
Masterarbeit

Colin Sames

Implementation and Evaluation of BGPsec for the
FRRouting Suite

Fakultät Technik und Informatik
Department Informatik

Faculty of Computer Science and Engineering
Department Computer Science

Masterarbeit eingereicht im Rahmen der Masterprüfung
im Studiengang Master of Science Informatik
am Department Informatik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Thomas C. Schmidt
Zweitgutachter: Prof. Dr. Franz Korf

Eingereicht am: August 11, 2021

Colin Sames

Implementation and Evaluation of BGPsec for the
FRRouting Suite

Colin Sames

Thema der Arbeit

Implementierung und Evaluation von BGPsec für die FRRouting Suite

Stichworte

BGP, BGPsec, Internetsicherheit, Leistung, Evaluierung

Kurzzusammenfassung
Das Internet stützt sich auf BGP, jedoch ist dieses Protokoll verwundbar für Angriffe.
Informationen wie die Quelle von annoncierten IP-Präfixen oder ihr genommener Pfad,
können von Dritten übernommen oder verändert werden. Dies kann sich negativ auf den
Datenfluss eines Netzwerkes auswirken. Um diese Informationen zu authetifizieren gibt
es zwei Ansätze: Route Origin Validierung und AS Pfad Validierung. Während Route
Origin Validierung bereits erfolgreich verwendet wird, gibt es für AS Pfad Validierung,
in Form von BGPsec, noch kaum Implementierungen.
In dieser Arbeit wird eine zweiteilige BGPsec Implementierung bereitgestellt. Ein Teil
findet in der Open-Source Bibliothek RTRlib statt, der andere Teil wird in die Rout-
ingsoftware FRR integiert, welche ebenfalls Open-Source ist. Auf diese Weise bleiben
RTRlib und FRR unabhängig voneinander und können leichter ausgetauscht werden,
falls nötig. Zusätzlich zur Implementation wird die Implementierung evaluiert und mit
der Referenzimplementierung, BGP-SRx, verglichen.
Die Richtigkeit der Implementierung ist durch das Kommunizieren mit der Referenz-
implementierung bestätigt, indem in verschiedenen Szenarien gültige und fehlerhafte
Nachrichten ausgetauscht wurden. Resultate der Leistungsmessung zeigen, dass BGPsec-
Datenstrukturen in BGP-SRx 3 bis 8x so viel Speicher verbrauchen wie in FRR. Vali-
dierung in BGP-SRx hingegen verläuft 2x so schnell wie in FRR, signieren ist 3x so
schnell. Die Skalierung verhält sich wie erwartet linear für Speicherverbrauch, Vali-
dierungen und Signaturen. Verglichen zu normalem BGP, müssen BGPsec Updates zu-
dem an jeden Kommunikationspartner und für jedes IP-Präfix einzeln gesendet werden.
Dies wirkt sich zusätzlich negativ auf die Leistung aus.
Mit dem Bereitstellen einer BGPsec Implementierung für eine aufstrebende Routingsoft-
ware erhöhen sich die Chancen, dass BGPsec in Zukunft ausgerollt wird.

iii

Colin Sames

Title of Thesis

Implementation and Evaluation of BGPsec for the FRRouting Suite

Keywords

BGP, BGPsec, Intenet security, Performance, Evaluation

Abstract

The Internet relies heavily on BGP, however this protocol is vulnerable to attacks. In-
formation such as the announced IP-prefix or the path the announcement took can be
hijacked or manipulated by third parties. This can have a negative impact on the data
traffic of a network. To authenticate these information there are two approaches: route
origin validation and AS path validation. While route origin validation was successfully
deployed, there are still hardly any implementations for AS path validation in the form
of BGPsec.

This work aims to provide a twofold BGPsec implementation. One part of it is integrated
into the open-source library RTRlib, the other part is integrated into the routing suite
FRR, whick is likewise open-source. This way, both RTRlib and FRR stay independent
and can exchange one another, if needed. In conjunction with the implementation, its
performance is evaluated and compared to the reference implementation, BGP-SRx.

The correctness of the implementation is verified in various scenarios by peering with
BGP-SRx and processing valid and malformed messages. Performance results show that
BGPsec structures in BGP-SRx take 3 to 8x the memory compared to FRR. However,
validation in BGP-SRx performs 2x faster, signing even 3x faster. As expected, it scales
linear for memory consumption and validation and signing time. Compared to BGP,
BGPsec updates must be send individually for each peer and each prefix. This imposes
another negative impact on the performance.

Nevertheless, having provided another BGPsec implementation to a thriving routing
suite chances increase that BGPsec receives deployment in the future.

iv

Contents

List of Figures viii

List of Tables xii

Acronyms xiii

1 Introduction 1

2 Inter-domain Routing with BGP 3
2.1 Autonomous Systems . 3
2.2 Border Gateway Protocol . 3

2.2.1 BGP Specification . 4
2.2.2 Attack Surface . 5

3 Protecting BGP 8
3.1 RPKI . 8

3.1.1 Route Origin Validation . 8
3.1.2 The RTR Protocol . 9

3.2 RPKI Implementations . 9
3.2.1 RTRlib . 10
3.2.2 FRR . 10
3.2.3 BIRD . 11
3.2.4 RIPE-NCC RPKI Validator 3 . 11
3.2.5 Routinator 3000 . 11

3.3 Related Work . 11

4 BGPsec 13
4.1 AS Path Validation . 13
4.2 BGPsec Specification . 14
4.3 Deployment of BGPsec . 19

v

Contents

4.4 Related Work . 20

5 Problem Statement 22

6 BGPsec Implementation 23
6.1 Validation Suite Design . 23

6.1.1 Features . 25
6.1.2 Crypto Library . 26
6.1.3 AS Path Validation API . 27
6.1.4 Project Structure . 34

6.2 Validation Suite Implementation . 35
6.2.1 Streams . 35
6.2.2 Data Hashing . 38
6.2.3 Signature Validation . 40
6.2.4 Signature Generation . 42
6.2.5 Revisiting Validation Suite Requirements 42

6.3 Protocol Handler Design . 43
6.3.1 Choice for FRR . 43
6.3.2 Design . 44
6.3.3 The Module and Configuration . 45

6.4 Protocol Handler Implementation . 47
6.4.1 Commands . 47
6.4.2 Capability Negotiation . 49
6.4.3 Storing BGPsec Data . 51
6.4.4 BGPsec Update Generation . 52
6.4.5 BGPsec Update Parsing . 53
6.4.6 Revisiting Protocol Handler Requirements 55

7 Performance Analysis 56
7.1 General . 56
7.2 Tooling . 56

7.2.1 Public/Private Key Generator . 57
7.2.2 SPKI Cache . 57
7.2.3 Dummy Router . 58

7.3 Correctness of the Implementation . 58
7.3.1 Open Message . 59
7.3.2 Malformed Update Message . 63

vi

Contents

7.3.3 Parsing Update Message . 65
7.3.4 Update Reconstruction . 67

7.4 Memory Usage Performance . 69
7.4.1 Router Keys . 70
7.4.2 BGPsec Paths . 73

7.5 Crypto Microbenchmarks . 81
7.6 Processing Time Performance . 86

7.6.1 Outgoing Updates . 88
7.6.2 Incoming Updates . 90

8 Conclusion and Outlook 93

Bibliography 95

A Appendix 102

Selbstständigkeitserklärung 106

vii

List of Figures

3.1 Example work flow of a router fetching data from a cache server [1] 10

4.1 Capability as defined by the BGPsec specification [2]. The Version is cur-
rently 0. The direction bit, Dir, indicates whether a router can receive (0)
or send (1) BGPsec updates. The AFI is either IPv4 or IPv6. Unassigned
bits are currently not used. 15

4.2 Structure of the BGPsec PATH attribute in an UML like fashion. Both
the Secure Path as well as the Signature Block may contain multiple
Secure Path Segments and Signature Segments. 15

4.3 Signing chain from AS 1 up to AS 4. AS 1 signs the target AS, the
BGPsec PATH and the prefix. AS 2 updates the target AS to match AS
3, appends its own AS to the path and signs everything, including the
previous signature. AS 3 repeats the process. 17

4.4 AS 4 validates the BGPsec update it received from AS 3 (see Figure 4.3).
AS 4 uses the public keys of AS 1, 2 and 3 to verify the signatures they
generated. The order of execution starts with the last prepended signature
and ends with the first. 17

4.5 Iterative process of update generation. The originating AS generates an
update (inner box) by 1) hashing the relevant information, then 2) signing
the resulting digest value and appending the generated signature. The
next forwarding AS (outer box) repeats the process by 3) hashing the
previous data plus its own and then 4) generates and appends the signature. 18

4.6 The BGPsec update on the left is processed top down until all signatures
are verified. If one result is invalid, the process ends prematurely. The
router keys are fetched from the RPKI cache servers. 19

viii

List of Figures

6.1 The bgpsec struct holds references to the signature and secure path lists.
They always point to the head of it. The list elements themselves hold
references to the next element of the list. In this example, the AS path is
(3 2 1). 29

6.2 (a) shows the BGPsec struct that holds a reference to the head of the
secure path list, AS 1. When prepending a new segment, AS 2, the
references get updated accordingly (b). AS 2 is now the head of the list. . 32

6.3 Truncated code of the validation for-loop. It generates a digest value with
each iteration. With each iteration, the offset shifts to the next starting
point. 39

6.4 Visual representation of the offset shifting code in Listing 6.3. The bytes
are aligned from left to right as a stream. 40

7.1 Testing open messages. In a), malformed BGPsec capabilities are sent
from a Dummy Router instance to FRR. In b), proper open capabilities
are exchanged between FRR and BGP-SRx. These capabilities contain
various combinations of direction and AFI. 59

7.2 Wireshark capture of a BGP session. The update include the AS PATH
attribute, hence it must be a plain BGP update. 62

7.3 Wireshark capture of a BGPsec session. The BGPsec PATH attribute is
included within the update. 62

7.4 Dummy Router sends malformed BGPsec updates to FRR. 63
7.5 BGPsec update correctness test. In a), the signing routine is evaluated.

BGP-SRx 1 and 2 must successfully validate the BGPsec update for-
warded by FRR N. Scenario b) evaluates validation. A BGPsec update
forwarded by BGP-SRx N must be successfully validated, this time by
FRR 1 and 2. 65

7.6 Test scenario for BGPsec update reconstruction. Because FRR N does
not speak BGPsec, FRR N-1 needs to reconstruct a plain BGP update
from the BGPsec update. 68

7.7 Memory usage of router keys for RTRlib and BGP-SRx. Between 100 and
1,000 router keys have been examined, all are of same size. 72

7.8 Left: total memory usage of FRR with 1,000 stored router keys. Router
keys occupy 2% of it. Right: same scenario using BGP-SRx. 48.6% of
the total memory is occupied by the 1,000 router keys. 73

ix

List of Figures

7.9 Setup for testing memory usage of FRR. To test memory usage for AS
paths of length N, there need to be N+1 FRR instances chained to-
gether. After validating all updates, the memory usage on every instance
is checked via the show memory command on the appropriate daemon. . . 76

7.10 Estimated and real memory usage of stored BGPsec paths in FRR. Be-
tween 500 and 5,000 BGPsec paths of length 1 to 5 were processed. Esti-
mate (a) and measurements (b) are almost identical. The initial spike in
(b) is attributed to BGPsec initialization. 77

7.11 Estimated and real memory usage of stored BGPsec paths in BGP-SRx.
Between 500 and 5,000 BGPsec paths of various lengths were processed.
Estimate (a) is almost identical to test result (b). 78

7.12 Comparison of memory values for storing between 500 and 5,000 BGPsec
paths of length 1 to 5. Although FRR has a higher base value of occupied
memory, its memory consumption per path is lower compared to BGP-
SRx . 79

7.13 Left: memory usage of FRR storing 5,000 BGPsec paths of length 5. The
BGPsec paths occupy 21.6% of the total memory, including router keys.
Right: same scenario with BGP-SRx. Here, the BGPsec paths occupy
88.1% of the total memory in use. 79

7.14 Total memory usage of FRR and BGP-SRx running plain BGP. Between
500 and 5,000 BGP paths of various lengths were processed. Path length
in this test has to visible impact on the memory consumption. 80

7.15 Microbenchmark of the OpenSSL validation (a) and signing (b) routines.
The two OpenSSL version 1.0 and 1.1 were examined. Both routines were
executed 10 times in succession with a hash representing a path length of
1 (Len 1) and a path length of 2 (Len 2). The length of the BGPsec path
has no impact on the duration since the path is hashed to a fixed length
of 256 bytes. The initial spike comes from OpenSSL initialization. The
version has to visible impact on the execution time. 83

7.16 Average duration for generating BGPsec updates, 5,000 in total. The
average slightly increases with growing path length. FRR measurements
are split in signing and key loading. Due to repetitive loading of router
keys in FRR, a constant overhead of 77 µs is added on top. 84

7.17 Average duration for validating a single BGPsec update. 5,000 BGPsec
updates per path length were processed. Results for FRR are split into
the validation and key loading part to visualize the overhead. 85

x

List of Figures

7.18 Left: FRR validation time in comparison to the whole update parsing
routine. 99% of the time parsing the BGPsec update is spent verifying
the signatures. Right: Comparing the generation of an entire BGPsec
update to the time it takes to generate a signature. 94% of the time is
spent generating the signature. 86

7.19 Setup for measuring validation and signing processing time. It is identical
to the one for memory usage. 87

7.20 Measurement of BGPsec update generation. Processing time slightly in-
creases with growing path length, as microbenchmarks have shown. 89

7.21 Update generation of plain BGP updates. Only one update is generated
per hop as BGP updates can contain multiple prefixes at once. 90

7.22 Parsing and validating up to 5,000 BGPsec updates. 91
7.23 Update parsing of plain BGP updates. Despite the growing path length

and amount of prefixes, only a single update is generated. FRR and
BGP-SRx show no observable difference in performance for varying path
length. 92

xi

List of Tables

7.1 Memory required for storing a single router key in RTRlib and BGP-SRx.
The minimum is 115 bytes. RTRlib allocates an additional 100 bytes per
key, while BGP-SRx requires 1,744 bytes of extra memory per key. 71

7.2 Memory overhead for BGPsec paths of FRR and BGPsec. For reference,
RFC values for BGPsec path size of 109 bytes base value and 100 bytes

per hop are used [3]. 75

xii

Acronyms

Adj-RIB-in Adjacent-RIB-Incoming.

Adj-RIB-out Adjacent-RIB-Outgoing.

AFI Address Family Identifier.

API Application Programming Interface.

AS Autonomous System.

ASN Autonomous System Number.

BGP Border Gateway Protocol.

DoS Denial of Service.

ECDSA Elliptic Curve Digital Signature Algorithm.

FFI Foreign Function Interface.

FIB Forwarding Information Base.

IANA Internet Assigned Numbers Authority.

IETF Internet Engineering Task Force.

LIFO last in, first out.

Loc-RIB Local RIB.

NIST National Institute of Standards and Technology.

xiii

Acronyms

NLRI Network Layer Reachability Information.

PKI Public Key Infrastructure.

RIB Routing Information Base.

RIR Regional Internet Registry.

ROA Route Origin Authorization.

ROV Route Origin Validation.

RP Relying Party.

RPKI Resource Public Key Infrastructure.

RTR RPKI to Router.

SAFI Subsequent Address Family Identifier.

SHA-256 Secure Hash Algorithm 2 (256 bits).

SKI Subject Key Identifier.

SPKI Subject Public Key Information.

xiv

1 Introduction

Back in the days when the Internet was still young, some attacks that disrupt Internet
traffic had yet to surface. When they eventually did, preventing Internet outages and
espionage became more and more relevant. The Internet was formed as a large network
made of smaller networks. A network within the Internet, called Autonomous System
(AS), exchanges reachability information with other ASes using the Border Gateway
Protocol (BGP) [4]. Its latest version was standardized by the Internet Engineering
Task Force (IETF) in 2006. BGP announcements carry information such as which AS
originates which address space and which path the announcement traversed. The former
are called origin AS and prefix, the latter is the AS path.

Both information can, if manipulated, cause Internet outages for ASes or espionage [5].
Two protection mechanisms detect invalid announcements - whether they originate in
misconfiguration or malicious intent. The Resource Public Key Infrastructure (RPKI)
[6] allows ASes to verify the origin AS of a BGP announcement utilizing Route Origin
Validation (ROV) [7] and AS path validation in the form of BGPsec [2]. With ROV,
cryptographic certificates attest ownership of IP address space. They can be used by
other ASes to verify such claims. With BGPsec, ASes hash and sign parts of an an-
nouncement. These signatures can be validated by receiving parties.

Although various ROV implementations exist, there are only few for BGPsec, such as
the reference implementation of the corresponding RFC. However, this implementation
is part of a routing suite that is hardly receiving updates. This work aims to achieve two
goals: to 1) provide a BGPsec implementation for a different, widely used open-source
routing suite and to 2) evaluate this implementation for correctness and to benchmark
its performance.

The implementation itself is twofold. The first part, which will cover validating and
signing AS paths, takes place in RTRlib [8]. RTRlib is an open-source library that pro-
vides the RPKI to Router (RTR) protocol [1], which is necessary to fetch cryptographic

1

1 Introduction

keys which are in turn required for BGPsec. The second part of the implementation,
i.e., protocol handling, occurs in the FRR routing suite. This routing suite provides a
BGP implementation, amongst other protocols.

RTRlib already offers all necessary features to implement AS path validation and signing
routines. Since FRR already depends on RTRlib for ROV, it is convenient to enable AS
path validation via the same library. By having the cryptographic routines in RTRlib,
code duplication in FRR is avoided. Additionally, other software can include RTRlib to
make use of its AS path validation features this way. For this reason, the implementation
was separated.

This work is structured as follows. Chapter 2 gives an introduction to Internet routing
and BGP. Chapter 3 shows the current protection mechanisms for BGP. BGPsec is
introduced separately in Chapter 4 and is discussed in depth. The problem statement
of this work is presented in Chapter 5. Chapter 6 describes the implementation process
of BGPsec. The implementation is analyzed and benchmarked in Chapter 7. Chapter 8
concludes this work.

2

2 Inter-domain Routing with BGP

The Internet is not a single network in which everyone is directly connected with each
other, but instead it is a large network of smaller networks. Such a network is called Au-
tonomous System (AS). ASes exchange reachability information with each other, called
control plane. Along the control plane, data traffic is forwarded through the Internet,
the data plane.

2.1 Autonomous Systems

An AS consists of one or more networks itself which are governed by a single administered
domain. To be accessible, ASes hold one or more IP prefixes, where each prefix is
maintained by one AS only. The assignment of IP prefixes originates from the Internet
Assigned Numbers Authority (IANA)1. This institution passes IP prefixes down to one
of five institutions, a Regional Internet Registry (RIR) [9]. From there, IP prefixes and
unique identifiers called Autonomous System Number (ASN) [10, 11] are distributed to
ASes all over the world. ASNs are used to identify an AS anywhere on the Internet.
Each RIR covers a certain region on the globe, e.g., the European region falls under the
responsibility of RIPE NCC 2.

2.2 Border Gateway Protocol

An AS controls routers that are dedicated to running the path-vector routing protocol
BGP [4]. Path-vector protocols track the path of an announcement through networks
[12]. With BGP, ASes exchange reachability information with other ASes. Since two
ASes are not necessarily directly connected to each other, they depend on intermediate

1https://www.iana.org/
2https://www.ripe.net/

3

https://www.iana.org/
https://www.ripe.net/

2 Inter-domain Routing with BGP

ASes to forward the announcements to ASes they otherwise would not be able to reach.
Such announcements contain information about which IP prefix an AS announced and
which path the announcement took.

2.2.1 BGP Specification

Each BGP message consists of a header and a message content. There are four types
of BGP messages: open, update, keepalive and notification [4, 13]. The open message
contains information about configuration and capabilities of the sending router. The
update message contains routing information such as prefix announcements or with-
drawals. Keepalive messages are used to maintain the connection with a peering router.
The notification message informs a peering router about any errors that occur during a
session.

While open, keepalive and notification messages are for establishing and maintaining a
BGP session, the heart of BGP is the update message. It contains information such as
IP prefixes and the AS path. The AS path is a sequence of ASNs that indicates, along
which path the update message was forwarded through the Internet. The origin AS,
i.e., the AS that claims ownership of the announced IP prefix, is always found at the
rightmost position of the AS path. In literature, the AS path is often written as (30 20
10), with AS 10 being the origin AS. The AS path length is the amount of elements in
the path, which is 3 in this case.

BGP routers announce their own prefixes or withdrawal them. Routes to other prefixes
are stored within one of three BGP tables, the Routing Information Base (RIB) [14]. All
incoming routes enter the Adjacent-RIB-Incoming (Adj-RIB-in) table. Based on policies
and rules, the router then decides which routes to process further. Selected routes are
stored within the Local RIB (Loc-RIB). Those routes that are selected for propagation
to neighboring peers end up in the Adjacent-RIB-Outgoing (Adj-RIB-out) table.

There is a set of rules defined in Section 9.1 of the BGP RFC [15] which is applied
to routes that are stored within the Adj-RIB-in table. Local policies take the highest
precedence. After they have been applied and the route has not been rejected, the next
rule, the AS path length, is applied. Shorter paths are preferred over longer paths. In
case the path length comparison yields no decision, the rest of the tie-breaking rules are
applied. The decision process is necessary to, e.g., choose which routes to put into the
Adj-RIB-out, i.e., which routes to advertise to the routers peers.

4

2 Inter-domain Routing with BGP

Using the BGP RIB as input, the routers forwarding table, the Forwarding Information
Base (FIB), is formed. This table is used when forwarding traffic.

Routers forward traffic based on longest common prefix matching. As an example, a
router wants to forward a packet with destination IP address 1.2.3.4. Having to choose
a forwarding path between the prefixes 1.2.3.0/20 and 1.2.3.0/24, the router would
decide to forward via the latter [5].

The next section shows how the prefix and the AS path information within BGP updates
can be targeted to manipulate the traffic flow between ASes.

2.2.2 Attack Surface

Manipulating the origin of a prefix or the AS path of a BGP update may lead to wrongly
forwarded traffic. Although propagating wrong information is not always of malicious
intent, it still causes undesirable effects. Either way, the outcome usually is manipu-
lated packet forwarding that can lead to unreachable Internet services, online fraud or
espionage. This section covers the most common attacks that can be launched against
BGP.

