

# Anomaly Detection in Real-Time Networks Using Asynchronous Traffic Shaping

2025 IEEE 102nd Vehicular Technology Conference (VTC2025-Fall) October 19 – 22, 2025, Chengdu, China

Philipp Meyer<sup>1</sup>, Teresa Lübeck<sup>1</sup>, Timo Salomon<sup>1,2</sup>, Franz Korf<sup>1</sup>, and Thomas C. Schmidt<sup>1</sup>

<sup>1</sup>Hamburg University of Applied Sciences, Germany

<sup>2</sup> Dresden University of Technology, Germany

Contact: philipp.meyer@haw-hamburg.de



#### Outline

- I. Introduction
- II. Detecting Anomalies with Asynchronous Traffic Shaping
- III. Benchmarking Detection Performance
- IV. Conclusion & Outlook





#### Real-Time Networks

In-vehicle communication includes safety-critical functions

- Reliability and predictability is essential
- Traditional Ethernet cannot meet these requirements
- Time-Sensitive Networking (TSN) adds needed technologies





#### The Case for Anomaly Detection

- In-car networks are vulnerable to misbehaving communication
- E.g., an unexpected latency spike could delay brake signals
- Anomalies can be caused by:
  - Misconfigurations
  - Defects
  - Cyber-attacks





#### The Case for Anomaly Detection

- In-car networks are vulnerable to misbehaving communication
- E.g., an unexpected latency spike could delay brake signals
- Anomalies can be caused by:
  - Misconfigurations
  - Defects
  - Cyber-attacks

> Detection of anomalies enables countermeasures





#### Effects of False Detections

- Anomaly detection is prone to false positives (FPs)
- 99.9991% precision with ~1ms cycles result in 1 FP/8h
- False positives trigger unnecessary countermeasures
- This disruption frequency is unacceptable for drivers





#### Effects of False Detections

- Anomaly detection is prone to false positives (FPs)
- 99.9991% precision with ~1ms cycles result in 1 FP/8h
- False positives trigger unnecessary countermeasures
- This disruption frequency is unacceptable for drivers
- >Anomaly detection must maximize precision





#### Using TSN for Anomaly Detection

Previous work used Per-Stream Filtering and Policing (PSFP)

Detection of misbehavior without false positives is possible

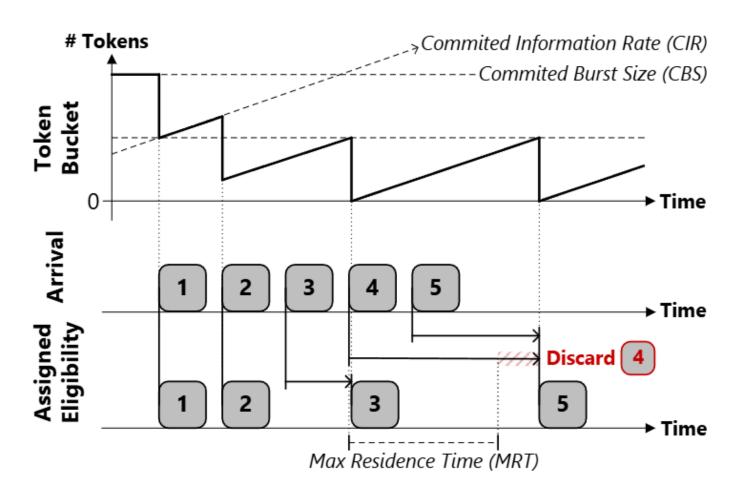
Asynchronous Traffic Shaping may improve detection

- Configuration is already essential for critical driving functions
- Can be independently used for anomaly detection





П.


