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Abstract—On December 10, 2021, Log4Shell was disclosed
to the public and was quickly recognized as a most severe
vulnerability. It exploits a bug in the wide-spread Log4j library
that allows for critical remote-code-execution (RCE). Any service
that uses this library and exposes an interface to the Internet is
potentially vulnerable.

In this paper, we report about a measurement study starting
with the day of disclosure. We follow the rush of scanners
during the first two months after the disclosure and observe the
development of the Log4Shell scans in the subsequent year. Based
on traffic data collected at several vantage points we analyze the
payloads sent by researchers and attackers. We find that the
initial rush of scanners ebbed quickly, but continued in waves
throughout 2022. Benign scanners showed interest only in the first
days after the disclosure, whereas malicious scanners continue
to target the vulnerability. During both periods, a single entity
appears responsible for the majority of the malicious activities.

Index Terms—Log4Shell, RCE, Scanning, Security, Network
Telescope

I. INTRODUCTION

Our digitizing world increasingly depends on distributed
software systems and thereby faces a continuously growing
threat landscape. New vulnerabilities in the core systems,
such as Rowhammer (2015) [1], and Spectre (2018) [2]–
[4], easily escalate to a global scale. Faulty protocol feature
updates as with Heartbleed (2014) [5], [6], or threatening
deployments of new protocols, such as with QUIC (2022) [7]
severely threaten the Web ecosystem. Over the past decades,
the Internet community has developed several measures to
protect its infrastructure [8], [9] but threats from vulnerable
software remain.

A most severe, recent vulnerability in this line is
Log4Shell (2021). It enables remote code execution through
vulnerable applications by injecting a prepared string into
the omnipresent Log4j library. As an integral part of Java
applications, Log4jShell can be exploited in a variety of
application-dependent ways [10].

For hours, days, or weeks after the disclosure of such a
vulnerability a race starts between multiple parties. Attackers
want to exploit systems before they get patched. Increasingly
professionalized cybercriminals are quickly aware of new
exploits that become available for anyone willing to pay [11].
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Fig. 1: The unfolding of the Log4Shell vulnerability from
reporting to the consequences in 2021.

On the opposite side, operators and hosters are remarkably in-
cautious in implementing standard security measures carefully
and consistently [12], [13].

In case of an emergent threat, operators, hosters, and
application service providers need to quickly update their
systems before they get compromised. Security firms monitor
malicious activities and researchers aim to understand details
and asses the scale of the vulnerability. Releasing a patch
and protective measures alongside a public disclosure is a
necessary step to enable admins to secure their systems, but
no guarantee exists for a timely implementation. In an initial
study [14], we monitored this race during a two-month period
starting from the day of its disclosure.

In the present work, we extend our previous research with
an additional year-long view on the development of scans that
hunt for the Log4Shell vulnerability presented in Section V.
We collect and analyze data about attack traffic, its intrusive
approaches, and its underlying infrastructure using reactive
network telescopes at four vantage points on two continents.
Our analyses focus on the behavior and the ecosystem of the
malicious actors.

After recapitulating the events close to the Log4Shell dis-
closure in Section II and introducing our data set in Section III,
we continue in two parts. First, we trace the scanners during
the disclosure period in Section IV. We find that scanning
started on the day of the disclosure and spiked about a week
later with a focus on HTTP related ports. In this context, we
present collected payloads and identify the URLs central to
this exploit. Second, in Section V we examine how scanning
continued through 2022 and reveal a large cluster of addresses
with shared non-volatile infrastructure. Finally, Section VI
discusses and concludes our findings.
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II. BACKGROUND AND RELATED WORK

The Log4Shell vulnerability (CVE-2021-44228 [16]) in the
popular Log4j library was publicly disclosed on Dec 10, 2021
by Apache alongside a fix in Log4j library version 2.15.0.
The bug allows for remote code execution (RCE) by injecting
prepared strings into the logging library. NIST [21] classified
this threat as a critical vulnerability with the highest severity
rating. An impact assessment by Google [22] estimates that
4% (or 17,000 packages) on the Maven Central were affected,
either directly or via dependencies. This is twice the impact of
an average packet (mean 2%, median 0.1%), which highlights
the popularity of Log4j.

From a high-level perspective, the exploit works by injecting
a formatted message into the logging component, which then
interprets and executes the message. Specifically, the Log4j
library supports format messages that are evaluated by the
library and can be used to add additional information to log
messages, such as the Java version. One of the services that can
be used for runtime evaluations is JNDI [23], the Java Naming
and Directory Interface, which in turn can query a variety of
lookup services. Log4Shell focuses on the services LDAP and
RMI for injecting code and infecting the local machine.

A. A Brief History of the Log4Shell Incident

Figure 1 shows the timeline of observations around the
Log4Shell incident. The vulnerability was originally reported
to Apache on Nov 24, 2021, by the Alibaba Cloud Security
Team [15]. The Chinese-based company quickly faced conse-
quences of reporting the vulnerability directly to Apache [24],
[25] instead of contacting national authorities first. A CVE
record was created on Nov 26 [16] but not published until pub-
lic disclosure on Dec 10. In the meantime, a pull request (PR)
to address the vulnerability was opened on Nov 30 [17] and
merged five days later. Cloudflare notes that they observed
the first exploit one day after the PR on Dec 1st [26]. Cisco
observed an exploitation attempt a day later on Dec 2nd, as
published in their Talos Blog [27]. Both companies report that
widespread scanning started on Dec 10.

Within a day of the public release, the Mirai and Muhstik
botnets, crypto miners, and other malware were observed to
use the exploit for propagation [28]–[30]. Microsoft further
reports that nation-state attackers experiment with the exploit
and integrate it into their activities [31].

The first fix was insufficient and further exploits followed
(CVE-2021-45046 [18], CVE-2021-45105 [19], CVE-2021-
44832 [20])—none of them as critical, though, as the initial.
These vulnerabilities are discussed in more detail by Everson
et al. [32] alongside mitigation strategies.

