing 12: Example of using the PIO abstraction layer to create a simple square wave 

generator on GPIO0 using PIO0. The program sets the pin high and low in a loop, 

creating a square wave output. The GPIO pin is initialized for PIO usage using the 

modified GPIO driver.
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In this chapter, we evaluate the implementation of the RP2350 port in RIOT OS. We 

assess the practical performance characteristics of the port and verify if the design goals 

outlined in Section 4 and Section 5 have been achieved.

The evaluation starts with the multicore support implementation, where we measure the 

performance benefits of the “worker core” design discussed in Section 4.4. This is followed 

by a detailed code size comparison between the ARM Cortex-M33 and RISC-V Hazard3 

architectures to validate the efficiency of the unified abstraction layer.

Finally, we demonstrate the ecosystem benefits of the RIOT integration, including the 

access to the comprehensive testing infrastructure and support for high-level languages.

6.1 Multicore Support

6.1.1 Methodology

To evaluate the multicore support implemented in Section 5, we designed a series of tests 

to demonstrate the functionality and performance benefits of utilizing both cores, even 

in a more limited fashion as currently implemented.

As a simple demonstration of the functionality of both cores working in tandem, we 

implemented a dual-core GPIO test application Listing 13. Both cores toggle separate 

GPIO pins as fast as possible. While this is a simple test, it effectively demonstrates that 

both cores can operate independently and concurrently in scenarios where, for example, 

vast amounts of data need to be transferred over GPIO.

As a point of comparison, we also implemented a single-core version, Listing 13, of 

the same application, where only one core toggles both GPIO pins sequentially. The 

hypothesis is that the dual-core version should be twice as fast as the single-core version, 

assuming both cores can operate at full speed. We run both tests on the Cortex-M33 

core, measuring the toggling frequency of each GPIO pin using an oscilloscope.
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#define PIN_14 14u

#define PIN_15 15u

/* Single-core GPIO toggling both pins 

sequentially */

int main(void) {

    gpio_init(PIN_15, GPIO_OUT);

    gpio_init(PIN_14, GPIO_OUT);

    uint32_t selected_pin = PIN_15;

    while (1) {

        selected_pin = (selected_pin == 

PIN_15) ? PIN_14 : PIN_15;

        gpio_set(selected_pin);

        gpio_clear(selected_pin);

    }

    return 0;

}

/* This function runs on core 1 */

void* core1_main(void *arg) {

    (void)arg;

    gpio_init(PIN_14, GPIO_OUT);

    while (1) {

        gpio_set(PIN_14);

        gpio_clear(PIN_14);

    }

    return NULL;

}

/* This function runs on core 0 */

int main(void) {

    /* This will start core 1 and run 

core1_main on it */

    core1_init(core1_main, NULL);

    gpio_init(PIN_15, GPIO_OUT);

    while (1) {

        gpio_set(PIN_15);

        gpio_clear(PIN_15);

    }

    return 0;

}

Listing 13: Single-core GPIO toggling both pins sequentially (left) and dual-core GPIO 

toggling both pins in parallel (right).

6.1.2 Results

We can observe the results of both tests using an oscilloscope in Figure 9. The sequential 

toggling of both pins in the single-core version results in a lower frequency signal, as 

expected. In contrast, the dual-core version shows both pins toggling at a higher frequency 

and in parallel, confirming that both cores are functioning correctly and independently, 

given the simultaneous toggling of both GPIO pins.

The average signal period of each GPIO pin in the single-core test is approximately 560 

nanoseconds. In the dual-core test, the average signal period is around 288 nanoseconds.

In total, we can see a performance improvement of approximately 94.94% when utilizing 

both cores in parallel compared to a single core handling both tasks sequentially.
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Figure 9: Oscilloscope captures showing single-core GPIO toggling (left) and dual-core 

GPIO toggling (right). Yellow (Top) is PIN 14, Blue (Bottom) is PIN 15. Single core 

average period: 560 ns, Dual core average period: 288 ns.

6.1.3 Discussion

Given the design choices explained in Section 4.4 and the differences in approach to the 

multi-core scheduler of Ariel OS as discussed in Section 3.4, we can conclude that while 

the current implementation demonstrates the feasibility of multi-core processing on the 

RP2350 within RIOT OS, there is significant room for improvement.

Ariel OS and other operating systems that have been designed with multi-core support 

from the ground up, implement more sophisticated scheduling algorithms that can better 

utilize the capabilities of both cores. This includes load balancing, inter-core commu

nication mechanisms, and more efficient context switching as discussed in “Multicore 

Scheduling and Synchronization on Low-Power Microcontrollers using Embedded Rust” 

by Elena Frank [23].