To manipulate traffic forwarding on the Internet, common techniques exist [5]. Depend-
ing on the technique and the goal of an attacker, a new BGP update needs to be forged
and propagated, or a received update is tampered with and then forwarded to other
ASes. The targeted information are either the association of origin AS and prefix, or
the AS path. An attacker tries to either announce themselves as the owner of a prefix
of another AS (prefix hijacking), or to redirect traffic forwarding via the own AS (path
hijacking) [16].

To hijack a prefix, it may be sufficient for an AS to originate the prefix of another AS.
Receiving routers of this update can not tell that this update contains a false claim
and might accept it. Any router that accepts such an announcement now holds an
incorrect association between IP prefix and origin AS. This means that any traffic that
was supposed to reach the original owner is instead directed towards the hijacker.

Another way to manipulate traffic is for an attacking AS to hijack the AS path [16]. An
AS path can be shortened, inflated or elements can be exchanged. If the AS path to a
prefix is artificially shortened, it is more attractive to receiving routers. Since a router
has no way of telling, whether or not such path actually exists, it would blindly accept

5

2 Inter-domain Routing with BGP

it (assuming it holds no entry or an entry with a longer path to that prefix). Similarly,
if the AS path within an announcement is inflated, it might be rejected by a receiving
router (only if an entry with a shorter path to the announced prefix exists within its
routing table). Path inflation, however, is a also a common, harmless practice among
autonomous systems [17]. Another way to make an AS reject a route is by adding the
victims ASN to the AS path. At the victims end, the BGP loop detection algorithm
automatically filters out paths that already contain the own ASN.

Any of these methods may be used with malicious intent, but are also often cause of
misconfigured routers. Because of this, directed attacks and misconfigurations are hard
to distinguish. Nevertheless, it is possible to cause trouble for other ASes by, e.g., making
them unreachable [18, 19].

When an AS successfully gains control over the prefix or AS path of another AS, there
are three malicious ways to deal with the hijacked traffic [20].

The first is Blackholing. The attacking AS drops all hijacked traffic, instead of forwarding
it. As a result, the hijacked AS is not reachable for potentially a lot of Internet users.
This is a Denial of Service (DoS) [21] attack on the victim AS.

The second option is Interception. When intercepting traffic, the hijacker AS proceeds
to forward the traffic to its original destination. This way, the attack is hard to discover
since there are hardly any anomalies for the victim to notice. Such an attack must be
carefully planned though. The hijacker AS still requires an intact path to the victim AS,
otherwise the forwarded traffic would not reach the target. If maintaining a path to the
victim is accomplished, the traffic is reaching its target, although it is forwarded via a
different path. This attack can be used to eavesdrop on the traffic of Internet users.

The last of the three options is Impersonating. The attacker responds to the traffic that
was hijacked. An Internet user that is responded to by the attacker might not notice
any difference. The received responses appear to come from the Internet service within
the AS where the requests were initially sent to. This way, an attacker can, e.g., mimic
a website and trick users to reveal sensitive personal information such as credit card
numbers [5].

There are numerous examples of BGP attacks all over the world. It is impossible to
create a complete list of all attacks as some go unnoticed or only last for a few minutes
[22].

6

2 Inter-domain Routing with BGP

There are some infamous BGP attacks that have been made public, though. One well-
known attack is the YouTube hijack from 2008 [23]. On the 24th of February, the
AS Pakistan Telekom claimed ownership of an IP prefix belonging to the video hosting
service. The announcement spread across the Internet and YouTube was left unaccessible
for about two hours.

Another, more recent case happened on April 26 in 2017. The AS Rostelecom announced
50 prefixes of other autonomous systems [24]. Among the victims were ASes like Visa
and MasterCard. The whole incident lasted only a couple of minutes and it is unclear
whether or not it was done on purpose.

More well-known incidents are the AS 7007 incident in 1997 [25], allegedly caused by
misconfiguration, and Googles May 2005 Outage [26].

7

3 Protecting BGP

The two most important pieces of information within a BGP update are the prefix and
its origin AS as well as the AS path. Both are not protected by BGP and must therefore
be secured with external mechanisms. Such mechanisms exist for both the prefix/origin
AS and the AS path. They are described in this section.

3.1 RPKI

The RPKI [6] is dedicated to protecting both the prefix/origin AS and the AS path. The
RPKI is an effort to have an infrastructure in which verified cryptographic information
can be managed and accessed. These information can be used to validate propagated
prefix/origin AS and AS path information. The RIRs manage the cryptographic infor-
mation. Cache servers obtain and store these information for any device to fetch.

3.1.1 Route Origin Validation

A router can perform ROV [7] to validate the origin AS of a BGP update. For this,
the router relies on the RPKI. The RPKI holds cryptographically signed objects that
contain four information: 1) a prefix, 2) its length, 3) a maximum defined prefix length
and 4) the AS that holds the prefix, i.e., the origin AS. These objects are called Route
Origin Authorization (ROA) [27]. They are created by either a RIR or an entity that
holds IP address space and are pre-validated by the cache servers. By pre-validating the
ROAs, this load is taken off the router.

When a router receives a BGP update, it can validate the contained origin AS-prefix-
association. This is done by taking the prefix-length-origin data from the update and
comparing it with the data contained in the ROA. There are three outcomes to this
validation [19].

8

3 Protecting BGP

1. The announcement is valid if it is covered by at least one ROA

2. The announcement is invalid if it is announced by an unauthorized AS (i.e., the
AS does not match the ROA entry for the announced prefix) or is more specific
(the announced prefix is more specific than the prefix of a matching ROA)

3. The ROA is not found and the status hence unknown

Based on this validation, a router may decide how to proceed with the BGP update.
It is not mandatory to accept a valid announcement, nor is it mandatory to deny an
invalid one. This is completely up to the ASes routing policy [6, 19, 28].

For a router to fetch the ROA information, it needs to be able to speak the protocol
which is presented next.

3.1.2 The RTR Protocol

Data between a router and a cache server is exchanged via the RTR protocol [1]. Based
on TCP, different types of messages are exchanged between both parties. A typical
session, consisting of connection, data exchange and termination, is depicted in Figure
3.1.

The Payload PDUs contain ROA information and router keys. Router keys are used to
protect the AS path.

3.2 RPKI Implementations

An excerpt of software that offers RPKI functionalities, such as RTR protocol and ROV
implementations, is given in the following sections. A broader list can be found in [29].

9

3 Protecting BGP

Cache Router

Reset Query

Cache Response

Payload PDU

Payload PDU

Payload PDU

End of Data

Router requests data

Cache confirms request

Cache sends zero or more IPv4 Prefixes,
IPv6 Prefixes, or Router Key PDUs

Cache sends End of Data to terminate the
session

Figure 3.1: Example work flow of a router fetching data from a cache server [1]

3.2.1 RTRlib

RTRlib [8] is an open-source library1 that implements the current version2 of the client
side RTR protocol and additionally offers ROV. By including this library, any appli-
cation can make use of ROV to validate IP prefixes. There is, e.g., a REST interface
implementation3 that can be used for web based applications.

3.2.2 FRR

FRR4 is a routing suite that supports an array of protocols for inter- and intra-domain
routing. AS operators use FRR to handle routing for their AS and apply policies to
filter routes. The suite supports ROV by including RTRlib. If configured appropriately,
a router can apply route filtering based on the validity state of an announcement.

1https://github.com/rtrlib/rtrlib
2As of August 11, 2021, the current version is 1.
3https://github.com/rtrlib/rbv
4https://frrouting.org/

10

https://github.com/rtrlib/rtrlib
https://github.com/rtrlib/rbv
https://frrouting.org/

3 Protecting BGP

3.2.3 BIRD

BIRD is another routing suite that offers similar functionalities to FRR. Using parts of
RTRlibs code base, the suite also offers RTR and ROV. However, only RTR version 0
[30] is supported. This is enough to perform ROV but crucial components for AS path
validation are missing.

3.2.4 RIPE-NCC RPKI Validator 3

The European RIR RIPE-NCC develops the RPKI Validator 3 that supports a variety
of RPKI features5. It provides server and client site deployment and offers ROV via
different interfaces. Since it pulls in no other RPKI libraries such as RTRlib, it is
completely independent from other RPKI tools. The software is open-source and hosted
on GitHub6.

3.2.5 Routinator 3000

The Routinator 3000 is an RPKI Validator, just like the RIPE-NCC Validator. It is
developed by NLnet Labs7 and is designed to be more lightweight, in contrast to, e.g.,
the RPKI Validator 3.

3.3 Related Work

RPKI deployment is supported by research with focus on measurements, security and
deployment.

Wählisch et al. [31] and Iamartino et al. [32] measure the RPKI coverage, i.e., how many
ROAs are covering IP prefixes. Institutions like the National Institute of Standards and
Technology (NIST) and RIPE NCC provide monitoring applications that display global
RPKI coverage information [33, 34]. In the year 2012, 2% of IP prefixes were covered
by ROAs, as shown by Wählisch et al. [19]. Seven years later, in 2019, Chung et al.
observed a coverage of 12.1% [35].

5https://github.com/RIPE-NCC/rpki-validator-3/wiki
6https://github.com/RIPE-NCC/rpki-validator-3
7https://nlnetlabs.nl/

11

https://github.com/RIPE-NCC/rpki-validator-3/wiki
https://github.com/RIPE-NCC/rpki-validator-3
https://nlnetlabs.nl/

3 Protecting BGP

The reason why the deployment progresses so slowly is examined by Goldberg [36] and
Gilad et al. [37]. They conclude that ASes are hesitant to deploy RPKI for reasons of
allegedly small security benefits, computational overhead and potential loss of traffic.

Not all ASes that perform ROV apply route filtering, though. Reuter et al. provide a
methodology for investigating, whether or not routes are filtered by ASes based on ROV
[38].

Research from 2020 reveals that issues with RPKI are not limited to how ASes adopt
it. Kristoff et al. show in [39] that Relying Party (RP) cache servers are often unable
to retrieve the cryptographic objects they need to verify. This leads to the distribution
of incomplete data to BGP routers.

The next section covers BGPsec, which implements AS path protection.

12

4 BGPsec

To protect the integrity of the AS path, BGP routers need to have a way of detecting
manipulations. The first design for AS path protection dates back to the year 2000.
Stephen Kent et al. designed a BGP security method called Secure BGP (S-BGP) [40].
The IETF picked up on this idea and worked out a standard which eventually became
BGPsec.

4.1 AS Path Validation

The general idea of AS path validation is the usage of asymmetric cryptography [41]
in combination with a Public Key Infrastructure (PKI), in this case the RPKI. BGP
routers hold private keys which allow them to sign the contents of BGP updates. Using
the public keys, which are located within the RPKI, other routers are able to verify these
signatures.

In more detail, the procedure works as follows: A router takes all the information of a
BGP update that are to be secured and applies a digest function to them. The resulting
digest value is then signed using the routers private key. This cryptographic signature
is in turn appended to the update message. Receiving routers can verify the signature
using the appropriate public key. The process is further described in section 4.2. The
protection lies in the properties of cryptographic signatures.

Authentication Proves ownership of the private key. If a signature is created
with a certain private key, it can only be successfully verified by the public key
that belongs to that private key. Verifying a signature with anything other than
the appropriate public key yields an invalid result. If a signature is successfully
verified, it is confirmed that this signature was created by the entity that holds
the private key.

13

4 BGPsec

Integrity Anyone is prevented from tampering with the signed contents. To
verify a signature, the original message, in this case the digest value, is required. If
an attacker would change any of the protected information, the calculated digest
value would consequently change as well. The verification of a signature with the
wrong digest value leads to an invalid result.

A summary of the BGPsec specification is presented next.

4.2 BGPsec Specification

The BGPsec protocol was developed by the IETF, the corresponding RFC 8205 [2] was
published in 2017. Along with this RFC, additional documents were published that
cover, e.g., algorithms, key and signature formats [42].

BGPsec is not a protocol on its own, but a protocol extension for BGP. This extension
replaces a field within the BGP update message. No information are lost though, as the
new field includes all information of the old field, as well as cryptographic signatures
which protect the AS path.

Before a BGPsec capable speaker can originate or forward a BGPsec update, it first
needs to check if the peering router also speaks BGPsec. BGP open messages contain
capabilities which inform peering routers of special configuration details1. Routers signal
each other the support of BGPsec by advertising the BGPsec capability. The contents
of this capability are displayed in Figure 4.1. Each Address Family Identifier (AFI)
and direction that is advertised is put in a separate capability. Thus, if a router wants
to advertise full support for both sending and receiving IPv4 and IPv6 prefixes, four
capabilities need to be added to the BGP open message. If both routers propagated
BGPsec capabilities, BGPsec as well as plain BGP messages may be exchanged. If one
of the two peers is unable to speak BGPsec, exchanging BGPsec updates is not possible.
However, plain BGP messages may still be exchanged.

1A full list of all capabilities can be found here: https://www.iana.org/assignments/
capability-codes/capability-codes.xhtml.

14

https://www.iana.org/assignments/capability-codes/capability-codes.xhtml
https://www.iana.org/assignments/capability-codes/capability-codes.xhtml

4 BGPsec

0 1 2 3 4 5 6 7

Version Dir Unassigned

AFI

Figure 4.1: Capability as defined by the BGPsec specification [2]. The Version
is currently 0. The direction bit, Dir, indicates whether a router can
receive (0) or send (1) BGPsec updates. The AFI is either IPv4 or
IPv6. Unassigned bits are currently not used.

To originate a BGPsec update, a BGPsec speaker needs to generate an update message
that contains the BGPsec PATH attribute, which replaces the AS PATH attribute. Its
structure and contents are shown in Figure 4.2.

BGPsec	PATH
Secure	Path

Signature	Block

Signature	Block
Signaure	Block	Length

Algorithm	Suite	Identifier

Signature	Segments

Signature	Segment
Subject	Key	Identifier	(SKI)

Signature	Length

Signature

Secure	Path	Segment
pCount

Flags

AS	Number

Secure	Path
Secure	Path	Length

Secure	Path	Segments

Figure 4.2: Structure of the BGPsec PATH attribute in an UML like fashion.
Both the Secure Path as well as the Signature Block may contain
multiple Secure Path Segments and Signature Segments.

The BGPsec PATH attribute contains a Secure Path and up to two Signature Blocks, one
for each algorithm suite. Since there is currently only one suite defined, it is referred to as
the Signature Block. Both the Secure Path and the Signature Block contain one Secure

15

4 BGPsec

Path Segment and Signature Segment for each inter-AS hop the announcement traversed.
An update with path length of 3 therefore contains three Secure Path Segments and three
Signature Segments.

When originating an announcement, there is no BGPsec PATH attribute yet, so the
router has to generate one. At first, the router determines to which peer the update
should be sent to. This is necessary because the target AS is part of the protected
information. Second, the router takes the following information and applies a digest
function to it:

• Secure Path Segment
• Target AS
• Algorithm Suite ID
• Address Family Identifier (AFI)
• Subsequent Address Family Identifier (SAFI)
• Network Layer Reachability Information (NLRI)

The Secure Path Segment contains the information of the own AS. Using the routers
own private key, the router then signs the digest value. The resulting signature is
wrapped in a Signature Segment which is then appended to the update. The update is
now ready to be sent to the designated peer. This process must be repeated for each
individual peer the update should be forwarded to: “[...] if a BGPsec speaker wishes to
send a BGPsec UPDATE message to multiple BGP peers, it MUST generate a separate
BGPsec UPDATE message for each unique peer AS to whom the UPDATE message
is sent” [43]. Multiple prefixes must also be sent via separate updates: “A BGPsec
UPDATE message MUST advertise a route to only a single prefix” [43]. All information
of the list above are protected by the signature.

When the peer receives the BGPsec update, it repeats the same exacts steps to generate
the digest value. If no one has altered the protected information, the hashing process
yields the same exact digest value. Using the digest value, the signature and the public
key of the originating AS, the signature can be verified. If the result yields a valid
outcome, the update is deemed ‘Valid’. Otherwise, the entire update is considered ‘Not
Valid’. These are the only two outcomes of BGPsec validation: “The validation procedure
results in one of two states: ‘Valid’ and ‘Not Valid’.” [44].

Forwarding a BGPsec update is similar to originating one. The forwarding AS prepends
its own credentials if form of a Secure Path Segment to the BGPsec PATH. It then takes

16

4 BGPsec

all the information from the BGPsec PATH (including the Signature Segments), the
prefix and the target AS and applies the digest function to them. The resulting digest
value is then signed using the routers private key. The signature is encapsulated into a
Signature Segment which is then prepended to the BGPsec PATH. This completes the
procedure and the BGPsec update can now forwarded. Figure 4.3 visualizes the process
over multiple hops.

AS 1 AS 2 AS 3Target: AS 3
Path: (2 1)

Pfx: 1.2.3.4/20

Sig 1

Sig 2

AS 4Target: AS 4
Path: (3 2 1)

Pfx: 1.2.3.4/20

Sig 1

Sig 3

Sig 2

Target: AS 2
Path: (1)

Pfx: 1.2.3.4/20

Sig 1

Figure 4.3: Signing chain from AS 1 up to AS 4. AS 1 signs the target AS,
the BGPsec PATH and the prefix. AS 2 updates the target AS to
match AS 3, appends its own AS to the path and signs everything,
including the previous signature. AS 3 repeats the process.

In Figure 4.4, the validation process of a BGPsec update of length 3 is shown in detail.
It describes the steps that AS 4 from Figure 4.3 has to perform in order to validate the
update it received from AS 3.

Target: AS 3
Path: (2 1)

Pfx: 1.2.3.4/20

Sig 1

Sig 2

AS 4 Target: AS 4
Path: (3 2 1)

Pfx: 1.2.3.4/20

Sig 1

Sig 3

Sig 2

Target: AS 2
Path: (1)

Pfx: 1.2.3.4/20

Sig 1

Figure 4.4: AS 4 validates the BGPsec update it received from AS 3 (see Figure
4.3). AS 4 uses the public keys of AS 1, 2 and 3 to verify the
signatures they generated. The order of execution starts with the
last prepended signature and ends with the first.

A more detailed view on the signing process itself is given in Figure 4.5. There, a BGPsec
update undergoes the signing routine twice.

17

4 BGPsec

Signature
Segment	2

Secure	Path
Segment	2

	

	
	
	
	

	
	
	
	
	
	

1 Digest

Sign	and
Append

Signature
Segment	1 2

3 Digest

Sign	and
Append4

Secure	Path
Segment	1

Target	AS	/	Algo
ID	/	AFI	/	SAFI	/

NLRI

Figure 4.5: Iterative process of update generation. The originating AS generates
an update (inner box) by 1) hashing the relevant information, then
2) signing the resulting digest value and appending the generated
signature. The next forwarding AS (outer box) repeats the process
by 3) hashing the previous data plus its own and then 4) generates
and appends the signature.

Each time a BGPsec update is forwarded, the process depicted in Figure 4.5 is repeated.
Validation is a reversed process of signing, it is shown in Figure 4.6. Here, an update
of length two is verified. The validation follows a top down approach, i.e., the signature
appended last is verified first. When hashing the data, the signature itself must be
excluded from it. Next, the router key of the AS which generated the signature needs to
be retrieved. The digest value and router key are then used to verify the corresponding
signature. The outcome is either valid or invalid. If valid, the procedure continues until
all signatures are verified this way. If invalid, one or more of either hash, signature or
router key are erroneous and the validation ends prematurely, marking the update as ‘Not
Valid’. In case all signatures are valid, the update is considered ‘Valid’. How to proceed
with ‘Valid’ and ‘Not Valid’ announcements is left to the ASes policy. The specification
suggests that the outcome should be considered for route selection: “It is expected that

18

4 BGPsec

the output of the validation procedure will be used as an input to BGP route selection.
That said, BGP route selection, and thus the handling of the validation states, is a
matter of local policy and is handled using local policy mechanisms” [44]. Note that
regardless of the validation result, BGPsec updates should always be forwarded, even
when the validation result is ‘Not Valid’: “A BGPsec router should sign and forward a
signed update to upstream peers if it selected the update as the best path, regardless of
whether the update passed or failed validation (at this router)” [45].

Valid?

Digest

Validate
Signature

Router	Key	2Signature	2

No

Valid?

Digest

Validate
Signature

Router	Key	1Signature	1

No

Yes

AS	path
valid

AS	path
not	valid

Yes

Signature	Segment	2

Secure	Path	Segment	2

Signature	Segment	1

Secure	Path	Segment	1

Algo	ID

AFI

SAFI

NLRI

Target	AS

Figure 4.6: The BGPsec update on the left is processed top down until all sig-
natures are verified. If one result is invalid, the process ends prema-
turely. The router keys are fetched from the RPKI cache servers.

4.3 Deployment of BGPsec

For ASes, rolling out BGPsec bears several issues [36]. Routers would have to run
performance critical actions, i.e., cryptographic validations. To prevent the router from
clogging, validations of BGPsec updates can be deferred, if there is heavy load on the
router. Before a BGPsec update can be forwarded, though, it must be signed or otherwise
downgraded to plain BGP. Since BGPsec requires each prefix to be announced via a

19

4 BGPsec

separate update, the performance issue is amplified even further. Additionally, each
update must be generated separately for each receiving peer. Originating all of a routers
n prefixes to all of its m peers would therefore require n·m individual updates. With plain
BGP, the router would only need to generate a maximum of m individual updates.

Another concern with BGPsec is broad deployment across the Internet. If a BGPsec
speaker peers with a non-BGPsec speaker, it is forced to transform BGPsec updates into
plain, unsigned BGP updates. Thus, the announcement is stripped off all its protection
mechanisms. One non-BGPsec speaker along the path is therefore enough to break
the chain of forwarding a protected AS path. Using BGPsec without having BGPsec
capable peers yields no benefits. ASes might hesitate to transition to BGPsec as long
as no other ASes do the switch. Goldberg speaks of a “chicken-and-egg problem” [36]
for AS operators. The idea of partial deployment of BGPsec is visioned in a way that
initially, groups of connected ASes would simultaneously deploy BGPsec. These groups
of ASes would grow with each neighboring AS that deploys BGPsec. Groups could also
merge to form even larger groups and continue to grow until large portions the Internet
are covered by AS path protection [46].

On a final note, there are only few implementations for BGPsec. One is the reference
implementation, BGP-SRx, developed by the NIST. Using their SRxCryptoAPI library,
the NIST included BGPsec support for BGP implementations such as GoBGPsec2 and
ExaBGPsec3. Those are, however, only forks of the original software.

4.4 Related Work

Since BGPsec has yet to experience deployment, little real-world research has been done
with it. There is research that covers deployment and security concerns regarding the
protocol extension.