B. The Log4Shell Attack: How it Works

The Log4Shell exploit builds upon a JNDI injection vul-
nerability that was presented at BlackHat in 2016 [33]. JNDI
enables queries of lookup services such as LDAP, the RMI
Registry, or the DNS and can load Java objects returned by
a service at runtime. Since the query argument is a URL, the
lookup can be performed on local or remote services. Via this
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Fig. 2: The Log4Shell exploit tricks the application into
loading and executing code from a remote server. It is initially
instrumented by an executable log string (here “UA:”). Steps
marked by circled numbers are explained in Sec. II-B.

functionality, an attacker who controls the query can thus load
arbitrary code from a location under his control—and this is
where Log4j comes in.

Log4j comprises capabilities to interpret strings for en-
riching logged messages with additional information. Ex-
amples are lookups of the Java version or the hostname.
These interpreted strings are escaped by wrapping them:
${prefix:query}. In addition to harmless operations,
Log4j accepts a prefix that triggers JNDI to perform the
lookup, in which case the query includes its own scheme to
signify the lookup services used for the query. This extends
the known JNDI vulnerability by opening an attack vector
via logged messages. Applications that log web requests,
usernames, or generally user-controlled input are easy targets
as a result—provided they fail to sanitize their inputs.

Figure 2 shows a possible exploit scenario initiated by an
attacker. The attacker starts with a scan that sends HTTP
requests to web servers 1 . Here, the exploit string is placed in
the user agent field. An information that operators might log to
understand what browsers and operating systems they should
support to provide good user experience. In our example, the
exploit targets an LDAP lookup via JNDI on an LDAP server
controlled by the attacker.

The victim application logs the input string using Log4j 2 .
Log4j in turn finds the escaped string and uses JNDI to
perform the LDAP lookup from the remote address 3 . The
vulnerable Log4j implementation downloads the Java object
prepared by the attacker 4 and loads it locally. This Java
object contains a way to run shell commands on the local
machine, which download the actual malware from a remote
server 5 and execute it locally 6 .

Following these steps, an injected payload leads to the
execution of arbitrary code prepared by the attacker. The
interpretation of strings by Log4j can further be used to
obfuscate the payloads [31]. Instead of including the string
“ldap” or an address, individual characters are escaped with
an operation that leaves them unchanged.

III. OBSERVING LOG4J SCANS: METHODS AND DATA SET

Multiple groups of people hunt for exploitable services:
attackers attempting to exploit vulnerable services, researchers
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(a) US Vantage Point.
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(b) EU Vantage Point 1.
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(c) EU Vantage Point 2.
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(d) EU Vantage Point 3.

Fig. 3: The intensity and maliciousness of scanners targeting the Log4Shell vulnerability during Dec’21 and Jan’22.

who want to examine and analyze, and the security industry,
which wants to discover and close vulnerable services before
they can be exploited. All of them scan the IP space. Scanning
behavior, though, does not only depend on the originators
but also on the instant of time. In case of a newly arriving
vulnerability, the time directly after the release of the exploit
is the most critical observation period, since more and more
services are getting patched or taken offline over time.

As for the Log4j vulnerability, methods for monitoring and
exploiting may appear similar. Scanners that want to identify
vulnerable services without exploiting them can simply use
LDAP servers which do not perform a valid lookup but only
log accessing addresses instead. This makes it especially hard
to attribute malice based on scans alone.

We observe scan attempts targeting TCP on four
/24 IPv4 prefixes. Our vantage points neither host services nor
are they part of a larger active network. We deploy Spoki [34],
a reactive telescope that interacts with incoming packets in
real-time to establish TCP connections and collect payloads
for a few seconds before closing connections. Based on the
C++ Actor Framework [35] Spoki is highly scalable and can
handle millions of addresses in parallel. It exploits otherwise
unused address space just like silent telescopes [36] but due to
its responsiveness we expect its sensitivity to be more similar
to honeypot platforms [37], [38].

Spoki is deployed at all four vantage points, which include
one in the US (part of the UCSD Network Telescope [39])
and three in the EU. Two of the vantage points in the EU host
neighboring networks (EU VP 2 & VP 3), which are separately
announced. We separate the data set by /24 prefixes in our
analysis to accommodate for topological differences. We lost
data at the US vantage point from Dec 28 ’21 to Jan 1 ’22,
and at the EU vantage points from June to mid-July in 2022.

Payloads targeting the Log4Shell vulnerability contain the
escaped JNDI format string. As such, they are detectable
by parsing the payloads if a few obfuscation techniques are
taken into account. We use an open-source detector [40] to
filter the collected payloads. In our analysis, we use the
term event for a payload including a JNDI string. Hence, the
number of payloads we collected equals the number of events.
Note that we cannot observe all application-specific payloads
as they may be encoded in an application-specific format.
Nevertheless, binary protocols that contain a JNDI string in
ASCII remain detectable.

We use MaxMind [41] for geolocating IPs. While geolo-
cation is not highly accurate, mapping to countries is still
reasonable [42]. PeeringDB [43] classifies the type of ob-
served networks, for which we summarize Not Disclosed and
networks without an entry under Unknown. GreyNoise [44]
provides additional threat intelligence information.
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IV. THE LOG4SHELL DISCLOSURE:
A RACE TO THE VULNERABLE

The time around the Log4Shell disclosure was a turbulent
time. Engineers rushed to understand the vulnerability and
analyze whether their own infrastructure was threatened. This
section focuses on the behavior of scanners during this period
in three parts: a timeline of the events, an analysis of their
payloads, and a closer look at the exploits observed in the
wild.

A. Scanners

First, we examine the scanners using Log4Shell payloads.
These are the sources in step 1 of Figure 2.

1) Overview: We collect all events, i.e., payloads that
include a JNDI exploit string (see Section III), and classify
the sources using GreyNoise [44] into the categories malicious,
benign, and unknown. We cannot easily sort unknown sources
into the other two categories because Log4j payloads sent
during step 1 do not compromise the system. Still, two
payloads that strongly correlate with malicious behavior were
used to further classify sources as malicious (cf. Section IV-C).

Figure 3 displays the scan activity over the months Dec’21
and Jan’22. The upper graphs show the time series per source
type and day while the heat maps below visualize malicious
intensity, calculated from the share of malicious events among
all events per hour. The event count in the US graph grows
to roughly 44k during the peak of the malicious events while
the unknown events in the subsequent peak hit roughly 36k.