Comparing the results here with those of the master’s thesis by Elena Frank, she 

achieves a performance improvement of 84% when utilizing both cores on the RP2040 

in a CPU-bound workload. In the thesis, she calculated π using the Leibniz formula, 

sending calculation results between the cores, demonstrating that even a more advanced 

scheduler can achieve similar performance improvements in CPU-bound workloads while 

also utilizing more advanced features such as inter-core communication [23].

While inter-core communication is feasible with the current implementation using the 

methods described in Section 2.3, we provide no higher level abstractions for it. One 

of the key objectives stated in Section 1.2 of this thesis is the creation of a unified 

architecture abstraction layer that allows seamless switching between the ARM Cortex-

M33 and Hazard3 RISC-V architectures within RIOT OS.
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Both architectures can run RIOT OS with multi-core support, and the basic functionality 

of utilizing both cores has been demonstrated, which is something RIOT OS did not 

support before, which was a key objective of this thesis. Yet the limitations of the 

current multi-core implementation, particularly in terms of scheduling and inter-core 

communication, indicate that there is still future work to be done when comparing to 

multi-core operating systems, such as Ariel OS.

6.2 Code Size Comparison

To evaluate the efficiency of our implementation and compare the two architectures 

supported by the RP2350, we performed a detailed code size analysis of a minimal 

multicore application. This analysis provides insights into the memory footprint required 

for each architecture and helps identify optimization opportunities.

6.2.1 Methodology

We compiled a minimal dual-core GPIO application, Listing 13, for both the ARM 

Cortex-M33 and RISC-V Hazard3 architectures. The application uses basic peripheral 

drivers (UART, GPIO) and demonstrates multicore functionality, making it representa

tive of a typical embedded application on the RP2350.

RIOT provides a memory usage analysis tool called cosy, which we used to extract 

detailed size information from the compiled binaries28. The measurements were performed 

with the standard RIOT build configurations for each architecture to ensure consistency. 

The builds were also done within the standard RIOT docker environment. RIOT ran in 

the default -Os optimization level, which enables all -O2 optimizations except those that 

increase code size. The chosen stack size here is the default size allocated by RIOT OS 

for each core depending on the architecture, which can be configured by the user.

6.2.2 Results

6.2.2.1 ARM Cortex-M33

The ARM build produces a binary with a total text section size of 7,610 bytes. Table 8 

shows the breakdown by major components across all memory sections.

28RIOT Cosy Repository (Accessed 04.01.2026): https://github.com/RIOT-OS/cosy/
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Component Text (bytes) Data (bytes) BSS (bytes) Total (bytes)

cpu 2576 - 2064 4640

core 1972 2 1754 3728

pkg 1768 - - 1768

boards 1012 - - 1012

newlib 96 - - 96

sys 86 - - 86

app 60 - - 60

unspecified 20 - - 20

drivers 16 - - 16

fill 4 2 2 8

Total (Stacks) 7610 4 3820 11434

Total (No Stacks) 7610 4 236 7850

Table 8: ARM memory section breakdown by component

A noticeable contribution to the larger BSS section comes from the default stack alloca

tion of 1536 bytes for each core and an additional 512 bytes for the isr_stack in RIOT 

OS on ARM Cortex-M33. Thus, a total of 3584 bytes are allocated for stacks by default.

Table 9 shows the detailed breakdown of the cpu text section, revealing the contributions 

from the shared rp2350_common module, the cortexm_common module, and the ARM-

specific rp2350_arm module.

Module/Symbol Size (bytes)

rp2350_common 1394

cortexm_common 1168

rp2350_arm 14

Total 2576

Module/Symbol Size (bytes)

periph 784

vectors.o 224

core.o 164

clock.o 88

xosc.o 68

cpu.o 66

Total 1394

Table 9: ARM cpu text section breakdown by module (left) and rp2350_common text 

section breakdown (right)
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Component Text (bytes) Data (bytes) BSS (bytes) Total (bytes)

cpu 2765 208 1300 4273

core 2201 - 1754 3955

pkg 2168 - - 2168

sys 156 - - 156

newlib 150 - - 150

examples 66 - - 66

boards 40 - - 40

unspecified 20 - - 20

fill 15 - 2 17

drivers 6 - - 6

Total (Stacks) 7587 208 3056 10851

Total (No Stacks) 7587 208 240 8035

Table 10: RISC-V memory section breakdown by component

6.2.2.2 RISC-V Hazard3

The RISC-V build produces a slightly more compact binary with a total text section size 

of 7,587 bytes. Table 10 shows the breakdown by major components.