Besides BGPsec, other path validation approaches for BGP exist, such as S-BGP [40] or
soBGP [47]. BGPsec was based on the S-BGP idea of having X.509 certificates to sign
and validate the AS path. soBGP additionally guaranteed that an announced path does
physically exist. Both S-BGP and soBGP were abandoned for BGPsec along the way.

2https://github.com/usnistgov/gobgpsec
3https://github.com/usnistgov/exabgpsec

20

https://github.com/usnistgov/gobgpsec
https://github.com/usnistgov/exabgpsec

4 BGPsec

Lychev et al. [48] and Gill et al. [49] investigate partial deployment of various BGP
security mechanisms, including BGPsec, and hand out suggestions.

A more grim deployment scenario of BGPsec is described in [37] by Gilad et al.. They
predict an extremely long deployment period (if deployed at all) and Cohen et al. there-
fore suggest interim solutions such as path-end validation in [50].

To measure how a BGP security extension would perform, Kent et al. tested an S-BGP
implementation and shared the results in [51].

Security concerns on BGP security mechanisms are given by Goldberg et al. in [52] and
[36]. They elaborate on the security of BGPsec, S-BGP and soBGP.

The consensus in the research field of BGP security extensions is that deployment of such
is a long and rocky road. The security gains are marginal compared to the computational
overhead for BGP routers due to cryptographic operations. Because of the classic chicken
and egg issue, ASes have little incentive to move towards BGPsec deployment, or any
other solution such as path-end validation.

Nevertheless, there need to be implementations that offer the BGP security enhance-
ments for AS path validation. Otherwise, the deployment can hardly be initialized.
Therefore, this work aims to provide another implementation so that BGP operators
have one more option to choose from.

The next chapter presents the problem statement that this thesis tackles.

21

5 Problem Statement

Currently, BGPsec has not received any deployment yet. Hence, ASes can not protect
themselves against path hijacking. One problem that hinders deployment is that there
are only few BGPsec implementations available. The reference implementation BGP-
SRx [53] is integrated into the routing suite Quagga1. Unfortunately, the development
state of Quagga is stale and BGP-SRx was never officially included into a release.

In 2017, Quagga was forked [54] into FRR, a more actively developed routing suite. FRR
depends on RTRlib for ROV, but as of today, BGPsec is not part of it.

This work aims to provide a BGPsec implementation. It is divided into two separate
parts: the validation suite and the protocol handler. The validation suite takes care
of cryptographic routines and will be integrated with RTRlib. The protocol handler is
responsible for protocol related operations and will take place within FRR. A concept
for both implementations is worked out first. Then, the implementation itself occurs.

Another goal of this work is to provide a performance analysis of the BGPsec imple-
mentation. One reason why providers are hesitant to deploy BGPsec is because of the
critical computational overhead on their BGP routers. The test results provided in this
work will give providers a reference on how grave this performance overhead is. The
performance of the implementation as a whole is tested in different scenarios. BGPsec
in FRR will be compared against BGPsec in BGP-SRx. Both BGPsec implementations
will also be compared to their plain BGP version.

By providing a BGPsec implementation for a thriving routing suite such as FRR, ASes
might take BGPsec into consideration. Having as many ASes as possible to deploy
BGPsec simultaneously is crucial for broad coverage of AS path protection throughout
the Internet.

1https://www.quagga.net/

22

https://www.quagga.net/

6 BGPsec Implementation

The BGPsec implementation is split in two parts: the cryptographic validation suite
and the protocol handling. The validation suite is implemented within RTRlib, while
the protocol handling takes place within the FRR routing suite.

This chapter is split into two parts. The first part discusses the design, requirements and
implementation of the validation suite. The second part does the same for the protocol
handler.

6.1 Validation Suite Design

The validation suite handles validation and signing procedures for the BGPsec path.
This section discusses the design choices made for the implementation, establish feature
and non-feature requirements, as well as showcase implementation details in form of
code.

The validation suite is not specifically designed to be usable by FRR only. For this
reason, the software that integrates or makes use of the validation suite is referred to as
parent software. This allows to generalize use cases.

RTRlib is a fitting RPKI library to integrate the validation suite in. It is a client side
implementation of the RTR protocol and additionally provides ROV. The library is open
source and does only (optionally) depend on the libssh1 library.

The validation suite is independent from any protocol handler. Requests only go in
one direction, i.e., from the protocol handler to the validation suite. It is thus purely
agnostic in regards to who makes a request.

1https://www.libssh.org/

23

https://www.libssh.org/

6 BGPsec Implementation

There are feature and non-feature requirements. Feature requirements, e.g., validation
and signing procedures, are mandatory for AS path validation. Non-feature requirement,
e.g., the choice of the programming language, are not mandatory for the implementation
to work, but rather a choice of the developer.

The following non-feature requirements are not defined by any specification. They were
chosen with the intent to make the validation suite as applicable to any parent software
as possible.

Software License The goal for the validation suite is to be open source and
free to use. The RTRlib is developed under the MIT license [55], which fits the
requirements for the validation suite.

External Libraries Any library that the validation suite depends on implicitly
adds another dependency to the parent software. When depending on an external
library, its size, its own dependencies and its license are adopted.

Implementation Language C is an established, well-known and widely sup-
ported programming language on a broad variety of operating systems. It is there-
fore a good choice to implement the validation suite in. In case a user choses to
make use of the validation suite but happens to use a different language, numer-
ous Foreign Function Interface (FFI) exist, which can be used to call C functions
via different programming languages2. This way, parent software written in other
languages could potentially make use of the implementation as well.

With RTRlib as the library of choice, the following non-feature requirements support
a smooth and sophisticated inclusion of the validation suite Application Programming
Interface (API).

Lightweight The implementation shall only provide necessary features to pro-
vide AS path validation and signing. Additional features are not required.

Compatible The new API shall merely extend the current API of RTRlib.
The current API shall not be altered to guarantee compatibility with other parent
software that already makes use of RTRlib.

2A list of FFIs can be found here https://en.wikipedia.org/wiki/Foreign_function_
interface.

24

https://en.wikipedia.org/wiki/Foreign_function_interface
https://en.wikipedia.org/wiki/Foreign_function_interface

6 BGPsec Implementation

Similar Setup The setup to use the new API shall be similar to the ROV API.
Both the current and the new API shall depend on the same internal procedures of
establishing a connection to a cache server. This helps both developers and users
to interact with the new API.

Independent AS path validation shall be independent from any protocol han-
dler. A complete BGPsec implementation shall not be necessary to use the vali-
dation suite.

Documented The current documentation for the RTRlib shall be extended by
AS path validation. This includes all new public functions and code examples,
e.g., a minimum working example.

At the end of this chapter, the requirements are revisited and checked, if they have
been met. Next, the API functions that need to be provided for AS path validation are
examined.

6.1.1 Features

The basic tasks of the validation suite are stripped down to two vital functionalities:

Validation Given all required parameters, the validation suite performs val-
idation of an arbitrary amount of signatures. It returns the final result of the
validation without intermediate signature results, as they are not relevant for the
protocol handler further down the line 3. Should a signature yield an invalid result,
the procedure ends prematurely and the validation procedure returns ‘Not Valid’.
Otherwise, it returns ‘Valid’.

Signing The validation suite can sign BGPsec paths. All required parameters
are therefor passed to the validation suite. After successfully signing the path, the
signature and its length are returned.

If at any time an error occurs, the validation suite returns an appropriate error code and
logs the error message. Errors are not handled by the validation suite, but must instead
be handled by the caller of the function. The validation suite comes with a variety of
utility functions that are also part of the new AS path validation API.

3Intermediate results might be relevant for other software that uses the validation suite, but for now
they are not considered essential.

25

6 BGPsec Implementation

6.1.2 Crypto Library

To validate and sign BGPsec paths, cryptographic operations are required. According
to the specification, these operations must be executed with the Elliptic Curve Digital
Signature Algorithm (ECDSA) [56]. The digest value, which serves as input for the
ECDSA, is generated by the Secure Hash Algorithm 2 (256 bits) (SHA-256) algorithm
[57].

RTRlib should depend on an existing, throughout tested library to provide cryptographic
functionalities. The following list specifies the requirements to this library.

1. Provides C API Since RTRlib is implemented in C, the crypto-library of choice
must be compatible with C.

2. Open-Source And Free To Use RTRlib is open-source and free, so must be
all its components and dependencies.

3. Supports Algorithms All required cryptographic algorithms must be sup-
ported. To support future algorithm suites, the library should additionally support
a range of modern algorithms.

4. Long-Term Support To ensure that bugs and security issues are fixed, the
library should receive support for years to come.

5. Widely Supported Helps with compatibility on different devices and operating
systems.

6. Secure Must not contain major known bugs that compromise BGPsec security.

7. Follows Standards Must follow specification standards of required algorithms.

FRR already depends on a crypto library, OpenSSL4. Since this work aims to provide
AS path validation for FRR, it is reasonable to first check on this already existing
dependency. Should it meet the criteria, it would be convenient to also use it for RTRlib.
Having a different crypto library as a dependency for RTRlib would result in a redundant
dependency for FRR.

A short summary of OpenSSL is given in the following paragraphs. Every time it meets
one of the criteria, it is checked with the appropriate number of the previous list.

4https://www.openssl.org

26

https://www.openssl.org

6 BGPsec Implementation

OpenSSL is an open-source and free to use [58] (1) library written in C (2). It provides
all necessary algorithms, namely ECDSA and SHA-256 hashing [59, 60] and also offers
a range of other algorithms that are potentially required in the future (3). There are
two concurrent versions of OpenSSL, version 1.0 and 1.1. Although they both offer the
required algorithms, version 1.1 is not downwards compatible with 1.0. Even though
version 1.0 is no longer supported as of end of 2019 [61], RTRlib aims to support both
versions, since both versions are widely used. For version 1.1, no end of life date is
specified yet (4)5.

The library is available on most common operating systems, most importantly, Unix
(5). OpenSSL can be installed from appropriate repositories or can be build from source
[62].

Vulnerabilities do appear from time to time, but they are tracked and mitigated by
frequent patches [63] (6).

OpenSSL provides an (incomplete) lists of protocol standards they implement here [64]
(7).

In conclusion, OpenSSL is a fitting crypto library to provide operations that are required
for BGPsec AS path validation. It meets with all the requirements and since it is already
part of FRR, it does not add another dependency to the routing suite.

6.1.3 AS Path Validation API

The validation suite API possesses three kinds of functions. There are 1) (de-)allocator
functions, 2) utility functions and 3) validation/signing functions.

The first group of functions handles allocation and deallocation of data structures. These
data structures contain the BGPsec data that is validated or signed. The functions of
the second group help to prepare and assemble this data. Functions of the third group
perform the actual validation/signing. The data that is required for these operations is
stored in structs provided by C. In Listing 6.1, all C structs that are required for AS
path validation are displayed.

5As of 25.07.2021

27

6 BGPsec Implementation

1 struct rtr_secure_path_seg {
2 struct rtr_secure_path_seg* next;
3 uint8_t pcount;
4 uint8_t flags;
5 uint32_t asn;
6 };
7

8 struct rtr_signature_seg {
9 struct rtr_signature_seg* next;

10 uint8_t ski[SKI_SIZE];
11 uint16_t sig_len;
12 uint8_t* signature;
13 };
14

15 struct rtr_bgpsec_nlri {
16 uint8_t prefix_len;
17 struct lrtr_ip_addr prefix;
18 };
19

20 struct rtr_bgpsec {
21 uint8_t algo_id;
22 uint8_t safi;
23 uint16_t afi;
24 uint32_t my_as;
25 uint32_t target_as;
26 uint16_t sigs_len;
27 uint8_t path_len;
28 struct rtr_bgpsec_nlri* nlri;
29 struct rtr_signature_seg* sigs;
30 struct rtr_secure_path_seg* path;
31 };

Listing 6.1: Newly introduced C structs for AS path validation in RTRlib. The
structs with their members roughly represent the BGPsec PATH
attribute.

The Secure Path Segment (line 1) and Signature Segment (line 8) are singly linked lists.
Each segment holds the reference to the next segment of the list. The rest of their
fields are identical to those depicted in Figure 4.2. The struct in line 15 is a wrapper
for an already existing RTRlib data structure that holds the NLRI, i.e., the prefix (line
17). The wrapper additionally holds the prefix length in bits (line 16). Wrapping the
lrtr_ip_addr struct is necessary because changes to current data structs are to be
avoided.

28

6 BGPsec Implementation

To have all information in one place, i.e., one data struct, the BGPsec data struct (line
20) holds references to both linked lists (line 29 and 30). Additionally to the segment
lists, the struct holds the algorithm id, the SAFI, the AFI, the own AS, the target AS
and the amount of Signature and Secure Path Segments (line 21 to 27). The amount
of Signature and Secure Path Segments are meta information that are not required
for validation or signing. They are primarily used for error checks and it is therefore
discouraged to change them manually.

Figure 6.1 visualizes the linked lists and how the BGPsec data struct holds references
to them.

bgpsec
sig_seg

sig_seg
sig_seg

path_seg
path_seg

path_seg

sigs
path

next
AS	3 next

AS	2 next
AS	1

next
Sig	1

next
Sig	2

next
Sig	3

Rerefence	to

Figure 6.1: The bgpsec struct holds references to the signature and secure path
lists. They always point to the head of it. The list elements them-
selves hold references to the next element of the list. In this example,
the AS path is (3 2 1).

To prevent too much direct editing of the structs information, the allocator functions
exist. The following functions allocate memory for the structs, initialize them and return
a reference to them.

29

6 BGPsec Implementation

1 struct rtr_secure_path_seg*
2 bgpsec_new_secure_path_seg(uint8_t pcount,
3 uint8_t flags,
4 uint32_t asn);
5

6 struct rtr_signature_seg*
7 bgpsec_new_signature_seg(uint8_t* ski,
8 uint16_t sig_len,
9 uint8_t* signature);

10

11 struct rtr_bgpsec_nlri* bgpsec_nlri_new(void);
12

13 struct rtr_bgpsec* bgpsec_new(uint8_t algo_id,
14 uint8_t safi,
15 uint16_t afi,
16 uint32_t my_as,
17 uint32_t target_as,
18 struct rtr_bgpsec_nlri nlri);

Listing 6.2: Allocator functions for the BGPsec structs.

The RTRlib structures are only required for validation and signature generation. As
soon as the procedure is finished, they can be disposed of. To do so in a memory safe
way, there are appropriate deallocator functions, as shown in Listing 6.3.

1 void bgpsec_secure_path_free(struct rtr_secure_path_seg* seg);
2

3 void bgpsec_signatures_free(struct rtr_signature_seg* seg);
4

5 void bgpsec_nlri_free(struct rtr_bgpsec_nlri* nlri);
6

7 void bgpsec_free(struct rtr_bgpsec* bgpsec);

Listing 6.3: Functions for deallocating BGPsec structs.

To deallocate the memory, a user passes a struct pointer to the appropriate function.
Functions in line 1 and 3 take the singly linked segment lists as arguments and free them
recursively. The deallocator function for the rtr_bgpsec struct in line 7 also frees the
segment lists recursively. For the sake of completeness, the NLRI struct is freed via the
function in line 5.

30

6 BGPsec Implementation

The second group of functions describe the utility functions that are required to further
prepare the data before validation/signing it. The order of Signature and Secure Path
Segments are crucial. New elements are prepended to the path, i.e., the new segment is
attached to the head of the path. Prepending AS 3 to the path (2 1) would result in
the path (3 2 1). This last in, first out (LIFO) order is expected by the validation and
singing routines in RTRlib. To help the user assembling the data, utility functions allow
appending to, prepending to, and stripping off segments from the rtr_bgpsec struct.
Listing 6.4 shows these functions.

1 void bgpsec_append_sec_path_seg(
2 struct rtr_bgpsec* bgpsec,
3 struct rtr_secure_path_seg* new_seg);
4

5 int bgpsec_append_sig_seg(
6 struct rtr_bgpsec* bgpsec,
7 struct rtr_signature_seg* new_seg);
8

9 void bgpsec_prepend_sec_path_seg(
10 struct rtr_bgpsec* bgpsec,
11 struct rtr_secure_path_seg* new_seg);
12

13 int bgpsec_prepend_sig_seg(
14 struct rtr_bgpsec* bgpsec,
15 struct rtr_signature_seg* new_seg);
16

17 struct rtr_secure_path_seg*
18 bgpsec_pop_secure_path_seg(struct rtr_bgpsec* bgpsec);
19

20 struct rtr_signature_seg*
21 bgpsec_pop_signature_seg(struct rtr_bgpsec* bgpsec);

Listing 6.4: Utility functions that allow appending/prepending/stripping seg-
ments for Signature and Secure Path Segments.

All four append/prepend functions in line 1 to 15 take the rtr_bgpsec struct and the
new segment as parameters. The functions then execute the desired action.

Prepending elements to the segment lists automatically updates the references of the
rtr_bgpsec. Figure 6.2 illustrates what happens when a Secure Path Segment is
prepended to an existing path.

31

6 BGPsec Implementation

bgpsec

path_segpath
next
AS	1

bgpsec

path_seg
next
AS	1

(a)

(b)

path_seg
next
AS	2

sigs

path
sigs

path_seg
next
AS	2

Reference	to

Figure 6.2: (a) shows the BGPsec struct that holds a reference to the head of
the secure path list, AS 1. When prepending a new segment, AS 2,
the references get updated accordingly (b). AS 2 is now the head of
the list.

The pop functions in line 17 to 21 detach the first Secure Path or Signature Segment of
that linked list, respectively, and return it.

These six functions enable the user to arrange the segments as they need.

After properly arranging the segments, the data as an entirety is then passed to either
the validation or the signing procedure. Both functions can be found in Listing 6.5.

1 int bgpsec_validate_as_path(
2 const struct rtr_bgpsec* data,
3 struct rtr_mgr_config* config);
4

5 int bgpsec_generate_signature(
6 const struct rtr_bgpsec* data,
7 uint8_t* private_key,
8 struct rtr_signature_seg** new_signature);

Listing 6.5: One function for validating an AS path, another for generating a
signature.

32

6 BGPsec Implementation

For validation (line 1 to 3), a user passes over the BGPsec data and the RTR config to
the validation function. The RTR configuration holds a reference to the Subject Public
Key Information (SPKI) table, which contains the router keys that were fetched from
the RPKI. These public key information are necessary for verifying the signature that
was generated with the appropriate private key. After the validation procedure finished,
the caller is returned an integer that indicates a ‘Valid’ or ‘Not Valid’ path. Error codes
are returned via the same integer. The caller is responsible for handling the validation
result and eventual errors.

Signing (line 5 to 8) requires the user to already have attached its own Secure Path
Segment to the data struct. The private key that is used for singing is also passed to
the function. Last, an uninitialized Signature Segment is given as input. On return,
new_signature contains the newly generated signature, together with its length. The
Subject Key Identifier (SKI) needs to be added manually to new_signature by the
user, as it is not contained within the information passed to the function.

Since handling the private key is a sensitive matter, reading it from the disk and handling
its memory is left to the application that calls the function. The private key is passed to
the signing function as raw bytes. The function itself does nothing with the key outside
of the scope of signing.

RTRlib tries to catch various errors that occur during data preparation and signing/-
validation. Although not all errors can be caught by RTRlib, it attempts to catch the
following ones:

Error A generic error that can not be specified any further.

Load Private Key Error The private key could not be loaded. This error
occurs if, e.g., the key was not found or is malformed.

Load Public Key Error The public key could not be loaded. Since the public
keys are fetched via the RPKI, this error should only occur if a malformed public
key was added manually to either the SPKI table or the RPKI cache.

Missing Data A missing data error occurs if either one of the following param-
eters is missing6: BGPsec data struct, Secure Path Segments, Signature Segments,
SPKI table.

6Missing in this context means that the received parameter is NULL.

33

6 BGPsec Implementation

Signing Error Errors that occur during the signing procedure are signaled via
this error code. The reason for such an error is not specified by OpenSSL and thus
can not be further specified by RTRlib.

Unsupported Algorithm Suite Checks for unsupported algorithm suites pre-
vent that RTRlib tries to verify or generate signatures with the wrong algorithms.

Unsupported AFI Only IPv4 and IPv6 AFI are allowed. Although the protocol
handler is supposed to rule out such errors, RTRlib tries to provide some sort of
safety for software that does not implement a protocol handler.

Wrong Segment Amount In case there is an uneven amount of Secure Path
and Signature Segments, RTRlib returns this error. RTRlib has very limited ways
of actually detecting this error. It therefore relies on the sigs_len and paths_len

members of the BGPsec data structure. They contain the amount of segments
respectively.

6.1.4 Project Structure

One requirement to the implementation is that the current API of RTRlib is merely
extended and not altered in any way. To achieve better separation of the ROV and the
AS path validation API, the new API is located in separate files. All AS path validation
files are stored within the rtrlib/bgpsec directory. It contains five new files:

• bgpsec.c

• bgpsec.h

• bgpsec_private.h

• bgpsec_utils.c

• bgpsec_utils_private.h

bgpsec.c and bgpsec_private.h contain the declarations and definitions of the
public API functions. bgpsec.h holds the data structures and error codes. bgpsec_
utils.c and bgpsec_utils_private.h contain internal helper functions. They
are not exposed to the public API.

34

6 BGPsec Implementation

The next section explains, how various features are implemented. Noteworthy parts of
the implementation are highlighted with code excerpts.

6.2 Validation Suite Implementation

The following sections cover the implementation in detail. There are multiple compo-
nents to the validation suite. An internal API for handling streams of raw bytes, BGPsec
data alignment and the signing/validation routines.

6.2.1 Streams

Inspired by how FRR handles chunks of raw bytes, RTRlib adopts the functionality
of streams. A stream in the context of RTRlib is a reference to an allocated memory
region of custom size. It can not be accessed directly but must instead be accessed using
appropriate functions. The advantage of this approach is that it prevents a developer
from accidentally overwriting parts of the stream by having direct access to it. Changing
a single bit of the data that is used for, e.g. hashing, would ultimately result in an invalid
BGPsec update. Streams are encapsulated within an internal API of RTRlib that is not
exposed to users of the RTRlib. It is intended for internal RTRlib developing purposes
only. Its entire API can be seen in Listing 6.6.