The first scans start on the evening of Dec 9 (UTC+0) at
the US vantage point. The EU only sees the first packets
nearly a day later (3PM, Dec 10) than the US (11PM, Dec
9). Moreover, the scans in the EU start with scans from
BinaryEdge (https://www.binaryedge.io), a benign threat-
intelligence provider—here from DigitalOcean hosts based in
the US. At the US vantage point, the first scans originate from
one source classified as malicious, in a UK AS.

Mid-December is the period with the highest activity. No-
ticeably, the only benign events are registered in the first weeks
after the disclosure. Towards January the events per day drop
to around 100 in the EU, and 2000 or less in the US. The
interest in scanning for the vulnerability spiked about a week
after the public disclosure. During this time all vantage points
observe substantial malicious activity. The US vantage point
observes a large share of unknown events as well.

The heat maps reveal a period of mixed activity before
malicious sources take over–except for the unknown sources
in the US around mid-December. While the benign actors are
fast in the EU, they quickly lose interest. Here, researchers
and threat intelligence providers have room to grow: start fast
and perform continuous measurements.

Scanners are more interested in the US region during this
time. From the observed 2023 sources, 1516 were exclusively
seen in the US, and 123 only in the three EU telescopes.
The EU vantage points provide a relatively similar view on
the sources. Each EU VP observed at most 27 addresses
exclusively.

2) Event Peaks: Shortly after the disclosure all vantage
points observe benign scanners. At the US VP we observe
two spikes up to 2000 packets on Dec 13 & 18. 90% of
these packets are from a single AS, Alpha Strike (https:
//www.alphastrike.io). We observe scans focusing on HTTP-
related ports such as 8080, 8081, as well as port 8983.

A very high spike in malicious events was observed in the
US on Dec 19 & 20. During these two days, the vantage point
records more than 40k packets per day. 80% of them originate
from a single IP endpoint in Russia. This is one order of
magnitude more than observed from any other source during
this time. All these events target port 8080. Two days later, a
second spike occurs, this time from unknown sources. During
these 5 days the US VP observed more than 30k packets per
day. As a result, the maliciousness decreases, which is visually
striking in the heat map as a dark stripe from Dec 22 to 26.

Once again, we observe a large share of events (76%)
originating from a single, unclassified IP address of the same
Russian hoster as the previous, malicious address that caused
the spike days earlier. In contrast to the previous scan these
events are split between TCP ports 8080 (18%) and 5480
(75%). A closer inspection of these two events reveals that
the first source scans more aggressively but for a shorter time.
The hourly packet rate is up to twice as high. In contrast, the
unknown source sends at a lower rate for a longer time, adding
up to more than twice as many packets in total. Although
their payloads have similarities–they exfiltrate the domain,
computer name, OS, and java version–they do not show direct
intent to perform RCE via Java objects. We also find no
specific overlap in the payload strings and do not see sufficient
evidence to classify the source as malicious.

A malicious spike in events can be observed at all three
EU VPs on Dec 18. These spikes reach about 3k events per
day. When grouping by AS, two ASes take more than 10%
share: an American hoster and Chinese ISP. Both scan a range
of HTTP-related ports in addition to ports 5480 and 7547.
These ASes show up at the US VP with a slightly higher event
count. Their share is comparatively small due to the high traffic
volume from the aforementioned two Russian addresses.

Smaller event spikes from malicious sources are seen at the
European VPs on Jan 1 & 3. These originate from a single
hoster IP address. These probes focus on HTTP-related ports.
The much larger spike in the US is caused by the same address.
The long tail of smaller spikes in the US originates from a
variety of ASes that focus on HTTP-related ports. More than
60% of the traffic originates from 4 hosters.

We expect a rise in Log4Shell events as scanners start
looking for vulnerable hosts. Our observations reveal aggres-
sive scanning behavior in few hosts. These trade scanning
speed for increased noise. Since the vulnerability was not
yet well understood, scanners explored different payloads or
ports, thus creating even more noise. Given the wide coverage
of Log4Shell they likely attempt to find as many victims as
possible before machines get patched, are taken offline, or
networks start blocking their addresses.

3) Who is Scanning?: Geolocation (see Section III) based
on the source addresses shows that scans originate to a large
extend from three countries. China and the US make up more
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TABLE I: Overview over the network types from PeeringDB.
Hosting providers originate the largest identifiable share.

EU US

VP 1 VP2 VP3 VP 1

Hosting 34% 34% 35% 79%
Transit/Access 22% 23% 22% 4%
Education 7% 7% 7% 1%
Enterprise <1% <1%
Other <1% <1% <1% <1%
Unknown 36% 35% 36% 15%

than 60% of the events at each vantage point in the EU. In
line with the traffic spikes caused by Russian sources in the
US, Russia originates more than 60% of the events observed
in the US and around 5% at the EU vantage points. Figure 4
summarizes the shares of the top five contributing countries.
Table I shows the distributions of types for networks that
originate scans (cf. Section III).

At all vantage points the largest share falls into the cat-
egory Content, which includes hosting services. Scanners
(temporarily) rent VMs here to perform scans and host related
infrastructure. Three hosting ASes stand out: Two from the US
and one from Russia, which predominantly scans the US VP.

The second-largest share goes to transit and access net-
works. While all network types might host infected machines,
it is more likely that machines in these networks are compro-
mised and part of a botnet [45], [46].

Education and business might actively seek to learn about
the new vulnerability. The small share of education networks
in the US is likely a lack of data in PeeringDB. Although it
could further hint that US institutions prefer VMs in the cloud
for measurements and infrastructure. 15% to 40% of networks
could not be labeled.

4) What are Scanners Targeting?: The majority of scans
aim for HTTP-related ports, such as 80, 8080, 8000. One
of the highly active Russian scanners also focuses on 5480
(unofficially used for VMware VAMI). The three most popular
ports account for more than 50%, likewise the top ten ports
account for more than 85% of the events at each VP. Overall,
we observe between 36 and 48 different ports as targets at
each VP. While such focused scans are typical for botnets [45]
they simply show an expectation of the attacker where to find
vulnerabilities.