On RISC-V, the default stack allocation is 1280 bytes for each core and 256 bytes for 

the idle stack, leading to a total of 2816 bytes allocated for stacks by default. Table 11 

shows the detailed breakdown of the cpu text section, revealing the contributions from 

riscv_common, the shared rp2350_common module, and the RISC-V-specific rp2350_riscv 

module. The larger data section can be explained by the XH3IRQ interrupt vector table 

we use to abstract the interrupt controller differences, which is stored in the data section 

(32-bit pointers for 52 interrupts = 208 bytes).

Table 11 provides a breakdown of the cpu module and the rp2350_common module for 

RISC-V, showing the individual object file contributions.

6.2.3 Analysis

The comparison reveals several important characteristics of both architectures:

Text Section (Code Density): Both architectures show remarkably similar text 

section sizes, with ARM at 7,610 bytes and RISC-V at 7,587 bytes, a difference of only 

23 bytes (0.3%). This indicates that our unified abstraction layer effectively minimizes 
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Module/Symbol Size (bytes)

riscv_common 1441

rp2350_common 1308

rp2350_riscv 16

Total 2765

Module/Symbol Size (bytes)

periph 876

core.o 178

clock.o 94

cpu.o 78

xosc.o 64

vectors.o 18

Total 1308

Table 11: RISC-V cpu text section breakdown by module (left) and rp2350_common 

text section breakdown (right)

architecture-specific overhead, allowing both architectures to achieve comparable code 

density.

Data Section: The RISC-V build shows a notably larger data section (208 bytes vs 4 

bytes on ARM). This difference stems from the RISC-V architecture storing the interrupt 

vector tables in the data section for interrupt controller compatibility purposes.

BSS Section (RAM Usage): When excluding stack allocations, both architectures 

show comparable BSS usage (236 bytes on ARM vs 240 bytes on RISC-V). The total BSS 

difference (3,820 bytes on ARM vs 3,056 bytes on RISC-V) is primarily due to differing 

default stack sizes. These stack sizes are configurable by the user based on application 

requirements, thus a direct comparison may not reflect actual application memory usage 

scenarios.

Shared Components: Both architectures benefit from the modular design of RIOT OS. 

The shared rp2350_common module contributes 1,394 bytes on ARM and 1,308 bytes on 

RISC-V, with the difference primarily in peripheral driver implementations and vector 

table handling. The pkg module shows sizes of 1,768 bytes on ARM vs 2,168 bytes on 

RISC-V, attributed to architecture-specific library optimizations.

CPU Module: The architecture-specific modules (cortexm_common at 1,168 bytes vs 

riscv_common at 1,441 bytes) reflect the differing interrupt handling and context switching 

mechanisms inherent to each architecture. Notably, the chip-specific modules (rp2350_arm 

at 14 bytes and rp2350_riscv at 16 bytes) are minimal, demonstrating the effectiveness 

of the unified abstraction layer.

Total Memory Footprint: The overall memory footprint is 11,434 bytes for ARM and 

10,851 bytes for RISC-V (including stacks), or 7,850 bytes vs 8,035 bytes when excluding 
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stack allocations. This represents a difference of less than 2.4% in either direction, 

confirming that the choice between architectures does not significantly impact memory 

requirements.

These results validate our implementation approach and demonstrate that both archi

tectures provide viable options for RP2350 development. The choice between ARM and 

RISC-V can be made based on other factors such as toolchain preferences, debugging 

capabilities, or specific peripheral requirements, as the memory overhead differences are 

minimal. Even more so when considering the 520 kB of SRAM and 4 MB of onboard 

QSPI flash on the Rasperry Pi Pico 2.

6.2.4 Comparison with Pico SDK

To provide additional context, we compared the code size of our RIOT OS implemen

tation with that of the official Raspberry Pi Pico SDK for the RP2350. For that, we 

implemented Listing 13 in the Pico SDK and compiled through their default build system. 

We followed the exact methodology outlined in the “Getting Started with Raspberry Pi 

Pico” guide, including compiling using the Microsoft Visual Studio Code Pico extension 

[24]. The default core stack size on Pico SDK is 2048 bytes.