35

6 BGPsec Implementation

1 struct stream {
2 uint16_t size;
3 uint8_t* stream;
4 const uint8_t* start;
5 uint16_t w_head;
6 uint16_t r_head;
7 };
8

9 struct stream* init_stream(uint16_t size);
10

11 struct stream* copy_stream(struct stream *s);
12

13 void free_stream(struct stream* s);
14

15 uint8_t* get_stream_start(struct stream* s);
16

17 uint16_t get_stream_size(struct stream* s);
18

19 void write_stream(struct stream* s, void* data, uint16_t len);
20

21 uint8_t read_stream(struct stream* s);
22

23 void read_n_bytes_stream(uint8_t* buff, struct stream* s,
24 uint16_t len);
25

26 void read_stream_at(uint8_t* buff, struct stream* s, uint16_t start,
27 uint16_t len);

Listing 6.6: Internal stream API of RTRlib. It offers functionalities for safely
reading and writing raw chunks of bytes.

The size of a stream is stored within the size variable (line 2). The data of the steam,
i.e., the raw bytes are pointed to by stream (line 3). To always have a reference to the
beginning of the data, start (line 4) always points to the first byte of stream.

Each stream has a write and a read head (line 5 and 6). Reading from and writing data
to a stream causes the heads to progress by the appropriate amount. When five bytes of
a stream are read, the write head shifts five bytes along the stream data. The function
read_steam_at (line 26) poses an exception, since the read position is determined by
the user (for this call only). It does not affect the position of the heads. Using the
technique of having read and write heads, a developer does not need to keep track of
the current position when reading or writing.

36

6 BGPsec Implementation

To enable a developer to work safely with streams there are a variety of allocator-,
helper- and getter-functions. The functions in line 9, 11 and 13 are used to initialize,
copy and free a stream. Line 15 describes an getter function for the start variable. To
get the total size of a stream, the function in line 17 returns the appropriate value.

Writing data to a stream works by passing arbitrary data together with a stream and
a length value to the function in line 19. The routine writes len bytes of data to the
stream s.

Reading a single byte from a stream can be done with the function in line 21. To read
more than one byte, the function in line 23 is used. Since potentially more than one
byte is returned, the result is written into a pre-allocated buffer. To read data from a
stream at a certain position, the last function in line 26 can be used. A start position,
from where on the data should be read, is passed to it. Otherwise, it behaves exactly
like the read-function in line 23.

Multiple function calls of, e.g. read_stream, returns a different byte each time because
the read head shifts with each call. An example can be seen in Listing 6.7.

1 struct stream* s = init_stream(3);
2

3 write_stream(s, 'a', 1);
4 write_stream(s, 'b', 1);
5 write_stream(s, 'c', 1);
6

7 read_stream(s); // returns 'a'
8 read_stream(s); // returns 'b'
9 read_stream(s); // returns 'c'

Listing 6.7: Example of the shifting read and write head mechanics of streams.

Here, the stream s is initialized with size 3. Then, the three bytes 'a', 'b' and 'c' are
written to the stream (line 3 to 5). The write head shifted from position 0 to position 3.
When reading three times (line 7 to 9), the three bytes are returned in the same order
they were written. This time, the read head shifts from position 0 to 3.

The stream struct is found within the bgpsec_utils.c source file. It is made opaque
by only forward declaring it in the header file bgpsec_utils_private.h. This way,

37

6 BGPsec Implementation

it cannot be initialized directly on the stack or heap using malloc. Instead, it must be
initialized using the init_stream function, as demonstrated in line 2 of Listing 6.8.

1 struct stream* s = malloc(size); // Illegal
2 struct stream* s = init_stream(size); // Allowed
3

4 uint16_t s_size = s->size; // Illegal
5 uint16_t s_size = get_stream_size(s); // Allowed
6

7 uint8_t byte = s->stream[0]; // Illegal
8 uint8_t byte = read_stream(s); // Allowed

Listing 6.8: .

Any direct access on the struct is forbidden, as can be seen in line 4 and 7. For any kind
of access, there are appropriate functions (line 5 and 8).

Utilizing streams is useful to enable safe read and write operations on raw chunks of
bytes. The next section showcases where streams are used within the validation suite of
RTRlib.

6.2.2 Data Hashing

Aligning the information that are hashed during the validation routine was optimized
during the specification of BGPsec. Figure 4.6 from Section 4.2 shows how the data
needs to be aligned in order to verify all signatures of an update without having to
re-align it.

Starting from the beginning of the byte sequence, it is sufficient to calculate the offset
from one Secure Path Segment to the next with each iteration. The offset is always the
size of a Secure Path Segment plus the size of a Signature Segment. Because signatures
are variable in length, the offset needs to be calculated with each iteration. In the
implementation, this is handled with a for-loop, as shown in Listing 6.3.

38

6 BGPsec Implementation

1 s_size = get_stream_size(stream)
2

3 for (total_offset = 0, next_offset = 0;
4 total_offset <= s_size;
5 total_offset += next_offset):
6

7 bytes = read_stream_at(stream, total_offset,
8 s_size - total_offset)
9 digest = hash_bytes(bytes)

10

11 /* Validate */
12

13 next_offset = sig_seg_len + sec_path_len
14 done

Figure 6.3: Truncated code of the validation for-loop. It generates a digest value
with each iteration. With each iteration, the offset shifts to the next
starting point.

The aligned data is already contained in stream. In the beginning, the size of the stream
is stored in s_size in line 1. Next, in line 3, the two variables total_offset and
next_offset are initialized to be 0. The first variable holds the offset of the entire byte
sequence. The second variable holds the amount of bytes that total_offset needs to
shift so stream is read from the correct position on in the next iteration. next_offset
gets updated in line 13. Line 7 and 8 get the required bytes for hashing and line 9 hashes
them. The entire process is visualized in Figure 6.4.

39

6 BGPsec Implementation

Iteration	1

Iteration	2

Iteration	3

offset

offset	+=
next_offset

offset	+=
next_offset

Bytes	for
hashing

Byte
sequence

101001011101001010010111101011011000100011101010001011101100

101001011101001010010111101011011000100011101010001011101100

101001011101001010010111101011011000100011101010001011101100

1010

Figure 6.4: Visual representation of the offset shifting code in Listing 6.3. The
bytes are aligned from left to right as a stream.

Each iteration, bytes to the right of the offset are hashed. The offset then shifts to the
right by a variable amount of bytes and the next iteration begins. The amount of shifted
bytes is the size of a Secure Path Segment plus the size of the next Signature Segment.

The validation procedure, which was merely symbolic in line 10 of Listing 6.3, is subject
of the next section.

6.2.3 Signature Validation

As soon as a digest value is generated, the signature can be verified using the appropriate
public router key. This key is stored within the SPKI table. It is fetched using the signers
ASN and the keys SKI. If the required router key is not present during validation, the
BGPsec RFC specifies to mark the Signature Block (and thus the entire BGPsec update
as currently only one block is used) as ‘Not Valid’. “Locate the public key [...]. If this
check finds no such matching SKI value, then mark the entire Signature_Block as ‘Not
Valid’ [...]” [65].

The OpenSSL validation function requires the SPKI to be encapsulated into an OpenSSL
struct. After the conversion, the public key, the signature and the digest value are
passed to the cryptographic validation function provided by OpenSSL. The result is

40

6 BGPsec Implementation

either ‘Valid’ or ‘Not Valid’. Listing 6.9 shows the same truncated loop that was already
shown in Figure 6.3, this time focused on the validation part.

1 result = VALID
2

3 for (i = 0;
4 i < sig_len OR result != NOT_VALID;
5 i++):
6

7 /* Calculate digest value */
8

9 /* Get next signature, ASN and SKI */
10

11 spki = spki_table_search_key(spki_table, asn, ski)
12

13 pubkey = d2i_EC_PUBKEY(spki)
14

15 result = ECDSA_verify(digest, signature, pubkey)
16

17 /* Calculate next offset */
18 done
19

20 return result;

Listing 6.9: Loop that verifies all signatures. The focus here lies on the router
key conversion and the validation itself.

The result variable in line 1 holds the validation result of each iteration. It is initialized
to VALID so the for-loop condition in line 4 does not fail on the first iteration. Prior
checks on sig_len assure that it is greater than 0 to have the loop run at least once.
This needs to happen so result gets updated at least once before it is returned in line
20. The for-loop conditions in line 3 to 5 (compare line 3 to 5 of Listing 6.3) changed for
the sake of brevity and focus on validation. The loop runs as long as there are signatures
left unverified or the result of the previous iteration was ‘Not Valid’ (line 4). After the
digest value has been calculated, the SPKI information is fetched from the SPKI table
(line 11). Then, the SPKI is converted into a wholesome EC public key in line 13. Line
15 verifies the signature using the digest, the signature and the public key. Should the
outcome be ‘Valid‘, the next iteration starts (implying there is a next signature to be
verified). Otherwise, if the result is ‘Not Valid’, the loop breaks prematurely on the
condition in line 4.

41

6 BGPsec Implementation

6.2.4 Signature Generation

Signing a BGPsec update is similar to validating one, with the difference that signing is
not an iterative procedure. The byte sequence is aligned, hashed and then signed once.
Listing 6.10 shows the defining parts of the implementation.

1 privkey = d2i_ECPrivateKey(byte_key)
2

3 bytes = align_byte_sequence(bgpsec_data)
4

5 hash = hash_byte_sequence(bytes)
6

7 new_signature = ECDSA_sign(hash, privkey)

Listing 6.10: Truncated code for generating a BGPsec signature. The process is
not iterative and hence does not require a loop.

For signing, the private key of the router is loaded, as shown in line 1. Next, in line 3, the
data is then aligned based on the input parameter bgpsec_data. It holds the data that
is signed, including the data of the signing AS. In line 5, the byte sequence is hashed.
Using the private key, the hash is signed in line 7. new_signature now contains the
generated signature.

6.2.5 Revisiting Validation Suite Requirements

To finish this section, the requirements to the validation suite that were made in Section
6.1 are revisited. Each requirement is listed once more and checked, if it has been met.

Lightweight The validation suite has only two public features, namely validating
and signing AS paths. To do so, OpenSSL is added as a dependency to RTRlib.
Except for AS path validation, no other features were implemented. X

Compatible It was possible to add the validation suite to RTRlib without
having to make changes to the current API. Software that currently depends on
RTRlib would not break due to these changes. X

Similar Setup Router keys and prefixes are fetched from the cache server via
the same connection. Changes to the setup were therefore not required. X

42

6 BGPsec Implementation

Independent Having a BGPsec protocol handler interacting with the validation
suite is not required for signing or validating AS paths. All it needs is a connection
to a cache server. X

Documented The documentation for the public API functions of AS path
validation are included into the Doxygen7 toolchain for RTRlib. When the docu-
mentation for RTRlib is generated, AS path validation is now part of it. X

All requirements have been met. This closes the validation suite implementation. The
next section covers the implementation process of the protocol handler.

6.3 Protocol Handler Design

The protocol handlers duty is parsing and assembling BGPsec PATH attributes. It is
build on top of BGP, which is already implemented by FRR. By utilizing the validation
suite, the protocol handler signs and validates BGPsec updates.

6.3.1 Choice for FRR

The protocol handler is integrated into the FRR routing suite. One reason being that
RTRlib is already used by FRR. RTRlib provides FRR with ROV and it is therefore
only convenient to provide AS path validation through the same library. When FRR
was forked from Quagga, the project was restructured and the development accelerated.
New features were implemented rapidly. Between the years 2017 and 2019, six major
releases were published. Development for Quagga is stale, its latest release, version 1.2.4,
was published February 20188

The BGP implementation of FRR is fully functional and provides all prerequisites for
BGPsec such as 4-byte AS number support [66] and the multiprotocol extension [67].

Last, with BGP-SRx, Quagga already is provided with RPKI functionalities, making an
additional BGPsec implementation in Quagga redundant. Bird also received a BGPsec
implementation, although it was never officially released.

7https://www.doxygen.nl/index.html
8https://github.com/Quagga/quagga/releases/tag/quagga-1.2.4

43

https://www.doxygen.nl/index.html
https://github.com/Quagga/quagga/releases/tag/quagga-1.2.4

6 BGPsec Implementation

6.3.2 Design

Just like with the validation suite, there are non-feature requirements to the protocol
handler as well. These requirements are similar, although some of them differ in their
meaning.

Lightweight The implementation shall only implement necessary features. If
BGPsec is not enabled, it must not slow down the BGP protocol handler.

Exchangeable It shall be possible to remove the BGPsec protocol handler from
FRR without breaking FRR or having to modify large portions of the BGP code.

Configurable To en- or disable BGPsec, it shall be configurable via FRR. Also,
several recommendations by the RFC on what a user should be able to configure
shall also be implemented.

Independent The protocol handler for BGPsec shall be compatible with other
validation suites without the need to rewrite large portions of the FRR code base.
Exchanging the function calls to the current validation suite with appropriate new
ones shall be sufficient

Documented The usage of AS path validation shall to be documented with all
its configurable options. The documentation shall also be integrated into the build
chain of FRR.

At the end of this chapter, the above mentioned requirements are revisited and it will
be checked, which of them have been met.

FRR can be extended with modules. A module is a piece of code that is build during
compilation and loaded during run-time. Functions of the module are called via hooks.
If hook-calling a function of a module that is not loaded, this call is ignored. This allows
for a cleaner separation between the FRR code base and the protocol handler. However,
separating BGPsec and BGP code is not always possible nor reasonable, as shown later
in this section.

Since BGPsec is considered a protocol extension for BGP, there is no need to implement
BGP functionalities from scratch. Instead, they can be used just the same, if the payload
of BGPsec updates is prepared appropriately. This prevents a lot of code duplication
that would otherwise be introduced with BGPsec. AS an example, FRR implements the

44

6 BGPsec Implementation

aspath struct. It is used to store AS path information, such as AS segments. Many
functions take aspath as an input parameter. Instead of making all those functions
compatible with BGPsec structures, the BGPsec PATH is translated into a aspath.

The following new features are essential to the protocol handler implementation:

Capability Negotiation Sending and receiving BGPsec updates requires two
peers to know the capabilities of one another. Those are negotiated via the BGP
open messages. The protocol handler needs to be able to create and parse the
BGPsec capabilities of the open message.

Error Checking The semantics and syntax of BGPsec updates must be checked.
Any inconsistencies must be handled according to the specification.

BGPsec PATH Parsing All contents of the new attribute must be parsed and
processed appropriately.

BGPsec Update Construction To originate or forward a BGPsec update,
the protocol handler needs to be able to generate a new BGPsec PATH attribute
or append data to an existing one.

BGP Update Reconstruction In case it is not be possible to forward an
announcement as a BGPsec update, it must be transformed into a plain BGP
update.

6.3.3 The Module and Configuration

FRR already supports ROV, which is provided by RTRlib. This support is enabled via
an RPKI module9. When configured accordingly, the BGP daemon performs ROV on
incoming announcements. Prior to the validation, a cache server must be configured from
where the RPKI information are fetched. RTRlib always fetches the prefix information
as well as the SPKI data, if available. It is thus sufficient to also utilize the current cache
configuration command for AS path validation. An example for cache configuration can
be seen in Listing 6.11.

9https://github.com/FRRouting/frr/blob/master/bgpd/bgp_rpki.c

45

https://github.com/FRRouting/frr/blob/master/bgpd/bgp_rpki.c

6 BGPsec Implementation

1 rpki
2 rpki cache 172.18.0.100 8383 preference 1
3 exit

Listing 6.11: Example configuration of an RPKI cache server in FRR. If the
cache contains router keys, they are fetched together with the prefix
information.

The command in line 1 enters the rpki environment. Line 2 reads as “connect to an
rpki cache at the IP address 172.18.0.100 and port 8383 with preference 1”. Line
3 exits the rpki environment.

As for now, the approach of adding AS path validation to the RPKI module is convenient
and appropriate. Because of the modular design of FRR, AS path validation could also
be outsourced into a different module, if it should become necessary.

The following configuration commands are required for a minimal working BGPsec im-
plementation.

1. Cache Server Configuration As mentioned above, we depend on the con-
figuration command for setting up a cache server that is already used within the
RPKI module. The cache server is required to fetch SPKI data.

2. Private Key Location The RPKI module needs to know the location of the
private key to read it. Therefore, there needs to be a command to specify this
location.

3. Private Key SKI Because the private key file does not necessarily contain the
SKI, the user has to set it manually via a command.

4. Capability Options Section 4.2 defines the needed capabilities for BGPsec.
To cover all cases, four options are necessary.

5. Debugging For debugging purposes, there is a command that logs BGPsec
specific operations, e.g., whether or not an update validation was successful.

Commands 1 to 4 are mandatory for a minimum BGPsec implementation. Command
5 is optional but indispensable for the development process. Command 1 to 3 are
implemented within the RPKI module. The capability and debugging commands need

46

6 BGPsec Implementation

to be implemented in the native BGP source code. They depend on existing commands
and cannot be outsourced into the RPKI module.

The specific files that are updated are bgp_vtysh.c and bgp_debug.c. The first
contains the capability commands, the latter the debug commands. The rest of the
commands are located within the RPKI module file bgp_rpki.c.

The next section dives into the implementation details and elaborates, why certain design
decisions have been made.

6.4 Protocol Handler Implementation

In this section, the implementation details of the protocol handler are inspected in detail.
Whenever it is possible, pseudocode is provided. If the context of the relevant code is
too vast, the implementation details are described without code as best as possible.

6.4.1 Commands

To give users control over BGPsec on the router, they need to have options like setting
the cache server or the private key. A running BGP daemon can be configured directly
via the vtysh10 terminal. Alternatively, a configuration file can be passed to the daemon
on startup. BGP commands have environments in which they can be applied. As can be
seen in Listing 6.11, the rpki scope must be entered before the cache command can be
used. The newly introduced BGPsec commands are applied to the following scopes:

1. Router scope In this scope, a BGP router is configured. It holds all information
about its neighbors. It is intuitive to assign the private key location and private
key SKI commands to it. Since capabilities for neighbors are also declared here,
the BGPsec capability options are applied here as well.

2. Global scope Settings which apply globally, such as logging or debugging, are
assigned to this scope. The BGPsec debugging command takes place here.

10http://docs.frrouting.org/en/latest/vtysh.html

47

http://docs.frrouting.org/en/latest/vtysh.html

6 BGPsec Implementation

Since there are no new commands added to the RPKI scope, it is omitted here. The
following Listing 6.12 showcases the new commands in action.

1 debug rpki
2 debug bgp bgpsec
3

4 rpki
5 rpki cache 172.18.0.100 8383 preference 1
6 exit
7

8 router bgp 64496
9 bgp router-id 10.10.10.10

10

11 bgpsec privkey /path/to/privkey.der

12 bgpsec privkey ski AB4D910F55CAE71A215EF3CAFE3ACC45B5EEC154
13

14 neighbor 1.2.3.4 capability bgpsec send ipv4

15 neighbor 1.2.3.4 capability bgpsec send ipv6
16

17 neighbor 1.2.3.4 capability bgpsec recv ipv4

18 neighbor 1.2.3.4 capability bgpsec recv ipv6
19

20 neighbor 5.6.7.8 capability bgpsec both any

Listing 6.12: All commands that are relevant for configuring BGPsec. New com-
mands are highlighted.

The first two lines enable debugging for RPKI and BGPsec. They work independently
from each other. RPKI debug messages inform the user about the initialization process,
connection establishment and ROV results. BGPsec debugging additionally informs the
user about AS path validation results, announced and received BGPsec capabilities and
errors related to BGPsec.

In line 8, the router scope is entered. Within, the private key is loaded from a file and
the SKI is set with the appropriate commands (line 11 and 12). The private key must be
loaded successfully prior to setting the SKI, thus the those commands must be executed
in this order. If no key is set when setting the SKI, an error is returned.

Line 14 to 20 show, how the new capability command is working by configuring two neigh-
bors. The current functionality of setting capabilities is extended with BGPsec. The syn-
tax is: neighbor <IP> capability bgpsec <send/recv/both> <ipv4/ipv6/any>.

48

6 BGPsec Implementation

As seen in line 14 to 18, setting the capabilities to send and receive IPv4 and IPv6 would
require four lines in total per neighbor. Line 20 demonstrates, how these four commands
can be combined into a single line using the parameters both and any.

These are all the commands that are required to execute the performance tests in Chapter
7.

6.4.2 Capability Negotiation

BGPsec capabilities need to be added to the BGP open message based on the routers con-
figuration. Received capabilities need to be parsed and applied to the appropriate peer.
The FRR function bgp_open_capability is responsible for adding the appropriate ca-
pabilities to the open message. This is where the BGPsec code is added. Capabilities
for a peer are set using flags, for each peer individually. Based on which flags are set for
the peer, capabilities are added to the open message.

49

6 BGPsec Implementation

1 put_bgpsec_cap(open_msg, peer):
2

3 if peer->caps == SEND_IPV4:
4 put(open_msg, version)
5 put(open_msg, send)
6 put(open_msg, IPv4)
7

8 if peer->caps == SEND_IPV6:
9 put(open_msg, version)

10 put(open_msg, send)
11 put(open_msg, IPv6)
12

13 if peer->caps == RECEIVE_IPV4:
14 put(open_msg, version)
15 put(open_msg, receive)
16 put(open_msg, IPv4)
17

18 if peer->caps == RECEIVE_IPV6:
19 put(open_msg, version)
20 put(open_msg, receive)
21 put(open_msg, IPv6)

Listing 6.13: Pseudocode for adding BGPsec capabilities to the BGP open mes-
sage of a specific peer. Each of the four if-statements checks for
a direction-AFI combination. In case the capability for peer is
set, the version, direction and AFI are added to the open_msg
stream.

On the receiving end, parsing the open message needs to be extended with BGPsec capa-
bility parsing. Each capability has its own numeric code. In bgp_capability_parse,
the BGPsec capability parsing routine is invoked if the appropriate capability code is
encountered. If so, the encoded capability is passed to the RPKI module where it is
processed. Various error checks make sure that the capability is not malformed and
does not contain illegal values. Appropriate flags are then set for the peer from which
the BGP open message was received.

50

6 BGPsec Implementation

1 bgpsec_capability_parse(cap, peer):
2

3 if cap->direction == send:
4 if cap->afi == IPv4:
5 set_flags(peer, SEND_IPV4)
6 else if cap->afi == IPv6:
7 set_flags(peer, SEND_IPV6)
8

9 else if cap->direction == receive:
10 if cap->afi == IPv4:
11 set_flags(peer, RECEIVE_IPV4)
12 else if cap->afi == IPv6:
13 set_flags(peer, RECEIVE_IPV6)

Listing 6.14: Pseudocode for parsing a received BGPsec capability and setting
flags for that specific peer. The direction and afi of the received
cap are checked in nested if-statements. If a condition is met, the
flags for the peer are set appropriately. This function can only
process one capability at a time.