A port that stands out among the top ten in the EU is 7547.
This port is associated with the TR-069 vulnerability related
to home routers. While this port is frequently scanned (about

4%), Java is generally not the best fit for home routers and
thus Log4j is not likely to be used in such an environment.
Presumably, scanners are just testing the port in passing.

B. Payloads of the Scanners

We now analyze in detail the collected payloads, i.e., the
data scanners send in step 1 , to learn about the impact, how
payloads change over time, which protocols scanners use, and
the JNDI URL placement.

1) Initial Development: Our previous analysis revealed how
scans reached a quick peak before they rapidly decline and
settle in a low volume. We cannot tell from the event counts
alone whether scanners keep their setups and continue to run
unaltered, i.e., reuse payloads, or whether they purposefully
change the exploitation methods. Analyzing the variation in
payloads over time can help to answer this question.

Figure 5 depicts the evolution of distinct payloads, URLs,
and hosting servers during the disclosure time. Subfigures 5a
and 5b show the distinct counts per day. In contrast, Sub-
figures 5c and 5d show the CDF of distinct objects over
the complete two months. The payloads are the data we
receive directly during the TCP handshake, URLs are the
escaped JNDI URLs in the payloads, and servers are solely the
addresses in those URLs, i.e., the host and port information
of LDAP or RMI server controlled by the attacker. Because
payloads often include the address of the victim, e.g., in
the host parameter of the HTTP header, we replace the IP
addresses from our subnets with a static string. This way,
payloads that only differ by their destination will coincide.

The event spikes in Figures 5a and 5b correlate with the
spikes about a week after the disclosure, see Figure 3. Note
that the graph has a logarithmic y-axis. At both vantage points
the distinct payloads count is much higher than the server
count. Scanners use different payloads for the same injection
string—likely to test the behavior of the scanned service as
it might differ by application which data is logged. Similarly,
the number of distinct URLs is higher than the number of
distinct server addresses. In those cases, attackers re-use the
same server, but with different paths. In practice this means
that individual servers are used to distribute multiple types of
downloads or malware. On some days the number of payloads
equals the URL count. Here, scanners encoded additional data
in the URL, such as a HEX-encoded JSON payload that
includes the destination and other information.

We now analyze the evolution of the attack ecosystem
over the complete time frame, i.e., the new payloads, URLs,
and servers. Figures 5c and 5d plot the corresponding CDFs.
Noticeably, the behavior of distinct payloads and infrastructure
largely differs between the US and the EU vantage points: In
the US graph payloads and URLs have more extreme steps,
one from Dec 17 to 20 and one from Dec 22 to Dec 23,
2021. These jumps lead up to the high spikes in malicious
and later in unknown events. In contrast, the server line rises
much earlier. The rise in payloads and URLs does coincide.
This indicates varying attacks in the US backed by the same
infrastructure—supposedly, attackers adapted their payloads
and URLs to explore the attack surface.
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Fig. 5: The relationship between payloads, URLs, and servers over time. (a) and (b) count the distinct objects per day. (c) and
(d) aggregate distinct objects over the two-month period in a CDF. EU VPs are represented by EU VP 2 (Dec’21 to Jan’22).

At the EU VP, all three measures occur in line. There are
two steeper increases in payloads shortly after mass scanning
started on the Dec 12 and again on Dec 18. Still, we do not
see a divergence as in the US. Payloads, URLs, and servers
behave similarly, rising on similar days. Scanners vary their
payloads. Most frequently we observe classic horizontal scans
and scanners sending different payloads to a single endpoint
before moving on.

2) Exploit String Placement: While focusing on HTTP
related ports we observe that scan payloads either carry GET
(between 91% and 98%) or PUT requests (remaining). Exploit
strings in payloads become visible at various locations, an
observation shared by [30]. This reflects attackers who still
search for the best attack method, as well as attackers that try
to alter their payloads continuously to evade detection. Table II
summarizes the most popular placements in HTTP headers.

Regularly logged locations such as the User-Agent (UA)
and Authentication (Auth) header fields are popular
targets. The UA, which can be customized for specific pur-
poses [47], identifies the client. Websites depend on it to
deliver matching content. As a result, it is often logged to
keep statistics on users. Authentication information is similarly
important for debugging and access control. Since HTTP
header manipulation is a known issue [48], logging any header
fields should be done with care.

The lower shares in the US stem from the high variety in
header configurations and fields sent by the Russian scanners.
While we saw around 45 different header fields in the EU,
the US VP observed 157 distinct fields. During January
the field count shrank to 13, favoring User-Agent and
X-Api-Version.

The two Russian scanners follow different scanning styles.
The one tagged as malicious appears to partly randomize the

headers. All payloads are GET requests that include the user
agent Go-http-client, a Host field, the “randomized”
field with the JNDI string, and end with Connection:
close. Exception are payloads that contain the JNDI string
as the user agent, in which case only the Host field follows.
Not only do they change their fields but choose from several
simple obfuscated URLs.

In contrast, the other Russian scanner rotates payloads
systematically. It sends the same payload to several addresses
before changing a single characteristic, such as the header field
that contains the JNDI string or the obfuscation method. It
looks like a nested loop that rotates the obfuscation in the
inner loop and the header field in the outer one. The user
agent is only included when it contains the JNDI string.

The obfuscation approaches we observe are built on the
substitution used for the vulnerability itself. There are a few
easy obfuscations that hide the strings “jndi”, “ldap” or other
parts of the URL, hiding keywords that can otherwise be
found by simple pattern matching, thus making the payloads
harder to detect. As an example, the string ${lower:j} will
substitute to “j”. As the obfuscation is very easy to achieve
and the general JNDI exploit is not new, obfuscated payloads

TABLE II: The most common header locations to store the
JNDI URL. (UA: User-Agent, Auth: Authorization, X-Api-
Ver: X-Api-Version)

EU US

VP 1 VP2 VP3 VP 1

1. UA 23% UA 22% Auth. 23% UA 11%
2. Auth. 20% Auth. 21% UA 22% Path 9%
3. Path 13% Path 14% Path 14% Cookie 6%
4. Cookie 10% Cookie 11% Cookie 11% Auth. 6%
5. X-Api-Ver. 10% X-Api-Ver. 8% X-Api-Ver. 9% Referer 6%
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quickly appeared in our data. At the EU vantage points, the
first obfuscated payloads showed up shortly after midnight on
Dec 11. In the US it took a day longer.