Table 12 shows the memory usage comparison between the Pico SDK and RIOT OS 

for the same dual-core GPIO application on the ARM Cortex-M33 core. We can see 

a significant difference in memory usage, with the Pico SDK requiring 40,847 bytes 

compared to 8,362 bytes in RIOT OS. This substantial difference can be attributed to 

the overhead included by the Pico SDK, which may not be necessary for all applications, 

including a few fairly massive newlib components used within the RP2350 initialization 

of the SDK and not required by the written application code.

Memory Section Pico SDK RIOT OS

Code (.text) 24688 bytes 7610 bytes

Data (.data/.rodata) 17838 bytes 4 bytes

Zero-initialized (.bss) 2417 bytes 3820 bytes

Overall Memory Usage

Total 44943 bytes 11434 bytes

Total (No Core Stacks) 40847 bytes 8362 bytes

Table 12: Memory comparison between Pico SDK and RIOT OS for dual-core GPIO 

application on the ARM Cortex-M33 cores
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This indicates that the RP2350 port in RIOT OS follows the design goal of RIOT to 

be a lightweight operating system suitable for resource-constrained embedded systems, 

while still providing essential features and abstractions for application development and 

offers a more efficient memory footprint compared to the vendor SDK.

6.3 Benefits of RIOT on RP2350

The idea of integrating the RP2350 into RIOT OS was driven by the potential benefits 

that RIOT OS could offer to such a MCU, including the vast ecosystem of supported 

libraries, protocols and unit/integration tests that RIOT OS provides.

RIOT allowed us to abstract away many critical low-level details that would require 

significant design and implementation efforts to implement from scratch, including 

threading, cryptography, scheduling and other core OS functionalities. Any user willing 

to use RIOT on the RP2350 can now leverage these well-tested components without 

needing to reimplement them.

Comparing it to the official vendor picosdk SDK mentioned in Section 3, RIOT OS 

provides a considerable advantage in terms of available features and libraries, making it a 

valuable option for developers looking to build applications on the RP2350, without the 

vendor-lock-in of using the own SDK by Raspberry Pi. Examples include network stacks 

such as CoAP through unicoap, graphic drivers through lvgl or even Web Assembly 

support through wamr.

6.3.1 Unit Tests / Integration Tests

Through the integration with RIOT, we can leverage the existing unit and integrations 

tests, through the entire process of porting RIOT OS to the RP2350. Each commit made 

to the port could be verified against the existing test suite, including tests against all 

examples and the core/sys modules of RIOT OS.

The Murdock CI Runner of RIOT enables this by building the entire suite on large server 

clusters, reducing the time it would take to run the tests locally and by that enabling 

rapid iteration during development29.

Most notably it builds both the ARM and RISC-V versions of each test, ensuring that 

both architectures are always tested in parallel.

29One example test suite run (11.10.2025) showing all tests passing on the RP2350 (Accessed 
14.11.2025): https://ci.riot-os.org/details/01fef4c5e621454aa199aa339fec965b

58



6 Evaluation

6.3.2 Rust Integration

Through RIOT OS support for Rust and C++, we were able to easily integrate these 

languages into our RP2350 port. In the example of Rust, all that was required was to 

add the appropriate target specifications. The existing RIOT build system then takes 

care of compiling and linking the Rust code into the final binary, allowing us to leverage 

existing Rust libraries and tools within our RP2350 applications.

The Rust integration of RIOT is compatible with all existing code written for the RP2350, 

including the initialization, peripheral drivers and interrupt handling. Thus, while this 

support was trivial to add for the RP2350 port, it stands as an example of the benefits 

that RIOT OS provides. Comparing it to the official Pico SDK which does not support 

Rust, the user is able to easily switch between these languages without leaving their 

existing codebase behind.

Looking into the binary size of a simple “Hello World” application, written in both C 

and Rust, we can see that the Rust version is only slightly larger than the C version, as 

shown in Figure 10.

Aside from the access to the language itself, the RIOT Rust integration also provides 

access to the existing embedded Rust ecosystem, including the embassy async framework 

Figure 10: Binary size comparison of a “Hello World” application written in C (left) and 

Rust (right) for the RP2350 RISC-V Hazard3 cores running RIOT OS. C TEXT size: 

7483 bytes, Rust TEXT size: 7819 bytes. The different colors represent different modules, 

such as the core, rp2350_common or pkg that contribute to the final binary size.
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that is also used by Ariel OS (see Section 3.4). This allows users to leverage the benefits 

of async programming on the RP2350 within RIOT OS, opening up new possibilities for 

application design and architecture.