Decisions, e.g. whether or not a BGPsec update is forwarded to this specific peer, are
based on the flags and capabilities set by the functions shown in Listing 6.13 and 6.14.

6.4.3 Storing BGPsec Data

Data structures that need to be available throughout the BGP implementation, such as
the new bgpsec_aspath, cannot be declared within a module. Therefore, functions to
allocate, copy and free BGPsec data structures reside within the bgpd/bgp_aspath.c
file, not the RPKI module. Functions that initialize the BGPsec PATH storage, compare
BGPsec PATHs and manipulate Signature and Secure Paths Segments are also found
there. In total, 24 new functions were added for these purposes.

There are a total of five new structures to store BGPsec data. With the exception of two,
the FRR structs are almost identical to their RTRlib equivalent, which were described in
Section 6.1.3. These two exceptions are the bgpsec_sigblock and the private_key.
Listing 6.15 shows both new structs.

51

6 BGPsec Implementation

1 struct bgpsec_sigblock {
2 uint16_t length;
3 uint8_t alg_id;
4 uint16_t sig_count;
5 struct bgpsec_sigseg* sigsegs;
6 };
7

8 struct private_key {
9 char* filepath;

10 uint16_t filepath_len;
11 uint8_t* key_buffer;
12 uint16_t key_len;
13 uint8_t ski[SKI_SIZE];
14 unsigned char ski_str[SKI_STR_SIZE];
15 bool loaded;
16 };

Listing 6.15: Definition of the private_key and the bgpsec_sigblock struct.

bgpsec_sigblock is a wrapper for signature related data. Future BGPsec versions will
define two separate Signature Blocks per BGPsec PATH. The wrapper allows separation
on software level by defining two individual bgpsec_sigblocks. Line 2 holds the total
length of the Signature Block, line 3 holds the algorithm ID. The amount of Signature
Segments within the block is stored in line 4. The segments themselves form a singly
linked list. Its head is referenced in line 5.

The private_key holds the private key information. Key data is loaded from disk during
BGP daemon startup. Line 2 and 3 hold the file path location string and length of the
private key. Its raw bytes and its length are stored in line 4 and 5. The corresponding
SKI is stored as raw bytes in line 6. Because of its static length of 20 bytes, it is not
necessary to have a field of dynamic length. For debugging purposes, the SKI is stored
in human readable format in line 7. The field in line 8 tells whether or not the key was
successfully loaded.

6.4.4 BGPsec Update Generation

Since the BGPsec path is only a new BGP attribute, the update generating routine does
not have to be altered fundamentally. In fact, adding the attribute to the update message
works similar to adding the capability to the open message. The only precaution that

52

6 BGPsec Implementation

needs to be made is that a BGPsec update must not contain both the BGPsec PATH
and the AS PATH attributes at the same time.

In FRR, the function bgp_packet_attribute generates the attributes for a BGP up-
date message. A function-hook to the RPKI module is added there. The shortened
process of generating the BGPsec PATH is laid out as pseudocode in Listing 6.16.

1 build_bgpsec_path(update, peer, bgp, attr):
2 if send_bgpsec(peer, bgp) == false:
3 return false
4

5 my_segment = bgpsec_sps_new(65532, 1, 0)
6 new_path = bgpsec_aspath_new(bgp, attr, my_segment)
7

8 store_bgpsec_aspath(new_path)
9

10 gen_bgpsec_sig(new_path, bgp, attr)
11

12 write_bgpsec_aspath(update, new_path)

Listing 6.16: Simplified pseudocode for generating a BGPsec PATH and writing
it to the update.

The function build_bgpsec_path handles attribute and signature generation and ap-
pends them to the update message. In the beginning in line 2, it is checked whether
or not the peer and the own router are configured to speak BGPsec. If one of them
is not, the process is aborted prematurely. Else, the Secure Path Segment of the con-
structing router and the BGPsec PATH struct are initialized in line 5 and 6. Prior to
signing the path, it is stored in memory for later use using store_bgpsec_aspath (line
8). Then, in line 10, the signature is generated via gen_bgpsec_sig and is then ap-
pended to new_path. Finally in line 14, the entire BGPsec PATH attribute is appended
to the update message. The update is now a BGPsec update and the usual update
sending/forwarding routine of FRR continues.

6.4.5 BGPsec Update Parsing

Incoming BGPsec updates undergo various error checks, defined by the RFC. Some of
these checks are performed as the BGPsec PATH attribute is parsed. A malformed
update must be handled accordingly, usually with a treat-as-withdraw [68] approach.

53

6 BGPsec Implementation

Parsing a BGPsec update is not very different from parsing a plain BGP update. In-
stead of an AS PATH attribute, the update holds the BGPsec PATH attribute. The
bgp_update_parse function, which processes incoming updates, invokes the bgp_attr_parse
function. The latter iterates over all attributes within the update. If it encounters
the BGPsec PATH attribute, a hook to the RPKI module is called, which parses the
BGPsec PATH and adds a bgpsec_aspath to the attr struct of the update. The
bgpsec_aspath is holds the information of the parsed BGPsec PATH attribute.

When processing a BGPsec path, the AS path information are redundantly stored in
non-BGPsec structures. Those are required for, e.g., best path selection. This way,
massive code duplication and altering existing functions can be avoided. Otherwise,
all routines that work with AS paths would need to be altered to work with BGPsec
structs. Hence, AS path information received from BGPsec updates are processed as if
they would have been extracted from a plain BGP update. AS path validation does of
course still occur.

Another advantage of redundant AS path data storing is quicker AS PATH reconstruc-
tion. Should a BGPsec update be forwarded without AS path protection, a plain BGP
update needs to be constructed instead. Since the AS path information is already
stored in a non-BGPsec way during BGPsec path processing, this additional step can
be skipped. The implementation simply falls back on these plain BGP structures.

The BGPsec PATH contains length fields that tell, how many of the following bytes
belong to which information. The attribute is parsed until no bytes are left. Should the
byte stream end prematurely or should there be trailing bytes left, an error is returned
and the update is deemed malformed. During the parsing processes, various error checks
occur, e.g., if there is an equal amount of Secure Path and Signature Segments.

Validation of the update cannot occur until all attributes of the BGPsec update have
been processed. To verify a signature, the announced NLRI must be present, which is
contained within the multiprotocol attribute. Even though the BGPsec PATH attribute
should be placed at the end of the update, this is not a mandatory requirement according
to the specification. For this reason, the validation is postponed until the very end of
the update processing.

To execute the validation itself, the bgpsec_aspath structs, which holds the BGPsec
PATH data of the update, is passed to the val_bgpsec_aspath function within the
RPKI module. The data is still stored in FRR data structures and must first be converted

54

6 BGPsec Implementation

into RTRlib structures. After the conversion, the data is passed to the RTRlib validation
function. The result is given back to the module, which returns it to the FRR BGP code
to make decisions based on the outcome.

6.4.6 Revisiting Protocol Handler Requirements

This section takes a look back on the design requirements placed on the protocol handler
in Section 6.3.2.

Lightweight Redundancy that would be introduced with BGPsec is reduced
by using as much of the current FRR BGP routines as possible. BGPsec related
code is kept separate from BGP code as much as possible. X

Exchangeable Thanks to the hook-system that FRR implements, BGPsec can
be disabled during compilation without breaking the software. BGPsec routines
are only executed when available and are otherwise ignored. X

Configurable Right now, only commands that are crucial to configure BGPsec
are available. As time passes and reviews are made, additional requirements will
be made to the implementation. (X)

Independent Calls to the RTRlib are reduced to allocating memory, copying
data, as well as validating and signing BGPsec paths. A total of 19 BGPsec related
calls to RTRlib are made throughout the RPKI module. Exchanging these calls
with functions of another validation suite is all it takes to make the switch, given
that equivalent functions are provided. X

Documented Although the BGPsec implementation comes along with code
comments on what is happening, user documentation is still missing. This is
partly because the user requirements to the implementation are still developing
and are not yet final. ×

In conclusion, the most crucial requirements are met. The requirements that users
impose on BGPsec still need to be identified throughout. Also, a user manual on how
to use AS path protection with FRR is still incomplete.

Now that the BGPsec implementation is complete, it needs to be analyzed. Tests are
covered by the next chapter.

55

7 Performance Analysis

In this chapter, the correctness of the BGPsec implementation is verified. Afterwards,
the performance is measured and compared to the reference implementation.

7.1 General

In general, all correctness and performance tests are executed in a containerized envi-
ronment using Docker1 and Docker Compose2. Each application resides within its own
container. They are located within a common network which is spawned using Docker.
An example of a Docker Compose configuration used for one of these tests can be found
in Appendix A.1.

Complex simulated networks are neither necessary nor feasible for the scenarios in ques-
tion. The liveliness of the network is not relevant. Variance in AS path length can be
achieved by chaining multiple router instances together. For some tests, artificially gen-
erated BGPsec updates are required. Those updates are created with tools specifically
developed for this work.

All tests are executed on an machine with 500GB of RAM and an AMD EPYC 7702
64-Core processor. FRR version 7.5.1 and BGP-SRx version 5.1.5 were used throughout
all tests.

7.2 Tooling

In total, three tools are required throughout all tests. They were implemented for the
course of this work and are introduced here. There are currently no other tools that

1https://www.docker.com/
2https://docs.docker.com/compose/

56

https://www.docker.com/
https://docs.docker.com/compose/

7 Performance Analysis

provide functionalities such as BGPsec update forwarding, router key generation or
distribution.

7.2.1 Public/Private Key Generator

Without public-private-key pairs, BGPsec updates cannot be signed or validated. The
public keys are fed into an SPKI cache so this cache can distribute them to BGPsec
routers. The private keys are needed by those routers to sign updates. With the KeyGen-
tool, arbitrary amounts of keys-pairs can be generated using a command like this:

$./keygen 1000 keys/

Generated 1000 router key(s) in directory keys/

This command generates 1000 key-pairs and puts them in the keys directory.

7.2.2 SPKI Cache

Currently, there are no cache servers out in the wild that serve SPKI data. A solution
to this problem is having an own minimalistic SPKI cache. SPKICache is a script that
mimics an RPKI cache that serves SPKI data. It reads public keys from a target location,
extracts their SPKI data and SKI and creates router key PDUs with them. All PDUs are
then stored in memory. When a router establishes a connection to SPKICache using the
RTR protocol, the cache delivers all router key PDUs, followed by a End of Data PDU.
The End of Data PDU sets maximum values for refresh, retry and expiration intervals to
prevent the peering router from making subsequent connection attempts during testing.
SPKICache then closes the connection. The router now has all the SPKI data stored
in its SPKI table and can use it to validate BGPsec updates. To run SPKICache, the
following command is executed:

$./cache.py 172.18.0.2 8383 --keypath keys/

Loading keys... done

Successfully loaded 1000 Router Keys

57

7 Performance Analysis

Using this command, SPKICache runs on the IP address 172.18.0.2 and port 8383.
It loads public keys from the keys/ location. After loading all keys, it waits for incoming
connections. SPKICache is not a complete implementation of the RTR protocol. It
merely sends those messages that are required to establish a connection, send PDUs and
terminate the connection. The tool also does not serve any IP prefix PDUs as they are
not relevant to the test scenarios in question.

7.2.3 Dummy Router

FRR and BGP-SRx are not supposed to send erroneous or malformed messages. Hence,
testing the processing of malformed BGPsec updates requires for a tool that sends such
updates to the routing daemons. The Dummy Router is a tool that establishes a BGP
session and sends BGPsec messages with arbitrary contents to its peer.

Aside from this basic behavior, the Dummy Router does not provide any other function-
alities and does not implement a complete BGP finite state machine. Its only purpose
is to send BGPsec messages to a router.

$./dummyrouter.py 172.18.0.200 8484 172.18.0.3 179 upd.bin

Starting the router with these parameters launches it on IP address 172.18.0.4 and
port 8484. It connects to 172.18.0.3 on the BGP port 179. After successfully
establishing a connection, Dummy Router sends BGPsec messages to its peer. They are
stored in binary format in upd.bin.

7.3 Correctness of the Implementation

One way to assure a correct implementation of BGPsec is to let FRR peer with an-
other BGPsec implementation. For all tests, the reference implementation, BGP-SRx,
is chosen. FRR sends messages to and receives messages from BGP-SRx. Additionally,
malformed and invalid BGPsec updates are sent to FRR via Dummy Router to check for
a correct error handling of the implementation. The expected behavior is then compared
with the actual results.

58

7 Performance Analysis

7.3.1 Open Message

Regarding the open message, a BGPsec implementation needs to make sure that the
contents of the newly added BGPsec capability are properly handled. The new capability
was introduced in Section 4.2. It contains the BGPsec version, a direction and an AFI.

The implementation needs to handle the following error cases for the BGPsec capabil-
ity.

1. The BGPsec version is not supported

2. The AFI is not supported

In both cases, those capabilities are ignored, as specified by the RFC. The direction is
not an issue as it is a single bit and both 0 and 1 are valid values. To make sure that
error cases are handled properly and correct capabilities are applied to a running BGP
instance, the following test scenario covers all cases.

Figure 7.1 depicts two test cases. In a), a peering between an FRR and a Dummy Router
instance is established. The latter sends open messages to FRR that contain malformed
BGPsec capabilities. All malformed BGPsec capabilities are expected to be ignored by
FRR.

FRR Dummy Router

BGP-SRx FRR

a)

b)

Malformed Open Messages

Proper Open Messages

Figure 7.1: Testing open messages. In a), malformed BGPsec capabilities are
sent from a Dummy Router instance to FRR. In b), proper open
capabilities are exchanged between FRR and BGP-SRx. These ca-
pabilities contain various combinations of direction and AFI.

59

7 Performance Analysis

If the implementation is correct, it is further expected that FRR neither accepts nor
sends any BGPsec updates during this session (since BGPsec update processing was not
tested yet, it is merely tested if BGPsec updates are sent or received by FRR).

In b), an FRR and a BGP-SRx instance exchange open messages, this time with valid
contents. Various cases for sending and receiving BGPsec updates are considered. If,
e.g., BGP-SRx is configured to not accept BGPsec updates, FRR must not send any BG-
Psec updates to BGP-SRx (again, the mere process of sending and receiving of BGPsec
updates is indicator for a working implementation). By configuring FRR and BGP-SRx
accordingly, different cases are covered. It is expected that FRR only sends messages
according to its own configuration and the one of BGP-SRx.

In scenario a), the BGP open messages sent by Dummy Router contain BGPsec capabil-
ities with values that are not supported by the current BGPsec specification. For once,
the version number is set to 1 instead of 0. Second, the AFI are set to 3 and 4 instead of
1 and 2. In both cases, FRR is expected to ignore these capabilities but still establishes
a BGP session with Dummy Router. Later during the session, Dummy Router attempts
to send a valid BGPsec update. Since FRR is supposed to ignore the capabilities sent
by Dummy Router, it is expected to not accept the BGPsec update.

1 BGPsec Cap: Received unsupported BGPsec version 1

2 Ignoring BGPsec capability from peer 172.18.0.200

3 ...

4 172.18.0.200 sent BGPsec UPDATE, but capabilities are not set for AFI IPv4

5 172.18.0.200: Attribute BGPSEC_PATH, parse error

6 BGP UPDATE receipt failed for peer: 172.18.0.200

Listing 7.1: FRR log when receiving a BGPsec capability with BGPsec version
1, followed by a BGPsec update message.

Listing 7.1 shows the FRR log when receiving a BGPsec capability which contains an
unsupported BGPsec version (line 1 and 2). FRR still establishes a session and accepts
update messages. If Dummy Router (172.18.0.200) sends a BGPsec update though, FRR
logs that no appropriate capabilities are set and rejects the update (line 4 to 6).

The same behavior is observed when receiving a BGPsec capability containing an un-
supported AFI. Listing 7.2 shows the FRR log for this case.

60

7 Performance Analysis

1 Received invalid AFI 3 in BGPsec capability from peer 172.18.0.200

2 Ignoring BGPsec capability from peer 172.18.0.200

3 Received invalid AFI 4 in BGPsec capability from peer 172.18.0.200

4 Ignoring BGPsec capability from peer 172.18.0.200

5 ...

6 172.18.0.200 sent BGPsec UPDATE, but capabilities are not set for AFI IPv4

7 172.18.0.200: Attribute BGPSEC_PATH, parse error

8 BGP UPDATE receipt failed for peer: 172.18.0.200

Listing 7.2: FRR log when receiving a BGPsec capabilities with AFI 3/4, fol-
lowed by a BGPsec update message.

A warning is logged (line 1 to 4) but FRR still establishes a session and accepts BGP
update messages, like it is supposed to. Incoming BGPsec updates are rejected, though
(line 6 to 8).

In both cases, no BGPsec updates were processed and no paths were added to the BGP
table. After connecting to the BGP daemon via vtysh, the show ip bgp command
confirms an empty BGP table. Listing 7.3 shows that there are no prefixes to display,
thus FRR successfully rejected the BGPsec updates sent by Dummy Router.

1 vtysh# show ip bgp

2 No BGP prefixes displayed, 0 exist

Listing 7.3: FRR instance that is not configured to accept BGPsec updates.
When connecting to the BGP daemon via vtysh after receiving BG-
Psec updates, the show ip bgp command has no prefixes to display.

To further show that FRR itself did not sent any BGPsec updates, Wireshark3 is used
to capture the BGP session between FRR and Dummy Router. Figure 7.2 shows the
package exchange after invalid BGPsec capabilities were sent4. FRR sends plain BGP
updates to Dummy Router, indicated by the AS PATH attribute present within the path
attributes.

3https://www.wireshark.org/
4Wireshark was extended with a BGPsec parser for this work

61

https://www.wireshark.org/

7 Performance Analysis

Figure 7.2: Wireshark capture of a BGP session. The update include the AS
PATH attribute, hence it must be a plain BGP update.

In Figure 7.3, valid BGPsec capabilities were sent by Dummy Router. Thus, FRR did
send BGPsec updates, which is indicated by the BGPsec PATH attribute present within
the path attributes of the update.

Figure 7.3: Wireshark capture of a BGPsec session. The BGPsec PATH at-
tribute is included within the update.

62

7 Performance Analysis

7.3.2 Malformed Update Message

To make sure that a BGPsec update is correct, the specification holds a list of checks
that need to be made before the update can be deemed coherent. The summarized list
is shown below. A BGPsec update is correct if:

• its last prepended AS is equal to the AS within the open message

• it has an even amount of Signature/Secure Path Segments

• it does not contain both an AS PATH and a BGPsec PATH attribute

• none of its pCount fields are equal to 0

• it contains no AS loops

• its algorithm ID is valid

In case one of the checks fails, the update is treated with a treat-as-withdraw approach.
A special case occurs on an unsupported algorithm ID. If so, the update is converted
into a plain BGP update, instead of going with the treat-as-withdraw approach. Note
that an unsupported algorithm ID is different from an invalid algorithm ID. Invalid IDs
are 0 and 255, while unsupported IDs have values ranging from 2 to 254. Currently, the
only supported ID is 1 [69].

To test the various errors cases, forged BGPsec updates are generated, one for each
error that needs to be checked. Each of those updates are constructed in a way that
they trigger one of the errors. As shown in Figure 7.4, Dummy Router sends those
forged updates to FRR. The expected result is that FRR would always respond with a
withdraw to every malformed BGPsec update. This can be verified by looking at the
debugging output of FRR.

FRR Dummy Router

Malformed BGPsec
Update Messages

Figure 7.4: Dummy Router sends malformed BGPsec updates to FRR.

63

7 Performance Analysis

By logging the reason for an error it is possible to demonstrate the correctness of the
implementation. Listing 7.4 shows all errors that were produced by sending malformed
BGPsec updates to FRR.

1 172.18.0.200 sent invalid BGPsec UPDATE (last AS (666) does not match

2 peer AS (123))

3 172.18.0.200: Attribute BGPSEC_PATH, parse error

4 ...

5 172.18.0.200 sent invalid BGPsec UPDATE (uneven amount of segments)

6 172.18.0.200: Attribute BGPSEC_PATH, parse error

7 ...

8 172.18.0.200 sent invalid BGPsec UPDATE (contains AS_PATH and BGPsec_PATH)

9 172.18.0.200: Attribute BGPSEC_PATH, parse error

10 ...

11 172.18.0.200 sent invalid BGPsec UPDATE (encountered pCount value 0)

12 172.18.0.200: Attribute BGPSEC_PATH, parse error

13 ...

14 1.2.3.0/24 IPv4 unicast -- DENIED due to: as-path contains our own AS;

15 ...

16 172.18.0.200 sent invalid BGPsec UPDATE (invalid algorithm ID 0)

17 172.18.0.200: Attribute BGPSEC_PATH, parse error

Listing 7.4: FRR reacts to every error and logs the reason.

The check for AS loops was already implemented by FRR and could be reused for the
BGPsec implementation. To further prove that no updates were accepted, the BGP
table is inspected in Listing 7.5.

1 vtysh# show ip bgp

2 No BGP prefixes displayed, 0 exist

Listing 7.5: After receiving multiple malformed BGPsec updates, the BGP table
is still empty.

With no prefixes to display, none of the received BGPsec updates were processed after
the errors occurred. The result meets the expectations.

64

7 Performance Analysis

7.3.3 Parsing Update Message

To show that FRR validates BGPsec updates according to the specification, FRR needs
to validate BGPsec updates which it received from BGP-SRx. To further show that
the signing routine works as intended, BGP-SRx needs to successfully validate BGPsec
updates that were signed by FRR. Figure 7.5 shows a scenario in which BGPsec update
processing (generation and parsing) can be verified over multiple hops.

BGP-SRx 1 FRR N FRR 1a)

BGP-SRx NFRR 1 BGP-SRx 1b) ...

...

FRR 2

BGP-SRx 2

1.2.3.0/24

1.2.3.0/24

Figure 7.5: BGPsec update correctness test. In a), the signing routine is eval-
uated. BGP-SRx 1 and 2 must successfully validate the BGPsec
update forwarded by FRR N. Scenario b) evaluates validation. A
BGPsec update forwarded by BGP-SRx N must be successfully val-
idated, this time by FRR 1 and 2.

An arbitrary amount of AS hops is achieved by chaining multiple router instances to-
gether. In a), the signing routine of FRR is verified. FRR 1 originates a BGPsec update
with the prefix 1.2.3.0/24. It is forwarded until it reaches FRR N. At this point, the
BGPsec update has a path length of N-1. FRR N then forwards the BGPsec update to
BGP-SRx 1. If it is successfully validated there, it is forwarded to BGP-SRx 2. This
ensures that the update successfully passes the validation on hop farther. If BGP-SRx
2 successfully validates the update, the test is complete.