C. Examining the JNDI/LDAP Exploitation

We now investigate the final steps 3 to 5 of the attack,
namely the malware requests triggered via JNDI. We also
acquire and inspect the malware distributed via Log4Shell.

1) Analyzing the URLs: The URLs used to query via JNDI
have four parts: a scheme, a host, a port, and a path.
Schemes. Tricking the victim into downloading Java objects
via JNDI is central to the exploit, see step 3 . JNDI supports
a range of services, but only a few are used for Log4Shell.

Figure 6 shows the event count for each scheme we ob-
served (note the logarithmic y-axis). The EU vantage points
see LDAP almost exclusively. RMI occurs a handful of times
at both vantage points. Aside from the events on Jan 16, which
originate from the same ASes, there is no correlation between
the VPs. As a third scheme, EU VP 3 observed a single HTTP
request. The website behind the address gives security advice
on how to patch Log4j (Feb’22). The name in the reverse DNS
record of the scanning node matches BinaryEdge. In the US
we observe two spikes of DNS schemes in January. 95% of
these originate from the Alpha Strike AS, matching the benign
spikes in Figure 1.

Aside from LDAP, attacks using RMI received attention in
the media [49]. We only observed three (US) requests with the
URL mentioned in the article. These attacks may have been
focused elsewhere and did not hit our VPs in bulk.
Hosts. PeeringDB lacks information about nearly half of the
hosting networks we observe. We notice that corresponding
servers are mostly located in two ASes, both from Estonia (one
provider shows up with two ASes, one of which is Ukrainian).
Manual search identified both as hosters. Relabeling them
accordingly, the servers we observe are mostly located in what
PeeringDB labels as Content ASes, i.e., hosters (EU: 70%, US:
80%). The large share of hosters fits the distribution model for
malware. These servers need to be reachable from everywhere
with a high uptime to allow compromised machines to down-
load malware. Transit and access networks together make up
roughly 20% at the EU VPs and 5% at the US VP.

The most popular locations for servers are displayed in
Figure 7. While Estonia runs top in the EU, Russia takes the
biggest chunk for the US by far. Notably, none of the Russian
servers were observed in our EU vantage points, thus they
exhibit a geographical preference [34], [50] in their scanning
behavior. This is unexpected as Log4j is ubiquitous and not
known to be more present in a specific geographic region.
Ports. Less than two percent of the LDAP servers used for
the attacks are bound to the default LDAP port (389). Instead,
the most used port is 1389. The share ranges from 93% to
96% at all vantage points. Other ports in use are 2420 and 80
in the EU, each between 1% and 2%. In the US we observe
12344 at around 2% as well. Such a high share could hint at
common tools or tutorials used by the attackers.
Paths. Except for a single path, observed paths do not conform
to the RFC that defines them [51] as they do not include

a valid distinguished name. Two paths stand out among the
LDAP URLs. First is /Exploit, which makes up the largest
share at all vantage points with 70% to 80% in the EU and
20% in the US. A second group of paths shares the segments
Command/Base64 followed by a Base64-encoded segment.
This group takes the second-largest share. These paths begin in
a variety of ways, potentially hinting at their purpose, such as
TomcatBypass or GroovyBypass. Decoding the Base64
segment reveals script code (mostly bash) that downloads an
executable via HTTP to run locally.

At first glance, encoding commands in a URL path is an odd
choice. However, the second piece of the puzzle is an LDAP
server implementation, which dynamically builds Java objects
that will run the Base64-encoded command. These servers
can be found on GitHub in several repositories, although the
original1 is no longer available. This server—aptly named
JNDIExploit—binds local ports for LDAP and HTTP. It
responds to a variety of queries that include the Base64
fragment and match the paths we observed. The most common
variant we see is the TomcatBypass.

Having such tooling at hand makes it easy for attackers to
set up the attack and run it. We confirmed that servers used in
attacks exhibit this dynamic behavior by sending a custom
Base64-encoded command. We received the Java object in
response to our custom code. The JNDIExploit repositories
use port 1389 as the default for LDAP, which matches our
observation of common LDAP ports in the URLs.

2) Downloading Malware: The Java objects are just an
intermediate step to the goal of the attack: infecting the host
with malware. We follow this path to find out which malware
is distributed this way. When running the downloader in
Feb’22, most servers were no longer available. We successfully
download nine distinct Java objects, compare step 4 .

The LDAP answers contain two important keys:
javaClassName and javaSerializedData. In
all cases the class name is set to java.lang.String.
The objects we collected match the objects built by the
JNDIExploit LDAP server, see Section IV-C1. The serialized
objects look like a Java StringRefAddr object.

There are two versions among the objects. The Tomcat
bypass instantiates a script engine to run JavaScript code
while the Groovy bypass builds on Groovy itself. The script
code is encoded in the serialized objects as ASCII. One of
the Tomcat samples executes PowerShell code, which likely
targets Windows. While most of the other scripts include a
mechanism to determine the local OS, e.g., by checking the
direction of slashes in a file path, they execute bash commands
either way, and are thus unlikely to run on Windows.

We extract the download commands in our small samples set
by hand and download three different binaries, compare step
5 . (Four connections failed and three of the objects contain

the same scripts, although they differ slightly.) The hashes of
all downloads are registered on VirusTotal [52], where they
were first submitted between the mid and end of Jan’22, i.e.,
while Log4Shell attacks were taking place. Two of the samples
are scripts while one is a 32-Bit ELF binary.

1https://github.com/feihong-cs/JNDIExploit
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Fig. 6: Schemes in JNDI URLs over time. LDAP is used nearly exclusively (Dec’21 to Jan’22).

The malware acquired via the PowerShell code is itself a
PowerShell script and downloads a binary with the name of
a known crypto miner. Although the other shell script looks
more sophisticated—it stops local programs, downloads an
uninstaller to remove software, adds new cron tab entries, and
tries to make its way into connected hosts via ssh—its goal is
similar: installing a crypto miner.