# Detecting Anomalies with Asynchronous Traffic Shaping





# Asynchronous Traffic Shaping (ATS)

- Token-bucket-based per-stream shaping
- Scheduler assigns frames an eligibility time
- Egress queues sort frames by eligibility time
- MRT limits the maximum eligibility time delta





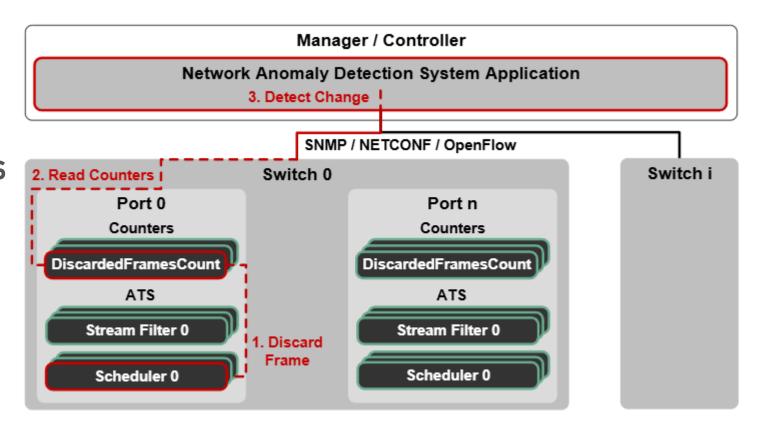


# Asynchronous Traffic Shaping (ATS)

#### ATS schedulers are organized in groups:

- One group per incoming port and priority
- Keeps order between streams already shaped at previous hop
- Enforced by: eligibility time >= group eligibility time

#### ATS frame size is limited by the CBS:


Maximum data unit size must be filtered before scheduling





# Network Anomaly Detection System (NADS)

- NADS builds on strict ATS configurations
- Central instance collects ATS statistics
- Application analyzes statistics for deviations







III.

# Benchmarking Detection Performance





# Benchmarking Environment

Optional Anomaly Infusion ATS Scheduler under Observation

| ATS Scheduler under Observation | 100Mbit/s | 100Mbit/s | Sink Host

- OMNeT++ based simulations
- Each TSN ingress operates independently
- > Represents an arbitrary hop in any network



#### Benchmarking Environment

Optional Anomaly Infusion ATS Scheduler under Observation

Switch

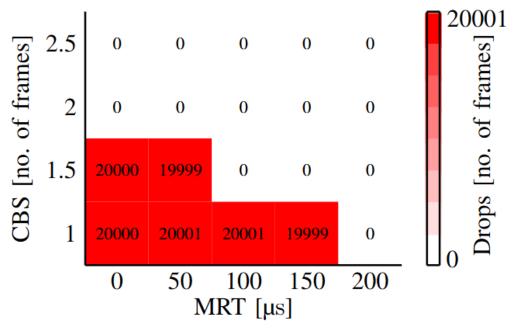
100Mbit/s

Source Host

- OMNeT++ based simulations
- Each TSN ingress operates independently
- > Represents an arbitrary hop in any network

| Priority | Traffic                   | Single ATS stream               | Concurrent ATS streams              |
|----------|---------------------------|---------------------------------|-------------------------------------|
| 7        | gPTP                      | Sync int                        | erval 0.125s                        |
| 6        | Synchronous timed traffic | Frame size 152                  | 26B, interval 500us                 |
| 5        | Asynchronous data stream  | Frame size 276B, interval 125us | 2 x Frame size 276B, interval 250us |
| 4        | Cyclic control signal     | Frame size 11                   | .0B, interval 500us                 |
| 0        | Best effort traffic       | Frame size 64B – 152            | 6B, interval 125us – 500us          |