In b), the validation routine of FRR is verified. This time, BGP-SRx and FRR instances
are switched. BGP-SRx does the forwarding from BGP-SRx 1 to N. FRR 1 and 2 then
validate the BGPsec update. If both FRR 1 and 2 successfully validate the BGPsec
update, the validation routine in FRR works as intended.

After executing a), BGP-SRx 2 must hold a validated path to the prefix announced by
FRR 1. This can be verified by accessing the BGP daemon and invoking the show ip
bgp command. It outputs the following lines (truncated):

65

7 Performance Analysis

1 bgpsrx# show ip bgp

2 Ident SRxVal [...] Network [...] Path

3 *> 41045A66 i(n,v) 1.2.3.0/24 7 6 5 4 3 2

4

5 Total number of prefixes 1

Listing 7.6: show ip bgp command invoked on an BGP-SRx instance after vali-
dating a BGPsec update originated by an FRR instance. The v in
the highlighted part in line 3 tells that the BGPsec path is valid.

The highlighted part in Listing 7.6 shows the validation result. The inner values of the
braces signal the validation result of the ROV (left) and the AS path validation (right).
Since origin validation is not performed, it defaults to n - not found. To its right, v
- valid - signals that the AS path validation was successful. Combining both values,
BGP-SRx determines that the overall result is invalid, indicated by the i. However, this
has no implications on the functionality of the BGPsec implementation.

Vice versa, FRR needs to be able to validate BGPsec updates that were originated by
BGP-SRx. FRR has currently no other way of displaying the validity status of updates
other than checking the debugging output. In combination with the BGP table output, it
is possible to verify the correctness of update processing. Listing 7.7 shows the debugging
output, together with the show ip bgp command.

66

7 Performance Analysis

1 ---- BGP daemon

2 [...]

3 BGPSEC: Validation result of signature: valid

4 BGPSEC: Validation result of signature: valid

5 BGPSEC: Validation result of signature: valid

6 BGPSEC: Validation result of signature: valid

7 BGPSEC: Validation result of signature: valid

8 BGPSEC: Validation result of signature: valid

9 BGPSEC: Validation result for the whole BGPsec_PATH: valid

10 BGPSEC: 172.18.0.6 All signatures are valid.

11 [...]

12

13 ---- vtysh

14 frr# show ip bgp

15 Network [...] Path

16 *> 1.2.3.0/24 6 7 8 9 10 11

17

18 Displayed 1 routes and 1 total paths

Listing 7.7: show ip bgp command invoked on an FRR instance after validating
a BGPsec update originated by a BGP-SRx instance.

Line 1 to 11 show the output that is logged by the BGP daemon. All signatures of the
BGPsec update are valid. Line 16 shows the BGP table which contains the expected
entry.

This test has shown that FRR is able to generate and send/forward valid BGPsec up-
dates. It is also capable of correctly processing incoming BGPsec updates.

7.3.4 Update Reconstruction

In some cases, a BGPsec update may be received, yet forwarding it as a BGPsec update
is not possible. This is most likely because no other BGPsec speaking peers are available.
If so, the BGPsec update needs be transformed into a plain BGP update before it can

67

7 Performance Analysis

be forwarded. A test scenario to ensure this behavior works as intended is constructed
in Figure 7.6.

FRR N
(BGP)

FRR N-1
(BGPsec)

FRR 1
(BGPsec)...

1.2.3.0/24

Figure 7.6: Test scenario for BGPsec update reconstruction. Because FRR N
does not speak BGPsec, FRR N-1 needs to reconstruct a plain BGP
update from the BGPsec update.

To make sure that reconstruction works for BGPsec paths with a length greater than
1, N-1 BGPsec routers are chained together prior to the reconstruction. FRR N is not
speaking BGPsec, thus FRR N-1 strips the BGPsec PATH attribute from the update
and inserts the AS PATH instead. To verify that this procedure is working as intended,
the BGP table of FRR N needs to contain the prefix and path announced by FRR N-1.
Listing 7.8 shows the BGP table of FRR N.

1 frr# show ip bgp

2 Network [...] Path

3 *> 1.2.3.0/24 5 4 3 2

4

5 Displayed 1 routes and 1 total paths

Listing 7.8: show ip bgp command invoked on a plain BGP router instance. It
received the announcement from a BGPsec peer. That peer re-
constructed a BGPsec update into a plain BGP update prior to
forwarding it.

Seeing that the BGP table holds the correct prefix and path shows that the update
reconstruction was successful.

68

7 Performance Analysis

7.4 Memory Usage Performance

BGPsec adds a significant performance overhead due to cryptographic operations. To
show this overhead, different tests measure the performance of FRR and BGP-SRx.

When comparing the performance of FRR and BGP-SRx, or rather Quagga, it must be
kept in mind that FRR is being actively developed on, while Quagga is hardly getting
any updates. To keep the comparison as fair as possible, only routines that are affected
by BGPsec are compared against each other.

BGPsec comes with two major kinds of memory consumptions. First, there are router
keys. They are fetched from an SPKI cache and stored in memory to be quickly available
to the application. Second, there are BGPsec paths. They must be stored in memory,
so when a BGPsec announcement is forwarded, it is ready to be signed.

Three measurements are undertaken: pure memory consumption of router keys, of BG-
Psec paths and the total amount of memory the routing suites occupy using BGPsec.
Memory consumption of router keys and BGPsec paths is estimated prior to executing
the tests. The estimates are compared to the test results.

For router keys, a starting sample size of 100 keys is taken. With each iteration, the
amount increases by another 100 keys, finishing at 1,000 keys. For BGPsec paths, 500
paths are taken, increasing the amount by 500 with each iteration, stopping at 5,000.
For each iteration, a path length up to 5 hops is measured. Last, the total memory
consumption of FRR and BGP-SRx are compared, storing 100 router keys and up to
5,000 BGPsec updates of fixed length.

The memory in use is gathered utilizing the internal memory tracking of the routing
suites. As soon as the test is executed, e.g., storing 100 router keys, a connection via a
command line interface to the BGP daemon is established. The show memory command
displays memory information of the running daemon. The total amount of memory is
written down. The amount of memory storing no router keys is subtracted from the
amount when storing 100 keys. This yields the total amount of memory the 100 router
keys take.

Daemon memory storing 100 keys−Daemon memory without keys = Memory of 100 keys

69

7 Performance Analysis

When processing BGPsec updates, their contents are translated to plain BGP internally.
Thus, each BGPsec update additionally allocates memory for plain BGP structures. To
get the amount of memory that is allocated for BGPsec only, the memory required
for plain BGP updates must first be measured and must then be subtracted from the
amount of memory the BGPsec updates occupy. The following formula summarizes the
approach:

BGPsec total − BGP total − router keys = BGPsec paths

• BGPsec total: total daemon memory storing a fixed amount of BGPsec paths.

• BGP total: total daemon memory storing the same amount of BGP AS paths.

• Router Keys: memory router keys occupy.

• BGPsec paths: memory that was allocated purely for BGPsec paths.

This process is repeated for different path lengths. Subtracting the memory for path
length 1 from the memory for path length 2 results in the memory that is allocated per
additional AS hop.

This rather simple approach provides results that can be used to estimate the memory
usage for an arbitrary amount of router keys or BGPsec paths with great precision.

7.4.1 Router Keys

Router keys have a fixed size of memory and are defined by three information: the
SKI (20 bytes), the ASN (4 bytes) and the SPKI (91 bytes), adding up to 115 bytes.
Additional memory for storing these information, e.g. linked lists or tables, is required.
On top of that, meta data or debugging information such as "stringified" values of the
keys may be useful to the developer.

In case of RTRlib, which handles the SPKI storage for FRR, the TCP socket from where
a router key PDU was received from is tracked for each key. The keys are then stored
inside a linked list. Counting in all this additional memory yields that a router key in
RTRlib requires 215 bytes of memory. Using this value, an estimate for an arbitrary
amount of router keys can therefore be calculated using the following formula:

70

7 Performance Analysis

keys · 215

Where keys is the amount of router keys.

BGP-SRx occupies 1,859 bytes per router key, which is roughly 8 times the amount
compared to RTRlib. BGP-SRx stores router keys in a sophisticated key storage. The
storage holds an element for each loaded router key. The elements form a linked list,
each one holding key data such as redundant copies of ASN and SKI, various flags and
an OpenSSL formatted copy of the key. Storing the keys in OpenSSL structures comes
with a high memory overhead but yields serious performance advantages when it comes
to validating and signing BGPsec updates, as Section 7.6 will show.

Calculating the estimated amount of required memory for BGP-SRx router keys can be
achieved by multiplying the memory per key with the amount of keys.

keys · 1, 859

Table 7.1 compares RTRlib and BGP-SRx router keys and displays the overhead com-
pared to the minimum required key space of 115 bytes.

RTRlib BGP-SRx
Router Key 215 bytes 1,859 bytes
Overhead 100 bytes 1,744 bytes

Table 7.1: Memory required for storing a single router key in RTRlib and BGP-
SRx. The minimum is 115 bytes. RTRlib allocates an additional 100
bytes per key, while BGP-SRx requires 1,744 bytes of extra memory
per key.

Using the formulas from this section, estimates can be calculated on how the memory
growth should behave. They are directly compared to the actual measured values in
Figure 7.7.

71

7 Performance Analysis

200 400 600 800 1,000
0

250

500

750

1,000

1,250

1,500

1,750

Router Keys

M
em

or
y

U
sa

ge
(k

B)

BGP-SRx (estimate)
BGP-SRx (real)
RTRlib (estimate)
RTRlib (real)

Figure 7.7: Memory usage of router keys for RTRlib and BGP-SRx. Between
100 and 1,000 router keys have been examined, all are of same size.

The estimates for both RTRlib and BGP-SRx are almost identical to the actual measured
values. A linear behavior for storing router keys can be observed for both implemen-
tations. As expected, the memory growth for BGP-SRx is approximately 8x higher
compared to RTRlib.

Figure 7.8 shows the percentage of the total memory usage of FRR/BGP-SRx in relation
to the space 1,000 router keys take. In this example, routers were not peering and thus
did not exchange any messages to ensure no additional memory was allocated. FRR
requires a base amount of 10.77MB of memory. Adding 1,000 router keys consumes
another 0.23MB of memory. The base amount of memory for BGP-SRx is 1.97MB.
The 1,000 router keys add another 1.86MB, almost doubling it.

72

7 Performance Analysis

98.0% 2.0%
Rest
Router Keys

51.4%

48.6%

Rest
Router Keys

Figure 7.8: Left: total memory usage of FRR with 1,000 stored router keys.
Router keys occupy 2% of it. Right: same scenario using BGP-SRx.
48.6% of the total memory is occupied by the 1,000 router keys.

FRR requires almost 5x more base memory than BGP-SRx does. This is mainly due
to the lively development process on FRR. New features and dependencies are added
constantly, resulting in a steady growth of the code base. With new features and ca-
pabilities, the increase of memory comes naturally. Compared to the vast amounts of
available memory on modern hardware, however, 10MB are insignificant.

In conclusion, router keys in BGP-SRx require 8x the memory per key compared to
FRR. The difference is explained with different approaches of storing router keys. BGP-
SRx wraps structures around router keys and transforms them into OpenSSL EC_KEYs.
FRR takes a different approach and tries to keep the overhead as minimal as possible.
The memory growth is linear for both routing suites. The exact size of required space
can be reliably calculated using simple formulas.

7.4.2 BGPsec Paths

According to the BGPsec specifications, a BGPsec PATH of length 1 is between 107 and
109 bytes in size [2, 42]. The variance is due to the variable signature length. Each hop
adds an additional 98 to 100 bytes. Additional hops take less memory because initial data
structures do not need to be allocated again. The data of additional hops, i.e., Signature
and Secure Path Segments are appended to existing BGPsec PATH attributes. Using
these values, a formula to calculate the maximum size of a BGPsec PATH attribute for
any amount of updates and hops can be constructed.

paths · (109 + (100 · (pathlen− 1)))

73

7 Performance Analysis

As an example, the size of 5,000 BGPsec updates of length 5 are calculated below.

5, 000 · (109 + (100 · (5− 1))) = 2,545,000 bytes

= 2,545 kB

This formula helps as a reference for how much overhead the BGPsec implementations
add on top of the minimal amount of bytes that need to be stored. Just like with
router keys, overhead is inevitable, as during the course of processing BGPsec updates,
additional data is generated and stored. For example, each BGPsec PATH attribute in
FRR is stored within a data structure that holds information such as the hop count,
the prefix and the "stringified" AS path. These information are not part of the BGPsec
PATH attribute as standardized by the IETF.

To apply the formula to FRR and BGP-SRx, two parameters must be known: the base
amount of memory for a BGPsec path and the amount of memory per additional hop.

The approach from Section 7.4 to figure out the exact amount of memory for a sin-
gle BGPsec path is applied to FRR. The results show that there are 305 bytes of re-
quired memory per BGPsec path of length 1. Each additional hop increases the size by
160 bytes. The formula used to calculate the estimated memory consumption is:

paths · (305 + (160 · (pathlen− 1)))

Applying the same parameters from the previous calculation yields:

5, 000 · (305 + (160 · (5− 1))) = 4,725,000 bytes

= 4,725 kB

For FRR, the results show 1,128 bytes per BGPsec path of length 1 and an extra 527 bytes

per additional hop. To calculate the estimated memory usage, the following formula can
be used:

74

7 Performance Analysis

paths · (1, 128 + (527 · (pathlen− 1)))

To calculate the required memory to store 5,000 BGPsec paths of length 5:

5, 000 · (1, 128 + (527 · (5− 1))) = 16,180,000 bytes

= 16,180 kB

The difference in memory between both implementations is explained with the way BGP-
SRx stores BGPsec paths. BGP-SRx wraps BGPsec paths around dedicated structures
that allow quick access to path information. The paths are stored in a linked list and
additionally in a hash table. Additionally, every digest value that is generated during
the validation and signing routines is saved. Having digest values stored allows for quick
access of the digest without having to re-hash parts of the BGPsec path, but comes with
the price of high memory overhead, as a single hash is 256 bytes alone.

FRR does not wrap BGPsec paths, which potentially slows down processes that need to
quickly access certain information. FRR also does not store digest values which saves a
lot of memory but requires re-hashing whenever needed.

Memory values for a single BGPsec path and its overhead compared to the minimum
required space of 109 bytes is listed in Table 7.2.

FRR BGP-SRx
BGPsec Path 305 bytes 1,128 bytes

Overhead 196 bytes 1,019 bytes

Additional Hop 160 bytes 527 bytes

Overhead 60 bytes 427 bytes

Table 7.2: Memory overhead for BGPsec paths of FRR and BGPsec. For refer-
ence, RFC values for BGPsec path size of 109 bytes base value and
100 bytes per hop are used [3].

75

7 Performance Analysis

Testing memory usage in FRR was executed with a setup described in Figure 7.9. The
sample sizes for these test are 500 to 5,000 updates. The same test is repeated with
BGP-SRx instances. Both results are then compared against each other.

FRR N

SPKI Cache

provide router keys

FRR 1

Key
Generator

public keys

...

Figure 7.9: Setup for testing memory usage of FRR. To test memory usage for
AS paths of length N, there need to be N+1 FRR instances chained
together. After validating all updates, the memory usage on every
instance is checked via the show memory command on the appro-
priate daemon.

Figure 7.10 compares the calculated estimate to the actual measured memory consump-
tion of BGPsec paths. It shows, how the consumption behaves with increasing amounts
of paths and length.

76

7 Performance Analysis

0 1,000 2,000 3,000 4,000 5,000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

BGPsec Paths

M
em

or
y

U
sa

ge
(M

B)

Path length 1
Path length 2
Path length 3
Path length 4
Path length 5

(a) FRR: estimated memory usage of
BGPsec paths.

0 1,000 2,000 3,000 4,000 5,000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

BGPsec Paths
M

em
or

y
U

sa
ge

(M
B)

Path length 1
Path length 2
Path length 3
Path length 4
Path length 5

(b) FRR: real memory usage of BG-
Psec paths.

Figure 7.10: Estimated and real memory usage of stored BGPsec paths in FRR.
Between 500 and 5,000 BGPsec paths of length 1 to 5 were pro-
cessed. Estimate (a) and measurements (b) are almost identical.
The initial spike in (b) is attributed to BGPsec initialization.

The estimate (a) predicts that BGPsec path length behaves linear for all path lengths.
To verify the calculated estimate, the results of the measurements are presented in (b).
Both graphs (a) and (b) in Figure 7.10 are close together. In (b), there is a minor initial
increase in memory due to BGPsec initialization. This graph confirms the expected
linear behavior of memory growth.

The test is repeated with BGP-SRx. As Figure 7.11 shows, the estimates (a) and real
results (b) are almost identical.

77

7 Performance Analysis

0 1,000 2,000 3,000 4,000 5,000

2

4

6

8

10

12

14

16

18

BGPsec Paths

M
em

or
y

U
sa

ge
(M

B)

Path length 1
Path length 2
Path length 3
Path length 4
Path length 5

(a) Estimated memory usage.

0 1,000 2,000 3,000 4,000 5,000

2

4

6

8

10

12

14

16

18

BGPsec Paths

M
em

or
y

U
sa

ge
(M

B)

Path length 1
Path length 2
Path length 3
Path length 4
Path length 5

(b) Real memory usage.

Figure 7.11: Estimated and real memory usage of stored BGPsec paths in BGP-
SRx. Between 500 and 5,000 BGPsec paths of various lengths were
processed. Estimate (a) is almost identical to test result (b).

BGPsec paths in BGP-SRx, although they perform linear, occupy more memory com-
pared to FRR. 5,000 paths of length 5 peak at 16MB of memory for BGP-SRx, for
FRR it is approximately 4.8MB. Looking at the total memory usage in Figure 7.12, it
becomes apparent how the memory growth impacts both routing suites.

78

7 Performance Analysis

0 1,000 2,000 3,000 4,000 5,000

2

4

6

8

10

12

14

16

18

20

BGPsec Paths

M
em

or
y

U
sa

ge
(M

B)

Len 1
Len 2
Len 3
Len 4
Len 5

(a) Total memory usage of FRR, in-
cluding router keys.

0 1,000 2,000 3,000 4,000 5,000

2

4

6

8

10

12

14

16

18

20

BGPsec Paths

M
em

or
y

U
sa

ge
(M

B)

Len 1
Len 2
Len 3
Len 4
Len 5

(b) Total memory usage of BGP-SRx,
including router keys.

Figure 7.12: Comparison of memory values for storing between 500 and 5,000
BGPsec paths of length 1 to 5. Although FRR has a higher base
value of occupied memory, its memory consumption per path is
lower compared to BGP-SRx .

Starting at a base value of approximately 2MB of memory, BGP-SRx memory usage
grows much quicker compared to FRR. BGP-SRx surpasses FRR when storing 4,500
BGPsec paths of length 5. Comparing the peak values of allocated memory, FRR and
BGP-SRx differ by approximately 2MB. Figure 7.13 puts the memory usage of BGPsec
paths in relation to the total memory usage.

21.6%

78.4%

BGPsec Paths
Rest

88.1%

11.9%

BGPsec Paths
Rest

Figure 7.13: Left: memory usage of FRR storing 5,000 BGPsec paths of length
5. The BGPsec paths occupy 21.6% of the total memory, includ-
ing router keys. Right: same scenario with BGP-SRx. Here, the
BGPsec paths occupy 88.1% of the total memory in use.

79

7 Performance Analysis

Due to the high amount of base memory for FRR, the percentage of BGPsec paths do
not carry as much weight compared to BGP-SRx. For the latter, most of the occupied
memory is attributed to BGPsec path structures. Nevertheless, the memory usage for
both routing suites is still relatively low, when compared to modern architecture.

Finally, to so how much BGPsec performs when compared to BGP, Figure 7.14 displays
the total amount memory for FRR and BGP-SRx when storing up to 5,000 plain BGP
paths.

0 1,000 2,000 3,000 4,000 5,000

2

4

6

8

10

12

14

16

18

20

BGP Paths

M
em

or
y

U
sa

ge
(M

B)

Path length 1
Path length 2
Path length 3
Path length 4
Path length 5

(a) Total memory usage of FRR.

0 1,000 2,000 3,000 4,000 5,000

2

4

6

8

10

12

14

16

18

20

BGP Paths

M
em

or
y

U
sa

ge
(M

B)

Path length 1
Path length 2
Path length 3
Path length 4
Path length 5

(b) Total memory usage of BGP-SRx.

Figure 7.14: Total memory usage of FRR and BGP-SRx running plain BGP. Be-
tween 500 and 5,000 BGP paths of various lengths were processed.
Path length in this test has to visible impact on the memory con-
sumption.

Although plain BGP is also gradually increasing the BGP daemons memory, it scales
much better with growing path length. The test shows that there is in fact no difference
in memory consumption between a path length of 1 and a path length of 5.

Summarizing this section, memory growth of BGPsec paths can be predicted with high
accuracy for both implementations. Both routing suites show a linear memory growth
for BGPsec paths across all amounts and lengths, as well as linear growth for router
keys. BGP-SRx requires less base memory than FRR. However, memory consumption
per router key and BGPsec path is higher compared to FRR. To put the results in
perspective, the memory usage of both implementations is far from critical. Memory on

80

7 Performance Analysis

modern architecture is vast. Looking at the server where these tests were executed on,
the BGP daemons occupied less than 0.01% of the available memory.

The following sections benchmark the run time of various subroutines that are affected
by BGPsec.

7.5 Crypto Microbenchmarks

Prior to measuring the processing time of the BGPsec implementation, microbenchmarks
show how much processing time the cryptographic operations occupy. The operations
in question are the validation and signing routines of OpenSSL: ECDSA_verify and
ECDSA_sign. Since FRR and BGP-SRx depend on different versions of OpenSSL, tests
are repeated for different versions.

The CPU time, i.e., only the time the process is actively running on the CPU, of both
OpenSSL functions is measured. This gives a reference to how long the update processing
routines in FRR take compared to the cryptographic part. Since only the processing
time of the OpenSSL functions are of interest, they can be benchmarked in a separate
context. Therefore, a test program was written. The essential parts of the program are
shown as pseudocode in Listing 7.9. The entire code can be found in Appendix A.2.

To perform the microbenchmarks, valid signature-hash-router key triples were generated
and stored as raw bytes. These three information are passed to ECDSA_verify and
ECDSA_sign respectively.