Understanding the Base64-encoded commands opens an-
other way to acquire malware. Instead of taking the round-trip
via the LDAP server, which embeds them into a Java object,
the commands can be decoded directly. Via this method we can
acquire an additional binary: a 64-bit executable ELF file first
registered on VirusTotal at the beginning of Dec’21. The low
yield matches the churn in URLs we observe in Section IV-B.

3) Locating Malicious LDAP Servers: We finally explore
the malicious server infrastructures by active scans. To this
end, we utilize the fact that the Log4Shell exploit requires
publicly reachable servers that return Java objects, compare
step 3 and 4 in Figure 2.

Malicious servers predominantly listen on port 1389 cou-
pled with a non-standard LDAP behavior. This is why we
use ZMap [53] to scan TCP/1389 for open ports. We then
identify unsecured LDAP servers by performing LDAP bind
operations, which should fail on servers enforcing authentica-
tion. In a next step we query for the two most common paths
observed: /Exploit and a path with Base64 string.

We find 5.1M servers responding to SYNs, but only 1,110
allow for an unauthorized LDAP-binding. 81 servers return
answers for /Exploit, and 179 for Base64. These sets
overlap, which leads to 183 malicious LDAP servers in total
(16%). Comparing to Figure 5, we infer that the number of
servers in daily use and dormant servers differ by an order of

EE US UA KR FR RU
Hosting Location [CC]

0
20
40
60

Sh
ar

e 
[%

] EU VP 1
EU VP 2

EU VP 3
US VP

Fig. 7: The top 5 countries that host Log4Shell servers. Russia
only takes a share for attacks targeting addresses in the US.

magnitude.
We collect six Java objects via the /Exploit path and 97

objects via the Base64 path. Their general structure matches
the objects from Section IV-C2. Since Base64 requests are
expected to encode our command, they should not return any
malicious objects. Six objects are an exception. Here, servers
return the same payload for both paths, likely a static response.
We identify one downloader for a 64-Bit ELF binary, an
object that runs PowerShell code, and one broken object. The
remaining three payloads do not include script code.

These scans could eventually be used to identify and take
down malicious LDAP servers, even though they are quickly
moved and setup anew. Changing servers would also require
adopting the payload included in scan campaigns.

D. Summary of Findings

Malicious and benign actors exhibited different scanning
behavior. Both groups started scanning within 24 hours of
the disclosure. However, benign scans ceased within the first
week, whereas malicious scans peaked thereafter and contin-
ued with moderate intensity.

Available open-source tooling developed earlier for a JNDI
exploit spread among attackers and lead to widely similar char-
acteristics in their exploit strings. This enabled the detection
of the malicious LDAP servers via scans.

V. THE CONTINUOUS DEVELOPMENT OF
LOG4SHELL ATTACKS

Log4j patches were released jointly with the disclosure and
significant awareness was raised globally. Nevertheless, fixing
of installations remained largely incomplete. Due to the nature
of this software bug, every service instance stays vulnerable
until patched [54]. Throughout 2022, Log4Shell continued to
be a virulent threat to Internet infrastructure [55], [56].

In this section, we follow the activities of the Log4Shell
scanners during 2022, analyze their activities and their infras-
tructure, and try to take a deeper look behind the scenes.

A. Overview

The trend of declining Log4Shell events foreshadowed in
January 2022 did not sustain. Log4Shell scans continued in
multiple waves throughout 2022. Figure 8 displays the tem-
poral development of Log4Shell events recorded every week
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Fig. 8: The intensity of Log4Shell events through 2022. Events
from the vantage points are stacked and aggregated per week.

at our four vantage points. Beginning in March we observe a
small series of higher activity. August and September are the
periods of the highest intensity. Thereafter, scanning events
reduced in November and December.

1) Maliciousness: We continuously monitor the source
addresses throughout 2022, 80% of which GreyNoise classifies
as malicious. We further compare against a list of acknowl-
edged scanners [57] and find no overlap. This is in line with
our observations towards the end of the disclosure period,
where benign scanners quickly stopped while malicious scan-
ners remained active, cf. Section IV-A.

2) Source ASes: The monthly distribution of top contribut-
ing ASes is shown in Figure 9. All top ASes offer content
hosting services to the public. We anonymized these hosters,
of which some are prominent. In the EU, AS A is the top
contributor while it is AS D in the US. Although it sends
roughly the same number of packets to all VPs, AS E only
stands out in the EU due to the difference in total packets
received at each VP. AS B and AS C take places two and
three at both VPs. They are mostly active in August (US) and
September (US, EU).

3) Target ports: HTTP-like ports continue to be the most
frequent targets with about 90%. The top three ports (80, 8080,
and 8081) see most traffic, accumulating to around 60%, while
the top 10 ports add up to roughly 80% of the traffic.

Starting in March 2022, scans again target port 7547,
which is used by TR-069 (cf. IV-A4). This HTTP-based
management protocol has been abused in a variety of exploits
targeting router devices [34], [58], [59] and was also abused
by Mirai variants [46], [60]. The payloads we observe are
plain HTTP messages that do not contain indicators of the
SOAP messages defined by TR-069. As such, it is likely that
scanners simply test known HTTP endpoints for the Log4Shell
vulnerability. Fritz!Box routers, which use port 8089 for TR-
069 configuration, were targets alongside scans to port 7547.
Note that these routers are not vulnerable to Log4Shell2.

4) Schemas and Paths: The choice in JNDI schemas con-
tinues to favor LDAP. A negligible number of RMI and DNS
events can be observed in March and May. Base64 encoding
dominates the paths with a share of more than 80% at each
vantage point.

2https://avm.de/aktuelles/kurz-notiert/2021/schwachstelle-im-java-projekt-
log4j-avm-produkte-nicht-betroffen/

B. The Context of the Event Peaks

Our activity logs in Figure 8 show high peaks in particular
for the US vantage point. We now take a closer look to narrow
down the related activities and their origins. We first analyze
the geographic origins of the scanning sources. Next, we relate
the top sources of each country via shared LDAP servers
identified from the JNDI URLs. We find small groups as
displayed in Figure 10. Throughout the following discussion,
ASes remain identically enumerated as in Figure 9.