It should be noted that currently the Rust integration of RIOT does not support the 

Cortex-M33 cores of the RP2350, due to limitations in the existing RIOT Rust support. 

However, this could be added in the future, given the existing support for ARM Cortex-

M architectures in the Rust embedded ecosystem.

6.3.3 Accessing Third Party Libraries

Unless a third party library has board/cpu-specific code, it can be used on the RP2350 

without any modifications. The user can simply specify any library with USEPKG or 

USEMODULE in their application Makefile, and the RIOT build system will take care of 

the rest. This is a significant advantage over using vendor-specific SDKs, where the user 

would often need to manually port or adapt third-party libraries to work with the specific 

SDK and hardware.

A good example of this is the usage of modules such as stdio_uart. Without RIOT, the 

user would need to implement their own STDIO over UART functionality, or adapt an 

existing library to work with the RP2350 hardware. With RIOT, the user can simply 

include the stdio_uart module in their application, and it will work out of the box on the 

RP2350. Such functionality has proven to be very useful during the entire development 

process, allowing quick iterations over the code that matters, rather than spending time 

on boilerplate code to get basic functionality working.

This ease of integration with libraries significantly lowers the barrier to entry for devel

opers looking to build applications on the RP2350, allowing them to focus on their 

application logic rather than low-level hardware details.

6.3.4 PMP Support

The RIOT implementation of PMP support (see Section 2.4.2.1) based on the work of 

Bennet Blischke complies with the official PMP specifications [17]. In the testing of the 

PMP implementation on the RP2350 Hazard3 cores, we observed that the PMP does not 

function as expected. Specifically, the RP2350 only supports eight PMP regions instead 

of the standard 16 or 64 regions the specification allows.

60



6 Evaluation

This limitation hinders the effective use of the existing PMP implementation in RIOT OS, 

as it requires vendor specific adjustments to function correctly on the RP2350, though 

the core implementation remains compliant with the RISC-V PMP specification.

However, Errata RP2350-E6 breaks the PMP specification conformity. The standard 

ordering for PMP permissions is X, W, R (execute, write, read). The Hazard3 incorrectly 

interprets the ordering as R, W, X (read, write, execute) [3]. The Hazard3 core v1.1 

revision fixed this issue in April 202430.

Raspberry Pi decided to not include this fix in newer RP2350 revisions, instead opting 

to keep the errata. Based on the errata description, it can be assumed that this was done 

to maintain compatibility with existing software, as it states that the issue was fixed 

through “Documentation”. This means that the PMP implementation in RIOT OS will 

not work correctly on any RP2350 device.

30The commit fixing the issue (Github, Accessed 03.11.2025): https://github.com/Wren6991/Hazard
3/commit/7d370292b00f5bab846a1702ee24cc41179d631e
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7 Conclusion

The embedded systems landscape is diversifying with the emergence of RISC-V as 

an open alternative to established ARM architectures. The Raspberry Pi RP2350 

microcontroller offers both ARM Cortex-M33 and Hazard3 RISC-V cores in a single 

device, allowing developers to choose between architectures without changing hardware. 

However, operating system support for such heterogeneous platforms requires careful 

abstraction to maintain portability across different processor architectures.

The contribution of this thesis comprises several parts. First, a unified abstraction layer 

was implemented through the rp2350_common module, allowing applications to compile 

for either ARM or RISC-V without modifications. The abstraction uses compile-time 

flags and inline wrappers to handle architecture-specific differences transparently.

Second, support for the Hazard3 XH3IRQ custom interrupt controller was integrated 

into the riscv_common module through the periph_xh3irq feature. This enables future 

Hazard3-based devices to reuse the implementation. The integration maintains compat

ibility with existing interrupt handling patterns of RIOT while abstracting interrupt 

controller specifics between both architectures.

Third, multicore support was implemented using a worker-core model, in which the 

secondary core executes tasks independently of the main RIOT scheduler. Additional 

contributions include picobin image format integration through modifications of common 

linker scripts, support for OpenOCD and Picotool flashing methods, configurable clock 

management, and support for the RP2350 Programmable Input/Output (PIO) subsys

tem.

The evaluation showed that both architectures achieve comparable binary sizes with 

similar code distributions. Rust integration demonstrates the benefits of integrating 

the RP2350 into RIOT, with a minimal increase in binary size for Rust applications. 