81

7 Performance Analysis

1 signature[] = {0xAB, 0xCD, <...>}
2 hash[] = {0x01, 0x23, <...>}
3 router_key[] = {0x1A, 0x2B, <...>}
4

5 count = 0
6 cpu_time = 0
7 start, end = NULL
8

9 while (count < 10):
10 getrusage(start)
11 ECDSA_verify(signature, hash, router_key)
12 getrusage(end)
13

14 count += 1
15 cpu_time += end - start
16 avg_cpu_time = cpu_time / count
17 done

Listing 7.9: The getrusage function fetches the CPU time used by this pro-
cess only. Subtracting end from start in line 15 is simplified
here. It calculates the time it took for ECDSA_verify to return.
avg_cpu_time stores the average duration of the measured func-
tion.

By replacing the OpenSSL validation function in Line 12 with ECDSA_sign, the signing
routine can be measured as well. In this case, router_key in line 3 is replaced with a
private key.

The routines are executed 10 times in a row, consecutively validating the same signature
using the same input. To make sure that the BGPsec path length has no impact on the
validation time, the hash message in line 2 was generated from BGPsec paths of length 1
and length 2. They and are exchanged between tests. The test is repeated for signature
generation under the same conditions. The results are presented in Figure 7.15.

82

7 Performance Analysis

1 2 3 4 5 6 7 8 9 10
65

70

75

80

85

Iteration

T
im

e
(µ

s)

v1.0 Len 1
v1.0 Len 2
v1.1 Len 1
v1.1 Len 2

(a) Validating a signature.

1 2 3 4 5 6 7 8 9 10
20

25

30

35

40

Iteration

T
im

e
(µ

s)

v1.0 Len 1
v1.0 Len 2
v1.1 Len 1
v1.1 Len 2

(b) Generating a signature.

Figure 7.15: Microbenchmark of the OpenSSL validation (a) and signing (b)
routines. The two OpenSSL version 1.0 and 1.1 were examined.
Both routines were executed 10 times in succession with a hash
representing a path length of 1 (Len 1) and a path length of 2 (Len
2). The length of the BGPsec path has no impact on the duration
since the path is hashed to a fixed length of 256 bytes. The initial
spike comes from OpenSSL initialization. The version has to visible
impact on the execution time.

The first execution of the validation and signing routines spike due to OpenSSL ini-
tialization. These spikes are only occurring once and do not have an impact on the
performance of the implementation.

From iteration 2 onwards, both graphs show a constant behavior on average, independent
of version and BGPsec path length. They diverge by 1 µs at maximum. The average
duration for a signature validation is 71 µs, not counting in the initial spike. Signing
takes 24 µs on average. The length of the BGPsec path that was hashed prior to the
validation/signing routines does not have an impact on execution time, since the hash
has a constant length of 256 bytes.

When looking at the average duration of update generation for FRR and BGP-SRx in
Figure 7.16, the duration does not increase significantly with increasing path length.
Signatures are generated once for a single update, while validation is an iterative pro-
cess.

83

7 Performance Analysis

103 104 105 106 107

26 27 28 29 30

FRR signing
FRR loading key

Len
1

Len
2

Len
3

Len
4

Len
5

0

20

40

60

80

100

120

140

35 36 37 37 38

T
im

e
(µ

s)

BGP-SRx update generation

Figure 7.16: Average duration for generating BGPsec updates, 5,000 in total.
The average slightly increases with growing path length. FRR mea-
surements are split in signing and key loading. Due to repetitive
loading of router keys in FRR, a constant overhead of 77 µs is added
on top.

BGP-SRx outperforms FRR when looking at the total time. When ignoring the key
loading overhead, FRR manages to perform slightly better than BGP-SRx. The large
performance discrepancy comes from loading router keys. The reason is explained further
down below.

Due to the iterative process when validating BGPsec updates, a constant growth in
processing time is observed with increasing path length. Figure 7.17 shows the average
duration when processing updates of length 1 to 5.

84

7 Performance Analysis

146

289

430

575

719

75

147

217

291

364

FRR validation
FRR loading key

Len
1

Len
2

Len
3

Len
4

Len
5

0

200

400

600

800

85

167

249

330

416

T
im

e
(µ

s)

BGP-SRx update parsing

Figure 7.17: Average duration for validating a single BGPsec update. 5,000
BGPsec updates per path length were processed. Results for FRR
are split into the validation and key loading part to visualize the
overhead.

When disregarding the key loading part, FRR performs again slightly better than BGP-
SRx. However, the key loading process doubles the processing time for FRR when
looking at total values.

Both Figure 7.16 and Figure 7.17 show large performance differences between FRR and
BGP-SRx in favor of BGP-SRx. The OpenSSL functions ECDSA_sign and ECDSA_verify

require the router key argument to be an OpenSSL EC_KEY structure. OpenSSL provides
functions to convert raw byte keys into such a structure. Microbenchmarks reveal that
loading keys is a very performance critical task, averaging to 71µs per public key and
77 µs per private key. This performance issue is amplified with increasing path lengths
during validation, as for each signature within a BGPsec PATH, a different key must be
loaded.

BGP-SRx already stores public and private router keys in EC_KEY structures during
BGPsec initialization. Loading the private key with each signature that is generated is
therefore not necessary. FRR does not follow the same approach and creates and frees

85

7 Performance Analysis

the EC_KEY each time. This results in a large performance overhead for FRR, tripling
the time it takes to generate a BGPsec update compared to BGP-SRx.

Figure 7.18 puts the time it takes for FRR to parse and generate BGPsec updates in
relation to the cryptographic part. It turns out that between 94 and 99% of the time is
spent performing cryptographic operations.

Len
1

Len
2

Len
3

Len
4

Len
5

0

200

400

600

800

152

295

438

582

727

146

289

430

575

719

T
im

e
(µ

s)

Update parsing
Validation

(a) FRR validation routine in relation
to the entire update parsing pro-
cess.

Len
1

Len
2

Len
3

Len
4

Len
5

0

50

100

150

110 111 112 113 114
103 104 105 106 107

T
im

e
(µ

s)

Update generation
Signing

(b) FRR signing routine in relation to
the entire update generation pro-
cess.

Figure 7.18: Left: FRR validation time in comparison to the whole update pars-
ing routine. 99% of the time parsing the BGPsec update is spent
verifying the signatures. Right: Comparing the generation of an
entire BGPsec update to the time it takes to generate a signature.
94% of the time is spent generating the signature.

With growing path length, the validation time increases and thus the entire update
parsing duration. The time for non-cryptographic tasks does not increase significantly
for update generation and parsing.

7.6 Processing Time Performance

The following tests compare BGPsec update processing time of FRR and BGP-SRx.
Additionally, processing times for plain BGP updates are also measured to show the

86

7 Performance Analysis

overhead that BGPsec imposes on BGP. The setup from Section 7.4.1 can be reused for
this scenario, it is depicted in Figure 7.19.

FRR N

SPKI Cache

provide router keys

FRR 1

Key
Generator

public keys

...

Figure 7.19: Setup for measuring validation and signing processing time. It is
identical to the one for memory usage.

The processing time is measured in CPU time. This avoids the scheduler distorting
the results. It is expected that signing yields a close to constant performance behavior
for variable path length, since signing occurs only once per update, independent of the
length of the path. Validation time is expected to grow with increasing path length.
However, the performance growth is expected to still behave linear.

Different routines are tracked separately, e.g. the attribute parsing or the validation
routine. The processing time of routines that are not touched by the BGPsec implemen-
tation, such as best-path-selection, are not regarded in these tests.

The code for measuring the run time of an arbitrary function is displayed in Listing
7.10.

87

7 Performance Analysis

1 RUSAGE_T before, after;
2 _Atomic unsigned long total;
3

4 GETRUSAGE(&before);
5 bgp_update_receive(<...>);
6 GETRUSAGE(&after);
7 total += thread_consumed_time(&after, &before);

Listing 7.10: Code for measuring the incoming update processing routine.
The GETRUSAGE macro is used to get the current CPU time.
total is a variable that holds the elapsed CPU time of all
bgp_update_receive invocations.

FRR has a macro called GETRUSAGE for getting the CPU time. In line 4 and 6, the macro
gets the CPU time before and after the measured function, here it is bgp_update_receive.
The code is basically the same as in Listing 7.9, but here, portions of it are wrapped and
a helper function exist. The helper function thread_consumed_time calculates system
and user time together and returns the difference between before and after (Listing
7.9 simplifies this process). This result is added to total each time the function was
invoked.

All other FRR and BGP-SRx functions are measured using the same technique, as
GETRUSAGE and thread_consumed_time are available to both implementation.

7.6.1 Outgoing Updates

Both routing suites generate BGP(sec) updates via the bgp_packet_attribute func-
tion. The following Figure 7.20 compares the results of FRR and BGP-SRx generating
BGPsec updates of different length.

88

7 Performance Analysis

1,000 2,000 3,000 4,000 5,000

50

100

150

200

250

300

350

400

450

500

BGPsec Paths

T
im

e
(m

s)

Path length 1
Path length 2
Path length 3
Path length 4
Path length 5

(a) Update generation routine of FRR.

1,000 2,000 3,000 4,000 5,000

50

100

150

200

250

300

350

400

450

500

BGPsec Paths

T
im

e
(m

s)

Path length 1
Path length 2
Path length 3
Path length 4
Path length 5

(b) Update generation routine of
BGP-SRx.

Figure 7.20: Measurement of BGPsec update generation. Processing time
slightly increases with growing path length, as microbenchmarks
have shown.

Although minor deviations are visible for increasing path length, both implementations
show the expected linear behavior. FRR can not compete with BGP-SRx due to the
repetitive key loading process each time a signature is generated. BGP-SRx generates
BGPsec updates approximately 3x faster than FRR.

Next, the test is repeated with plain BGP updates. Generating updates for plain BGP
does not underlie the restrictions of BGPsec. This means that a single BGP update
can contain multiple prefixes. It is therefore not necessary to produce 5,000 individual
announcements for 5,000 prefixes. They can instead be combined into a single BGP
update. The test scenario is identical to the previous one, but instead of speaking
BGPsec, routers are configured to only speak plain BGP. The following Figure 7.21
shows the test results.

89

7 Performance Analysis

1,000 2,000 3,000 4,000 5,000

5

10

15

20

25

30

BGP Paths

T
im

e
(µ

s)

Path length 1
Path length 2
Path length 3
Path length 4
Path length 5

(a) BGP update generation routine of
FRR.

1,000 2,000 3,000 4,000 5,000

5

10

15

20

25

30

BGP Paths
T

im
e

(µ
s)

Path length 1
Path length 2
Path length 3
Path length 4
Path length 5

(b) BGP update generation routine of
BGP-SRx.

Figure 7.21: Update generation of plain BGP updates. Only one update is gen-
erated per hop as BGP updates can contain multiple prefixes at
once.

When looking at plain BGP update generation in Figure 7.21, it is noticeable that the
times do only vary by a few microseconds. There is no visible growth with increasing
path length nor amounts of paths. During the test it was indeed observed that only a
single BGP update containing all prefixes was generated.

When comparing these results to BGPsec, the massive performance overhead becomes
visible. Generating 5,000 updates of length 1 takes both implementations a mere 5 to
10 µs. The same amount of BGPsec updates take BGP-SRx up to 177ms, FRR even
520ms.

The following test compares processing time of incoming BGPsec updates. Further,
incoming BGP updates are also measured and compared to BGPsec results. The setup
is identical to the previous scenario.

7.6.2 Incoming Updates

For both implementations, the function bgp_attr_parse parses incoming BGP(sec)
updates. Between 500 and 5,000 BGPsec updates are received and validated by FRR

90

7 Performance Analysis

and BGP-SRx instances. Each update is forwarded up to a path length of 5. The results
are displayed in Figure 7.22.

1,000 2,000 3,000 4,000 5,000

500

1,000

1,500

2,000

2,500

3,000

3,500

BGPsec Paths

T
im

e
(m

s)

Path length 1
Path length 2
Path length 3
Path length 4
Path length 5

(a) Update parsing routine of FRR.

1,000 2,000 3,000 4,000 5,000

500

1,000

1,500

2,000

2,500

3,000

3,500

BGPsec Paths

T
im

e
(m

s)

Path length 1
Path length 2
Path length 3
Path length 4
Path length 5

(b) Update parsing routine of BGP-
SRx.

Figure 7.22: Parsing and validating up to 5,000 BGPsec updates.

Update processing behaves linear for both implementations. FRR, however, takes much
longer to process a single BGPsec update because of key loading. BGP-SRx does not
suffer from this issue.

The duration for processing a single BGPsec paths grows with its path length. All
graphs diverge by a constant value for each point on the x-axis. This is observed for
both implementations. Next, the test is repeated with plain BGP.

Plain BGP updates can contain multiple prefixes. So just like with the test for update
generation, only one BGP update is received and processed in the following scenario.
Figure 7.23 shows the results.

91

7 Performance Analysis

1,000 2,000 3,000 4,000 5,000

10

20

30

40

50

BGP Paths

T
im

e
(µ

s)

Path length 1
Path length 2
Path length 3
Path length 4
Path length 5

(a) BGP update parsing routine of
FRR.

1,000 2,000 3,000 4,000 5,000

10

20

30

40

50

BGP Paths
T

im
e

(µ
s)

Path length 1
Path length 2
Path length 3
Path length 4
Path length 5

(b) BGP update parsing routine of
BGP-SRx.

Figure 7.23: Update parsing of plain BGP updates. Despite the growing path
length and amount of prefixes, only a single update is generated.
FRR and BGP-SRx show no observable difference in performance
for varying path length.

Measuring the parsing routine for plain BGP updates yields a processing time with little
variance. It takes between 10 and 20 µs to finish processing the update for FRR and be-
tween 10 and 25µs for BGP-SRx. Since only one update is received and processed, path
length and prefix count do not factor noticeably into the update parsing procedure.

In conclusion, BGP-SRx does outperform FRR in terms of BGPsec update generation
as well as validation. In terms of plain BGP, both routing suites perform very similar to
each other. Comparing BGPsec and BGP directly shows that AS path validation puts
a tremendous overhead on the router. This is not only because of the cryptographic
operations, but also because of the increasing amounts of individual updates that need to
be generated and parsed. Throughout all tests, no exponential behavior was observed.

92

8 Conclusion and Outlook

This work presented a complete BGPsec implementation in the open-source library RTR-
lib and the open-source routing suite FRR. Alongside the implementation, its perfor-
mance has been analyzed. The implementation was divided into two parts, the validation
suite and the protocol handler. The former handles AS path signing and validation and
was implemented with the RTRlib library. The latter manages protocol handling such
as parsing the BGPsec PATH attribute. It was included into the FRR routing suite.

To ensure that the implementation is correct, BGPsec sessions were established between
FRR and the reference implementation of BGPsec, BGP-SRx, in different constellations.
FRR passed all tests, i.e., capability negotiation, correct update generation, update
processing and update reconstruction while peering with BGP-SRx as well as other
FRR instances. Error cases and malformed messages were properly handled according
to the specification.

To measure the performance of the FRR BGPsec implementation, memory usage and
run time was inspected and compared to BGP-SRx. The results showed that router
keys in FRR occupy 8x less memory than keys in BGP-SRx. BGPsec PATH structures
in FRR take up 3x less space. BGP-SRx performs 2x faster in terms of validating
BGPsec updates and 3x faster when signing them. All expectations regarding the growth
behavior of memory consumption and run time were met for both implementations.
Memory usage scales linearly, just like run time for validation. Signing a single BGPsec
update yielded a constant behavior independent of path length.

The large performance difference between FRR and BGP-SRx is explained with FRR
repeatedly loading and freeing OpenSSL keys instead of keeping them in memory, like
BGP-SRx does.

The run time of the cryptographic operations are not the main problem with BGPsec.
A far greater issue is the way BGPsec distributes announcements. BGPsec needs to
generate each update individually for each peer and each prefix. In contrast, plain BGP

93

8 Conclusion and Outlook

can forward a single update containing multiple prefixes to multiple peers. The overhead
that BGPsec puts on top of plain BGP is amplified by this circumstance.

Further work is required to improve performance and usability of FRR BGPsec. By
keeping OpenSSL transformed router keys stored in memory, run times of the validation
and signing routines can be lowered significantly. Right now, BGPsec in FRR is limited in
its versatility. To address this, additional configuration options need to be implemented.
What exactly operators want and need is still open for discussion.

Whether or not BGPsec will see deployment throughout the Internet is still uncertain.
The fact that alternative AS path protection mechanisms [70, 71] are being standardized
before BGPsec is even deployed on a small scale predicts a grim future for BGPsec.
Without partial deployment, BGPsec would need to be accepted and used by multiple
large clusters of ASes, ultimately merging together. Smaller clusters or individual ASes
would then be able to join and benefit from AS path security [46]. Since this scenario is
unlikely, many ASes will probably wait for alternatives to thrive.

In conclusion, although some work is still open in regards to the implementation, BGPsec
receives another implementation for an up to date routing suite. This takes down another
hurdle and pushes BGPsec towards deployment.

94

Bibliography

[1] R. Bush and R. Austein, “The Resource Public Key Infrastructure (RPKI) to Router
Protocol, Version 1,” IETF, RFC 8210, September 2017.

[2] M. Lepinski and K. Sriram, “BGPsec Protocol Specification,” IETF, RFC 8205,
September 2017.

[3] S. Turner and O. Borchert, “BGPsec Algorithms, Key Formats, and Signature
Formats Appendix,” IETF, RFC 8208, September 2017. [Online]. Available:
https://tools.ietf.org/html/rfc8208#appendix-A (Accessed 25-02-2021).

[4] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4 (BGP-4),” IETF,
RFC 4271, January 2006.

[5] K. Butler, T. Farley, P. McDaniel, and J. Rexford, “A Survey of BGP Security
Issues and Solutions,” Proc. of the IEEE, vol. 98, no. 1, pp. 100–122, January 2010.

[6] M. Lepinski and S. Kent, “An Infrastructure to Support Secure Internet Routing,”
IETF, RFC 6480, February 2012.

[7] P. Mohapatra, J. Scudder, D. Ward, R. Bush, and R. Austein, “BGP Prefix Origin
Validation,” IETF, RFC 6811, January 2013.

[8] M. Wählisch, F. Holler, T. C. Schmidt, and J. H. Schiller, “RTRlib: An
Open-Source Library in C for RPKI-based Prefix Origin Validation,” in Proc.
of USENIX Security Workshop CSET’13. Berkeley, CA, USA: USENIX Assoc.,
2013. [Online]. Available: https://www.usenix.org/conference/cset13/rtrlib-open-
source-library-c-rpki-based-prefix-origin-validation

[9] IANA, “Number Resources.” [Online]. Available: https://www.iana.org/numbers
(Accessed 02-01-2018).

[10] IANA, “Autonomous System (AS) Numbers.” [Online]. Available: https://www.
iana.org/assignments/as-numbers/as-numbers.xhtml (Accessed 20-02-2018).

95

https://tools.ietf.org/html/rfc8208#appendix-A
https://www.usenix.org/conference/cset13/rtrlib-open-source-library-c-rpki-based-prefix-origin-validation
https://www.usenix.org/conference/cset13/rtrlib-open-source-library-c-rpki-based-prefix-origin-validation
https://www.iana.org/numbers
https://www.iana.org/assignments/as-numbers/as-numbers.xhtml
https://www.iana.org/assignments/as-numbers/as-numbers.xhtml

Bibliography

[11] G. Huston, “Autonomous System (AS) Number Reservation for Documentation
Use,” IETF, RFC 5398, December 2008.

[12] A. Tanenbaum and D. Wetherall, "Computernetzwerke". Pearson Deutschland
GmbH, 2012.

[13] I. van Beijnum, "BGP". O’Reilly Media, Inc., 2002.

[14] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4 (BGP-4)
Section 3.2 Routing Information Base,” January 2006. [Online]. Available:
https://tools.ietf.org/html/rfc4271#section-3.2 (Accessed 29-09-2020).

[15] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4 (BGP-
4) Section 9.1 Decision Process,” January 2006. [Online]. Available: https:
//tools.ietf.org/html/rfc4271#section-9.1 (Accessed 27-08-2020).

[16] J. Karlin, S. Forrest, and J. Rexford, “Autonomous Security for Autonomous Sys-
tems,” Computer Networks, vol. 52, no. 15, pp. 2908–2923, 2008.

[17] N. Spring, R. Mahajan, and T. Anderson, “The Causes of Path Inflation,” in Pro-
ceedings of the 2003 conference on Applications, technologies, architectures, and
protocols for computer communications, 2003, pp. 113–124.

[18] G. Huston, M. Rossi, and G. Armitage, “Securing BGP - A literature survey,” IEEE
Communications Surveys & Tutorials, vol. 13, no. 2, pp. 199–222, 2011.

[19] M. Wählisch, O. Maennel, and T. C. Schmidt, “Towards Detecting BGP
Route Hijacking using the RPKI,” in Proc. of ACM SIGCOMM, Poster
Session. New York: ACM, August 2012, pp. 103–104. [Online]. Available:
http://conferences.sigcomm.org/sigcomm/2012/paper/sigcomm/p103.pdf

[20] C. Zheng, L. Ji, D. Pei, J. Wang, and P. Francis, “A Light-Weight Distributed
Scheme for Detecting IP Prefix Hijacks in Real-Time,” in Proc. of SIGCOMM ’07.
New York, NY, USA: ACM, 2007, pp. 277–288.

[21] M. Handley and E. Rescorla, “Internet Denial-of-Service Considerations,” IETF,
RFC 4732, December 2006.

[22] BGPmon, “Chinese ISP hijacks the Internet.” [Online]. Available: https:
//bgpmon.net/chinese-isp-hijacked-10-of-the-internet/ (Accessed 12-03-2018).

96

https://tools.ietf.org/html/rfc4271#section-3.2
https://tools.ietf.org/html/rfc4271#section-9.1
https://tools.ietf.org/html/rfc4271#section-9.1
http://conferences.sigcomm.org/sigcomm/2012/paper/sigcomm/p103.pdf
https://bgpmon.net/chinese-isp-hijacked-10-of-the-internet/
https://bgpmon.net/chinese-isp-hijacked-10-of-the-internet/

Bibliography

[23] “YouTube Hijacking: A RIPE NCC RIS case study,” http://www.ripe.net/internet-
coordination/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-
study, March 2008, retrieved 2013-08-16.

[24] A. Toonk, “BGPstream and The Curious Case of AS12388,” 4 2017. [On-
line]. Available: https://bgpmon.net/bgpstream-and-the-curious-case-of-as12389
(Accessed 07-01-2018).