1) Geolocation: The contributions of source ASes (cf. Fig-
ure 9) does not directly map on countries, since several
networks span different nations. AS E, for example, appears
in GB, IN, BR, FR, and the US while AS D appears in US
and BR.

No single country stands out during 2022. The ranking of
source countries is more stable across VPs, although there are
small differences between the EU and US vantage points. US
prefixes originate between 35% and 45% of all events at each
vantage point, followed by Poland (about 15%). The following
top five include Panama and Brazil as well as China in the EU
and the Netherlands in the US. The top three countries alone
add up to at least 65% at each VP.
US. The most active group consists of two scan sources
(in AS D and AS F) and one LDAP host (LDAP Server 2),
contributing nearly 35% of the US events during the spikes.
Noticeable, the same IP from AS F can be observed in a
low-volume scan in May with URLs that use a different
LDAP server (LDAP Server 1). The next five groups contribute
between 17% and 10%. These clusters are small, they usually
use a single LDAP server (sometimes two) and a maximum
of eight sources for scanning (median: 1).
Brazil. The scans from Brazil in March and April originate
from AS D, as well, which hosts both LDAP servers observed
in the US scans. It shares an LDAP server with the low-volume
scan from AS F in May.
Poland. The scans from Poland in May originate from AS
B, which is owned by a Polish hoster. They also use LDAP
Server 1 in AS D. Subsequent scans in August and September
from the same hoster use a different source address and LDAP
server (LDAP Server 2).
Panama. In September, scans from AS C start using LDAP
Server 2. While the addresses geolocate to Panama they ap-
parently belong to a Swiss-based AS with an office registered
in Panama.

2) Clustering: The most active addresses during the peaks
can be interrelated via its use of shared infrastructure, i.e., two
LDAP servers and a single IP address, which uses both of these
servers (Figure 10). Following these observations, we build
clusters from all sources and LDAP servers that we observed.

It is noteworthy, though, that events originating from the
same AS cannot simply be clustered based on their infras-
tructure. Events from AS E, for example, can be grouped in
two clusters, one from the US, BR, and GB, and a second
geolocating to FR and IN.

A cluster contains all sources that have at least one LDAP
server in common. Our analysis reveals 233 clusters of various
sizes as shown in Figure 12. While the most active cluster
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Fig. 9: Top five source ASes in 2022 per month ranked in the legends by total event share. All remaining ASes are aggregated
as “Other”. Names are anonymized. A hand full of ASes originate most events.

originates nearly 60% of all events, the second active cluster
only contributes 5%. Overall, the top 10 clusters add up to
85% of the scanning activity. Ranking the number of sources,
the most active cluster is 3rd with 25 source addresses and
three LDAP servers. The largest cluster contains 55 source
addresses and three LDAP servers. The second-largest cluster
comprises 30 source addresses and two servers.

All addresses that stood out during the examination of the
event peaks (Figure 10) belong to the most active cluster.
A timeline of its activity is depicted in Figure 13, using a
different color per source address. Each peak originates from
a different address. During the first half of 2022 scans are more
widely distributed and involve more addresses. In contrast, the
peaks in Aug, Sep, and Oct are caused by a single address
each.
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Fig. 10: The most active source ASes during each peak can
be related via the LDAP servers placed in their JNDI URIs.
Each box bundles one or several addresses. Geolocated country
tags refer to IP address locations. AS B in May and August
originates the same, single address.

We noted that several prefixes of provider C have been
reported for blocking by fail2ban. Blocking can be considered
a likely motivation for the constant address changes, since
an attacker loses efficiency due to block lists and potentially
risks even a takedown of the host. The LDAP servers, on the
other hand, seem unperturbed and continue as persistent attack
infrastructure.

3) Downloaders: A large share of events in 2022 uses
URLs with Base64 segments, cf. Section IV-C1. Given the
address churn in the active cluster, we now check whether
the downloaders transmitted as Base64-encoded segments are
equally short-lived. Figure 14 contrasts the lifetimes of the
sources (14a) with the lifetimes of downloaders (14b). Sources
have much shorter lifetimes, i.e., scanners use varying sources
to propagate the same downloader. While some downloaders
were only observed during a few days, the median window is
about a month. The end of June marks a strong cut, with only
one continuing downloader observed.

Downloaders offer malware as web servers. As such they
are less likely to get blacklisted. In addition, their addresses
are distributed during attack campaigns as part of downloader
scripts, which makes longer lifetimes attractive for the attack-
ers and easy to reach.

4) Discussion Questions: Our observations of the
Log4Shell scanners through the lens of a reactive network
telescope opens up consecutive questions. Our reactive
measurements record what scanners deliver but do not
actively request further information from the source hosts
that interact with Spoki. Our available information comes
from the established connections and their payloads as well
as publicly available meta-information about the addresses.
Do ‘scanners’ rent or hijack hosts? A large share of the
scans we observe originate from hosting providers. Nodes in
these networks could be genuinely rented by the scanning
entities or be compromised machines from third parties.

We analyzed the open ports of 20 hosts in the most active
cluster and compared with historic data from Shodan [61],
which shows open ports, identified services, and potentially
an organization name. The organization name matches the
hosting provider. The most common service is OpenSSH,
which is a common way to remotely access VMs. Some
hosts run additional services, such as nginx, RDP, or Apache
httpd. Since we do not know about software versions, we
cannot check for potential vulnerabilities. However, there are
no fingerprints that collectively apply to these hosts, neither
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Fig. 11: Top five source countries in 2022 per month. All remaining countries are aggregated as “Other”. A hand full of
countries originate most events. Note the different scaling at y-axes between the EU and the US VP.

for hijacking through some vulnerable service nor by common
administration patterns.