Integration with the RIOT CI system ensures ongoing validation through comprehensive 

test suites for both architectures.
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Some limitations were identified. The Hazard3 core has non-standard PMP permission bit 

ordering (Errata RP2350-E6), preventing standard RISC-V PMP implementations from 

functioning correctly. The worker-core multicore model requires explicit task management 

rather than transparent scheduling, severely limiting applicability for thread-intensive 

workloads, compared to other multicore operating systems.

The RP2350 port provides RIOT users with access to an affordable dual-architecture 

development platform. The port enables use of RIOT ecosystem of network stacks, 

cryptographic libraries, and third-party packages on both ARM and RISC-V without 

vendor lock-in. The unified abstraction layer establishes design patterns applicable to 

future heterogeneous platforms.
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8.1 TrustZone-M and Security Features

The Cortex-M33 core of the RP2350 supports TrustZone-M. In her master thesis, Lena 

Boeckmann integrated TrustZone-M on the Cortex-M33 into RIOT [7]. This could be 

extended to the RP2350 port in the future. The author of the thesis even suggests the 

RP2350 as an interesting target for future work, due to the presence of both ARM 

security features, such as TrustZone-M and PMP, on the RISC-V core. While this thesis 

focused on getting a functional port of RIOT OS running on the RP2350, this can be 

seen as a stepping stone towards the aforementioned research into security features on 

heterogeneous architectures.

8.2 Heterogeneous Core Utilization

Another interesting avenue for future work is to explore the potential of using both the 

RISC-V and Cortex-M33 cores in a Core0 and Core1 configuration, where Core0 (Cortex-

M33) handles security-sensitive tasks through the Secure Mode support, while Core1 

(RISC-V) manages less critical operations. The official Raspberry Pi documentation hints 

at this possibility but does not provide concrete examples or implementations, warning 

that it could be challenging on the software side [3, Chapter 3.9.2].

8.3 USB Support

In 2024, a periph_usb RIOT driver for the RP2040 was drafted. This could be finished 

and adapted to work on the RP2350 as well31. The periph_usb driver would allow RIOT 

31The periph_usb driver draft (Accessed 27.10.2025): https://github.com/RIOT-OS/RIOT/pull/
20817
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applications running on the RP2350 to utilize its USB functionality, including UART 

over USB, which would lower the barrier to entry for developers wanting to experiment 

with RIOT on the RP2350.

8.4 Advanced Multi-Core Features

In this thesis, we have only scratched the surface of multicore processing within RIOT 

OS. Future work could explore more advanced multicore features, such as inter-core 

communication mechanisms, load balancing, and task scheduling across cores. Currently, 

we avoid the scheduler, future work could explore how to extend the existing RIOT 

scheduler to be multicore aware, allowing it to distribute tasks between the two cores 

more effectively in a hardware-agnostic abstraction.
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CSR:  Control and Status Registers (CSRs) are special-purpose registers in RISC-V 

processors that control various aspects of the processor operation and provide status 

information. These are privileged registers, meaning they can only be accessed in cer

tain privilege modes (e.g., Machine mode). CSRs are used for tasks such as configuring 

interrupts, managing memory protection, and controlling performance counters [14].

RV32I: The base integer instruction set for 32-bit RISC-V processors. It includes basic 

arithmetic, logical, control flow, and memory access instructions. It is the foundation 

for all RISC-V implementations and can be extended with optional instruction set 

extensions for additional functionality.

first-party: In the context of software packages, “first-party” refers to packages or 

components that are developed and maintained by the original creators or maintainers 

of the software platform itself. In contrast, “third-party” packages are developed by 

external contributors or organizations not directly affiliated with the original software 

platform.

PLL: A Phase-Locked Loop (PLL) is an electronic circuit that generates a stable output 

clock signal by synchronizing with a reference clock signal. It is commonly used in 

MCUs to provide higher frequency clocks derived from a lower frequency source, 

enabling precise timing and frequency control for various system components.

PMA: The Physical Memory Attributes (PMA) specification defines how different types 

of memory regions behave in terms of caching, buffering, and ordering. It provides 

guidelines for memory access to ensure correct operation and performance optimization 

[14].

three-stage pipelined:  A three-stage instruction pipeline that improves performance 

by overlapping instruction execution. The stages are:
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• Fetch – fetches instructions from memory and performs predecoding

• Execute – decodes and executes instructions and handles control flow

• Memory – completes memory operations and writes results back to registers.

VCO: A Voltage-Controlled Oscillator (VCO) is an electronic oscillator whose output 

frequency is controlled by an input voltage. In the context of PLLs, the VCO generates 

a clock signal that can be adjusted based on the feedback from the PLL to maintain 

synchronization with the reference clock.
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