[25] A. Chadd, “The "AS7007 Incident",” 8 2006. [Online]. Available: http:
//lists.ucc.gu.uwa.edu.au/pipermail/lore/2006-August/000040.html (Accessed 06-
01-2018).

[26] T. Wan and P. C. Van Oorschot, “Analysis of BGP prefix origins during Google’s
May 2005 outage,” in Parallel and Distributed Processing Symposium, 2006. IPDPS
2006. 20th International. IEEE, 2006, pp. 8–pp.

[27] M. Lepinski, S. Kent, and D. Kong, “A Profile for Route Origin Authorizations
(ROAs),” IETF, RFC 6482, February 2012.

[28] R. NCC, “BGP Origin Validation,” 9 2016. [Online].
Available: http://www.ripe.net/manage-ips-and-asns/resource-management/
certification/bgp-origin-validation (Accessed 12-01-2018).

[29] NLnetLabs, “RPKI Software Projects,” Jun 2020. [Online]. Available: https:
//rpki.readthedocs.io/en/latest/tools.html (Accessed 12-08-2020).

[30] R. Bush and R. Austein, “The Resource Public Key Infrastructure (RPKI) to Router
Protocol,” IETF, RFC 6810, January 2013.

[31] M. Wählisch, R. Schmidt, T. C. Schmidt, O. Maennel, S. Uhlig, and
G. Tyson, “RiPKI: The Tragic Story of RPKI Deployment in the Web
Ecosystem,” in Proc. of 14th ACM Workshop on Hot Topics in Networks
(HotNets). New York: ACM, Nov. 2015, pp. 11:1–11:7. [Online]. Available:
http://dx.doi.org/10.1145/2834050.2834102

[32] D. Iamartino, C. Pelsser, and R. Bush, “Measuring BGP route origin registration
validation,” in Proc. of PAM, ser. LNCS. Berlin: Springer, 2015, pp. 28–40.

[33] NIST, “Global Prefix/Origin Validation using RPKI.” [Online]. Available:
https://rpki-monitor.antd.nist.gov/ (Accessed 03-11-2020).

97

http://www.ripe.net/internet-coordination/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study
http://www.ripe.net/internet-coordination/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study
http://www.ripe.net/internet-coordination/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study
https://bgpmon.net/bgpstream-and-the-curious-case-of-as12389
http://lists.ucc.gu.uwa.edu.au/pipermail/lore/2006-August/000040.html
http://lists.ucc.gu.uwa.edu.au/pipermail/lore/2006-August/000040.html
http://www.ripe.net/manage-ips-and-asns/resource-management/certification/bgp-origin-validation
http://www.ripe.net/manage-ips-and-asns/resource-management/certification/bgp-origin-validation
https://rpki.readthedocs.io/en/latest/tools.html
https://rpki.readthedocs.io/en/latest/tools.html
http://dx.doi.org/10.1145/2834050.2834102
https://rpki-monitor.antd.nist.gov/

Bibliography

[34] R. NCC, “RIPE Certification Statistics.” [Online]. Available: https://certification-
stats.ripe.net/ (Accessed 03-11-2020).

[35] T. Chung, E. Aben, T. Bruijnzeels, B. Chandrasekaran, D. Choffnes, D. Levin,
B. M. Maggs, A. Mislove, R. van Rijswijk-Deij, J. Rula, and N. Sullivan, “RPKI
is Coming of Age: A Longitudinal Study of RPKI Deployment and Invalid Route
Origins,” in Proc. of ACM IMC. New York, NY, USA: ACM, 2019, pp. 406–419.

[36] S. Goldberg, “Why is It Taking So Long to Secure Internet Routing?” Commun.
ACM, vol. 57, no. 10, pp. 56–63, September 2014.

[37] Y. Gilad, A. Cohen, A. Herzberg, M. Schapira, and H. Shulman, “Are We There
Yet? On RPKI’s Deployment and Security,” in Proc. of NDSS. Reston, USA:
ISOC, 2017.

[38] A. Reuter, R. Bush, I. Cunha, E. Katz-Bassett, T. C. Schmidt, and
M. Wählisch, “Towards a Rigorous Methodology for Measuring Adoption of
RPKI Route Validation and Filtering,” ACM Sigcomm Computer Communication
Review, vol. 48, no. 1, pp. 19–27, January 2018. [Online]. Available:
https://doi.org/10.1145/3211852.3211856

[39] J. Kristoff, R. Bush, C. Kanich, G. Michaelson, A. Phokeer, T. C. Schmidt, and
M. Wählisch, “On Measuring RPKI Relying Parties,” in Proc. of ACM Internet
Measurement Conference (IMC). New York: ACM, 2020, pp. 484–491. [Online].
Available: https://doi.org/10.1145/3419394.3423622

[40] S. Kent, C. Lynn, and K. Seo, “Secure Border Gateway Protocol (S-BGP),” Selected
Areas in Communications, IEEE Journal on, vol. 18, no. 4, pp. 582–592, 2000.

[41] IEEE, “IEEE Standard Specifications for Public-Key Cryptography,” IEEE Std
1363-2000, pp. 1–228, Aug 2000.

[42] S. Turner and O. Borchert, “BGPsec Algorithms, Key Formats, and Signature
Formats,” IETF, RFC 8208, September 2017.

[43] M. Lepinski and K. Sriram, “BGPsec Protocol Specification Section 4.1
General Guidance,” IETF, RFC 8205, September 2017. [Online]. Available:
https://tools.ietf.org/html/rfc8205#section-4.1 (Accessed 15-10-2020).

[44] M. Lepinski and K. Sriram, “BGPsec Protocol Specification Section 5.1 Overview
of BGPsec Validation,” IETF, RFC 8205, September 2017. [Online]. Available:
https://tools.ietf.org/html/rfc8205#section-5.1 (Accessed 15-10-2020).

98

https://certification-stats.ripe.net/
https://certification-stats.ripe.net/
https://doi.org/10.1145/3211852.3211856
https://doi.org/10.1145/3419394.3423622
https://tools.ietf.org/html/rfc8205#section-4.1
https://tools.ietf.org/html/rfc8205#section-5.1

Bibliography

[45] K. Sriram, “BGPsec Design Choices and Summary of Supporting Discussions
Section 8.2 Signing and Forwarding Updates when Signatures Failed Validation,”
IETF, RFC 8374, April 2018. [Online]. Available: https://tools.ietf.org/html/
rfc8374#section-8.2 (Accessed 15-10-2020).

[46] M. Lepinski and K. Sriram, “BGPsec Protocol Specification Section 9.7
Incremental/Partial Deployment Considerations,” IETF, RFC 8205, September
2017. [Online]. Available: https://tools.ietf.org/html/rfc8205#section-9.7 (Accessed
21-10-2020).

[47] J. Ng, “Extensions to BGP to Support Secure Origin BGP (soBGP),” IETF,
Internet-Draft – work in progress 02, April 2004.

[48] R. Lychev, S. Goldberg, and M. Schapira, “BGP Security in Partial Deployment:
Is the Juice Worth the Squeeze?” in Proc. of ACM SIGCOMM. New York, NY,
USA: ACM, 2013, pp. 171–182.

[49] P. Gill, M. Schapira, and S. Goldberg, “Let the Market Drive Deployment: A
Strategy for Transitioning to BGP Security,” in Proc. of ACM SIGCOMM. New
York, NY, USA: ACM, 2011, pp. 14–25.

[50] A. Cohen, Y. Gilad, A. Herzberg, and M. Schapira, “One Hop for RPKI, One
Giant Leap for BGP Security,” in Proceedings of the 14th ACM Workshop on Hot
Topics in Networks, ser. HotNets-XIV. New York, NY, USA: Association for
Computing Machinery, 2015. doi: 10.1145/2834050.2834078. ISBN 9781450340472.
[Online]. Available: https://doi.org/10.1145/2834050.2834078

[51] S. T. Kent, C. Lynn, J. Mikkelson, and K. Seo, “Secure Border Gateway Protocol
(S-BGP)-Real World Performance and Deployment Issues.” in NDSS, 2000.

[52] S. Goldberg, M. Schapira, P. Hummon, and J. Rexford, “How Secure are Secure
Interdomain Routing Protocols,” in Proc. of ACM SIGCOMM. New York, NY,
USA: ACM, 2010, pp. 87–98.

[53] NIST, “BGP Secure Routing Extension (BGP-SRx) Prototype,” 9 2017. [Online].
Available: https://www.nist.gov/services-resources/software/bgp-secure-routing-
extension-bgp-srx-prototype (Accessed 16-05-2018).

[54] D. Conry-Murray, “Free Range Routing Project Forks Quagga,” Apr 2017.
[Online]. Available: https://packetpushers.net/free-range-routing-project-forks-
quagga (Accessed 12-08-2020).

99

https://tools.ietf.org/html/rfc8374#section-8.2
https://tools.ietf.org/html/rfc8374#section-8.2
https://tools.ietf.org/html/rfc8205#section-9.7
https://doi.org/10.1145/2834050.2834078
https://www.nist.gov/services-resources/software/bgp-secure-routing-extension-bgp-srx-prototype
https://www.nist.gov/services-resources/software/bgp-secure-routing-extension-bgp-srx-prototype
https://packetpushers.net/free-range-routing-project-forks-quagga
https://packetpushers.net/free-range-routing-project-forks-quagga

Bibliography

[55] Opensource.org, “The MIT License.” [Online]. Available: https://opensource.org/
licenses/MIT (Accessed 24-09-2020).

[56] NIST, “Digital Signature Standard,” National Institute of Standards & Technology,
Gaithersburg, MD, US, Federal Information Processing Standard 186–4, July 2013.

[57] NIST, “Secure Hash Standard,” National Institute of Standards & Technology,
Gaithersburg, MD, US, Federal Information Processing Standards 180–3, October
2008.

[58] OpenSSL, “OpenSSL License.” [Online]. Available: https://www.openssl.org/
source/license.html (Accessed 20-08-2020).

[59] OpenSSL, “OpenSSL 1.0 Documentation.” [Online]. Available: https://www.
openssl.org/docs/man1.0.2/apps/openssl.html (Accessed 20-08-2020).

[60] OpenSSL, “OpenSSL 1.1 Documentation.” [Online]. Available: https://www.
openssl.org/docs/man1.1.1/man1/openssl.html (Accessed 20-08-2020).

[61] OpenSSL, “OpenSSL Versions.” [Online]. Available: https://www.openssl.org/
news/vulnerabilities-1.0.2.html (Accessed 20-08-2020).

[62] OpenSSL, “OpenSSL GitHub Install.” [Online]. Available: https://github.com/
openssl/openssl#build-and-install (Accessed 20-08-2020).

[63] OpenSSL, “OpenSSL Vulnerabilities.” [Online]. Available: https://www.openssl.
org/news/vulnerabilities-1.1.1.html (Accessed 20-08-2020).

[64] OpenSSL, “OpenSSL Standards.” [Online]. Available: https://beta.openssl.org/
docs/standards.html (Accessed 25-11-2020).

[65] M. Lepinski and K. Sriram, “BGPsec Protocol Specification Section 5.2
Validation Algorithm,” IETF, RFC 8205, September 2017. [Online]. Available:
https://tools.ietf.org/html/rfc8205#section-5.2 (Accessed 29-09-2020).

[66] Q. Vohra and E. Chen, “BGP Support for Four-Octet Autonomous System (AS)
Number Space,” IETF, RFC 6793, December 2012.

[67] T. Bates, R. Chandra, D. Katz, and Y. Rekhter, “Multiprotocol Extensions for
BGP-4,” IETF, RFC 4760, January 2007.

[68] E. Chen, J. Scudder, P. Mohapatra, and K. Patel, “Revised Error Handling for
BGP UPDATE Messages,” IETF, RFC 7606, August 2015.

100

https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://www.openssl.org/source/license.html
https://www.openssl.org/source/license.html
https://www.openssl.org/docs/man1.0.2/apps/openssl.html
https://www.openssl.org/docs/man1.0.2/apps/openssl.html
https://www.openssl.org/docs/man1.1.1/man1/openssl.html
https://www.openssl.org/docs/man1.1.1/man1/openssl.html
https://www.openssl.org/news/vulnerabilities-1.0.2.html
https://www.openssl.org/news/vulnerabilities-1.0.2.html
https://github.com/openssl/openssl#build-and-install
https://github.com/openssl/openssl#build-and-install
https://www.openssl.org/news/vulnerabilities-1.1.1.html
https://www.openssl.org/news/vulnerabilities-1.1.1.html
https://beta.openssl.org/docs/standards.html
https://beta.openssl.org/docs/standards.html
https://tools.ietf.org/html/rfc8205#section-5.2

Bibliography

[69] S. Turner and O. Borchert, “BGPsec Algorithms, Key Formats, and Signature
Formats,” IETF, RFC 8608, June 2019.

[70] A. Azimov, E. Uskov, R. Bush, K. Patel, J. Snijders, and R. Housley, “A Profile
for Autonomous System Provider Authorization,” IETF, Internet-Draft – work in
progress 04, November 2020.

[71] A. Azimov, E. Bogomazov, R. Bush, K. Patel, and J. Snijders, “Verification of AS_-
PATH Using the Resource Certificate Public Key Infrastructure and Autonomous
System Provider Authorization,” IETF, Internet-Draft – work in progress 06,
November 2020.

101

A Appendix

version: "2.3"

services:

spki-cache:

image: spki-cache-server:latest

volumes:

- ./keys:/keys

privileged: true

networks:

netz_a:

ipv4_address: 172.18.0.100

ipv6_address: 2001:3200:3200::100

stdin_open: true

tty: true

frr1:

image: frr-bgpsec

volumes:

- ./conf/bgpd/bgpd1.conf:/etc/frr/bgpd.conf

- ./conf/zebra/zebra1.conf:/etc/frr/zebra.conf

- ./frr:/frr

- ./conf/setup.sh:/setup.sh

- ./privkeys/privkey1.der:/frr/privkey.der

privileged: true

networks:

netz_a:

ipv4_address: 172.18.0.2

ipv6_address: 2001:3200:3200::2

stdin_open: true

tty: true

102

A Appendix

frr2:

image: frr-bgpsec

volumes:

- ./conf/bgpd/bgpd2.conf:/etc/frr/bgpd.conf

- ./conf/zebra/zebra2.conf:/etc/frr/zebra.conf

- ./frr:/frr

- ./conf/setup.sh:/setup.sh

- ./privkeys/privkey2.der:/frr/privkey.der

privileged: true

networks:

netz_a:

ipv4_address: 172.18.0.3

ipv6_address: 2001:3200:3200::3

stdin_open: true

tty: true

networks:

netz_a:

enable_ipv6: true

driver: bridge

ipam:

driver: default

config:

- subnet: 172.18.0.0/24

- subnet: 2001:3200:3200::/64

Listing A.1: Truncated Docker-Compose configuration to set up a test scenario.
The full configuration includes multiple FRR and/or BGP-SRx con-
tainers that are connected in a chain-like constellation.

103

A Appendix

1 #include <openssl/x509.h>
2 #include <arpa/inet.h>
3 #include <stdio.h>
4 #include <sys/resource.h>
5

6 // HASH
7 static uint8_t hash[] = {
8 0x01, 0x4F, 0x24, 0xDA, 0xE2, 0xA5, 0x21, 0x90, 0xB0, 0x80,
9 0x5C, 0x60, 0x5D, 0xB0, 0x63, 0x54, 0x22, 0x3E, 0x93, 0xBA,

10 0x41, 0x1D, 0x3D, 0x82, 0xA3, 0xEC, 0x26, 0x36, 0x52, 0x0C,
11 0x5F, 0x84};
12

13 // SIG
14 static uint8_t sig[] = {
15 0x30, 0x46, 0x02, 0x21, 0x00, 0xEF, 0xD4, 0x8B, 0x2A, 0xAC,
16 0xB6, 0xA8, 0xFD, 0x11, 0x40, 0xDD, 0x9C, 0xD4, 0x5E, 0x81,
17 0xD6, 0x9D, 0x2C, 0x87, 0x7B, 0x56, 0xAA, 0xF9, 0x91, 0xC3,
18 0x4D, 0x0E, 0xA8, 0x4E, 0xAF, 0x37, 0x16, 0x02, 0x21, 0x00,
19 0x90, 0xF2, 0xC1, 0x29, 0xAB, 0xB2, 0xF3, 0x9B, 0x6A, 0x07,
20 0x96, 0x3B, 0xD5, 0x55, 0xA8, 0x7A, 0xB2, 0xB7, 0x33, 0x3B,
21 0x7B, 0x91, 0xF1, 0x66, 0x8F, 0xD8, 0x61, 0x8C, 0x83, 0xFA,
22 0xC3, 0xF1};
23

24 // KEY
25 static uint8_t spki[] = {
26 0x30, 0x59, 0x30, 0x13, 0x06, 0x07, 0x2A, 0x86, 0x48, 0xCE,
27 0x3D, 0x02, 0x01, 0x06, 0x08, 0x2A, 0x86, 0x48, 0xCE, 0x3D,
28 0x03, 0x01, 0x07, 0x03, 0x42, 0x00, 0x04, 0x28, 0xFC, 0x5F,
29 0xE9, 0xAF, 0xCF, 0x5F, 0x4C, 0xAB, 0x3F, 0x5F, 0x85, 0xCB,
30 0x21, 0x2F, 0xC1, 0xE9, 0xD0, 0xE0, 0xDB, 0xEA, 0xEE, 0x42,
31 0x5B, 0xD2, 0xF0, 0xD3, 0x17, 0x5A, 0xA0, 0xE9, 0x89, 0xEA,
32 0x9B, 0x60, 0x3E, 0x38, 0xF3, 0x5F, 0xB3, 0x29, 0xDF, 0x49,
33 0x56, 0x41, 0xF2, 0xBA, 0x04, 0x0F, 0x1C, 0x3A, 0xC6, 0x13,
34 0x83, 0x07, 0xF2, 0x57, 0xCB, 0xA6, 0xB8, 0xB5, 0x88, 0xF4,
35 0x1F};
36

37 int main() {
38 EC_KEY *pub_key = NULL;
39 char *p = NULL;
40 struct rusage before, after;
41 unsigned long cpu_time_used = 0;
42 unsigned long total = 0;
43

44 p = (char *)spki;
45 pub_key = d2i_EC_PUBKEY(NULL, (const unsigned char **)&p,
46 (long)91);
47

48 for (int i = 0; i < 1000; i++) {

104

A Appendix

49 getrusage(RUSAGE_SELF, &before);
50 ECDSA_verify(
51 0,
52 hash,
53 SHA256_DIGEST_LENGTH,
54 sig,
55 72,
56 pub_key);
57 getrusage(RUSAGE_SELF, &after);
58

59 cpu_time_used =
60 (after.ru_utime.tv_sec - before.ru_utime.tv_sec) * \
61 CLOCKS_PER_SEC + \
62 (after.ru_utime.tv_usec - before.ru_utime.tv_usec);
63 cpu_time_used +=
64 (after.ru_stime.tv_sec - before.ru_stime.tv_sec) * \
65 CLOCKS_PER_SEC + \
66 (after.ru_stime.tv_usec - before.ru_stime.tv_usec);
67 total += cpu_time_used;
68

69 printf("Result: %luus\n", cpu_time_used);
70 }
71 printf("Result average: %luus\n", total/1000);
72

73 EC_KEY_free(pub_key);
74

75 return 0;
76 }

Listing A.2: Program for benchmarking the OpenSSL validation function
ECDSA_verify. With a few adjustments, the same program can
be used to benchmark the signing function ECDSA_sign.

105

Erklärung zur selbstständigen Bearbeitung einer Abschlussarbeit
Gemäß der Allgemeinen Prüfungs- und Studienordnung ist zusammen mit der Abschlussarbeit eine

schriftliche Erklärung abzugeben, in der der Studierende bestätigt, dass die Abschlussarbeit „- bei einer

Gruppenarbeit die entsprechend gekennzeichneten Teile der Arbeit [(§ 18 Abs. 1 APSO-TI-BM bzw.

§ 21 Abs. 1 APSO-INGI)] - ohne fremde Hilfe selbständig verfasst und nur die angegebenen Quellen und

Hilfsmittel benutzt wurden. Wörtlich oder dem Sinn nach aus anderen Werken entnommene Stellen sind

unter Angabe der Quellen kenntlich zu machen.“

Quelle: §16 Abs. 5 APSO-TI-BM bzw. §15 Abs. 6 APSO-INGI

Erklärung zur selbstständigen Bearbeitung der Arbeit
Hiermit versichere ich,
Name:
Vorname:
dass ich die vorliegende Masterarbeit – bzw. bei einer Gruppenarbeit die entsprechend
gekennzeichneten Teile der Arbeit – mit dem Thema:
Implementation and Evaluation of BGPsec for the FRRouting Suite
ohne fremde Hilfe selbständig verfasst und nur die angegebenen Quellen und Hilfsmittel
benutzt habe. Wörtlich oder dem Sinn nach aus anderen Werken entnommene Stellen
sind unter Angabe der Quellen kenntlich gemacht.

Ort Datum Unterschrift im Original

106

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Inter-domain Routing with BGP
	Autonomous Systems
	Border Gateway Protocol
	BGP Specification
	Attack Surface

	Protecting BGP
	RPKI
	Route Origin Validation
	The RTR Protocol

	RPKI Implementations
	RTRlib
	FRR
	BIRD
	RIPE-NCC RPKI Validator 3
	Routinator 3000

	Related Work

	BGPsec
	AS Path Validation
	BGPsec Specification
	Deployment of BGPsec
	Related Work

	Problem Statement
	BGPsec Implementation
	Validation Suite Design
	Features
	Crypto Library
	AS Path Validation API
	Project Structure

	Validation Suite Implementation
	Streams
	Data Hashing
	Signature Validation
	Signature Generation
	Revisiting Validation Suite Requirements

	Protocol Handler Design
	Choice for FRR
	Design
	The Module and Configuration

	Protocol Handler Implementation
	Commands
	Capability Negotiation
	Storing BGPsec Data
	BGPsec Update Generation
	BGPsec Update Parsing
	Revisiting Protocol Handler Requirements

	Performance Analysis
	General
	Tooling
	Public/Private Key Generator
	SPKI Cache
	Dummy Router

	Correctness of the Implementation
	Open Message
	Malformed Update Message
	Parsing Update Message
	Update Reconstruction

	Memory Usage Performance
	Router Keys
	BGPsec Paths

	Crypto Microbenchmarks
	Processing Time Performance
	Outgoing Updates
	Incoming Updates

	Conclusion and Outlook
	Bibliography
	Appendix
	Selbstständigkeitserklärung