While our view is limited, these insights suggest that the
VMs are specifically instantiated for Log4Shell scanning.
Should clustering extend to the web server addresses? Our
clustering (s. Section V-B2) is based on the source of the scan
and the LDAP server the attack uses. The Log4Shell exploit
further uses a web server to download malware or another
downloader, i.e., a script to configure the system and install
the malware binary ( 5 in Figure 2). Only the Log4Shell
exploit string and the request/response from the JNDI services
are specific to the Log4Shell exploit. Using an exploit to
enter the system and run shell code to download the malware
or a more complex downloader script is a common strategy
that can be observed in other attack scenarios, such as two-
phase scans [34]. While all clusters show at least one overlap
between a scanning address and an LDAP address, less than
8% have an overlap between the web server and a scanning
address or an LDAP address.

As such, we want to carefully avoid mixing the attack
and the exploit steps. Attackers might use different attack
methodologies for the same attack or pay others to run the
attack campaign in the first place [11].
Cluster disappearance: What happened in October 2022?
After long-lasting activity, the cluster which was responsible
for a dominant share of events suddenly stopped scanning,
cf. Figure 13. We could not find any news about take-downs
or similar that clearly linked to this entity. Hence, we can only
speculate why this stopped.
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Fig. 12: Scanning clusters by count of source addresses and
the share of hosters. Clusters above the middle line contain
more hosters than scanners. Darker colors indicate overlap-
ping circles.

Running a longer-lasting campaign from different scanning
nodes likely required resources of the attackers, i.e., work,
planning, and online machines. As such, they may have shifted
focus to networks that we cannot observe (e.g., specific regions
or ASes), a lack of success may have made the effort no longer
valuable, or unreported law enforcement may have intervened.

C. The JNDI/LDAP Exploits

We finally take a look at the evolution of the actual exploits
and the corresponding malware distribution.

1) Exploit placement: The user agent remains the most
favored exploit string, although with a reduced share of 14%.
The remaining top five placements remain relatively stable
across vantage points but changed compared to our initial mea-
surements: (i) User-Agent (14%), (ii) X-API-Version
(13%), (iii) Referer (10%-12%), (iv) Cookie (9%-12%),
(v) X-Forwarded-For (5%).

Apparently, attackers did not converge on a placement but
positioned the exploit string wherever possible. It remains un-
clear whether they could not identify an optimal approach, or
whether the variety was used to target different deployments.

2) Malware: At the time of writing, none of the malware
persisted online. During our measurements, we download
scripts that match the batch and shell script of a Monero crypto
miner available on GitHub [62]. An issue from June 2022
reports the involvement of the script in Log4Shell attacks –
without response. We also found an ELF binary that VirusTotal
labeled as a Bitcoin miner.

3) Active LDAP scans: Due to the prevalence of the Base64
payloads, we repeated our scans for assisting LDAP servers
in 2023. We found limited change in the number of available
servers. 1,061 LDAP servers listening on port 1389 allowed
for unauthorized binding – 39 less than at the beginning of
2022. Around 270 of these servers appeared in both scans.
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Fig. 14: The observation windows of source addresses and downloaders distributed by the most active cluster, ranked by time.

D. Summary of Findings

Attackers move their highly visible scan infrastructure reg-
ularly between hosters and countries, presumably to avoid
protective counter actions, such as blocking. In contrast, they
continuously rely on the identical infrastructure of LDAP
servers and downloaders. Collecting information about these
backend infrastructures from the exploits can be used to track
and group malicious actors. Our measurements indicate that
the majority of attacks can be attributed to a few groups of
actors, the largest of which was accountable for about 60% of
the attacks and completely vanished on Oct 9, 2022.

VI. DISCUSSION AND CONCLUSION

The Log4Shell exploit appeared as a disruptive incident
on the Internet by allowing for remote code execution at
a global server landscape with threatening ease. The list of
affected software contains many popular applications [63].
YouTube videos explain details and give guidance on how to
apply attack tools. The exploit is built on a conceptual lack
of input sanitization—a common challenge that has plagued
the industry in the form of SQL injections for years. The
vulnerability saw wide coverage online. Blog posts, lists of
vulnerable applications, and detection tools [64] were quickly
published. At the same time, official organizations distributed
security reports and issued warnings.

In this work, we observed Log4Shell scanning through
reactive network telescopes from the time of its disclosure—
and for a year thereafter. Among the most notable observations
were large peaks of malicious events throughout our mea-
surement period. These hit all vantage points but particularly
targeted the US, giving the scans a geographical focus. This
trend continued throughout 2022, in which we saw scanning
waves during March, August and September. A large share of
this traffic could be attributed to a single scanning entity.

Our analysis revealed common characteristics among scan-
ners, such as the path used in LDAP scans. While both
Exploit and Base64-encoded commands started out as
popular paths, the latter dominated throughout 2022. It can
be linked to an open-source project that makes it easy to set
up an attack infrastructure.

From scanning, we could not infer the success rate of at-
tackers, but observing scanning behavior can be an expressive
indicator for the liveliness of the scene. The press reported on
a few hacks that abused the Log4Shell vulnerability [65]–[67].

Log4Shell has been around for several years now, its long-
term effects yet remain unclear. Many applications quickly saw
patches, but rollout will eventually slow down. In contrast to
the persistent Mirai, which is a family of Trojans, Log4Shell
is bound to a specific vulnerability. Mirai and its descendants
can incorporate new exploits into their toolkits and continue
to spread. In early 2022 some analysts already reported about
Mirai using Log4Shell to infect systems [68]. Attackers will
likely continue to exploit Log4Shell as long as (unpatched)
victims persist. However, as of December 7, 2023, the Infose-
curity Magazine reported that only 125,000 servers still hosted
software potentially vulnerable to Log4Shell [69].

Our measurement method Spoki [34], the reactive telescope,
has enabled a continuous tracing of the malicious activities
by following the scans of the various actors. In future work,
we expect to quickly detect and monitor emerging attack
campaigns that rely on explorative scanning for victims. Part
of this future work on Internet-wide security monitoring will
be the early discovery of malware from zero-day exploits.
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and M. Wählisch, “On the Interplay between TLS Certificates and
QUIC Performance,” in Proc. of 18th International Conference on
emerging Networking EXperiments and Technologies (CoNEXT). New
York, NY, USA: ACM, 2022, pp. 204–213. [Online]. Available:
https://dl.acm.org/doi/10.1145/3555050.3569123

[8] E. Osterweil, P. F. Tehrani, T. C. Schmidt, and M. Wählisch,
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