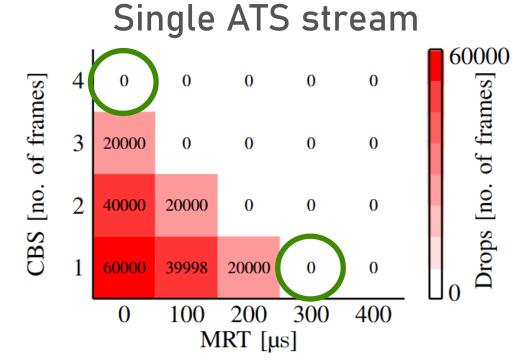



100Mbit/s

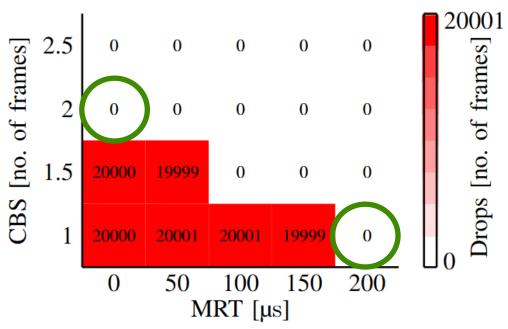
Sink Host

#### **ATS Configuration**




#### Concurrent ATS streams

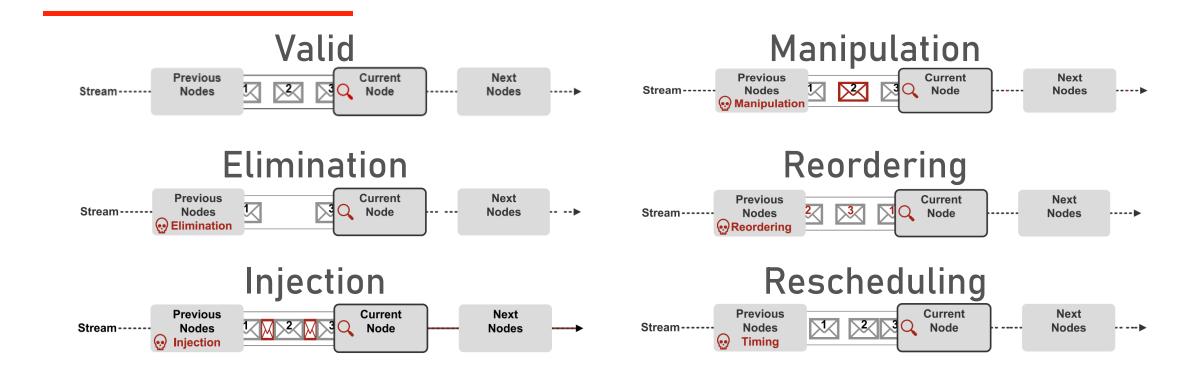







#### **ATS Configuration**




#### Concurrent ATS streams

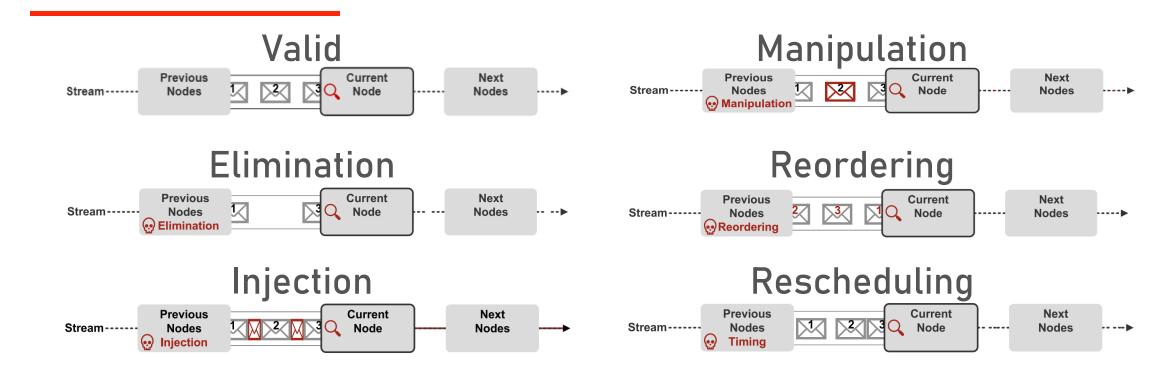


- > MRT and CBS can be weighted against each other
- > There are zero false positives in any valid scenario



#### Fundamental Link-Layer Anomalies




Anomaly Detection in Real-Time Networks

Using Asynchronous Traffic Shaping





#### Fundamental Link-Layer Anomalies



> Complex misbehavior falls into at least one of these classes

Anomaly Detection in Real-Time Networks

Using Asynchronous Traffic Shaping



| Lavar       | Traffic pattern                  | F  | limina | tion | ]    | <b>Injectio</b> | n    | Ma   | nipula | tion | R    | eorderi | ng   | Re   | schedu | ling |
|-------------|----------------------------------|----|--------|------|------|-----------------|------|------|--------|------|------|---------|------|------|--------|------|
| Layer<br>   | Traine pattern                   | TP | FN     | R    | TP   | FN              | R    | TP   | FN     | R    | TP   | FN      | R    | TP   | FN     | R    |
| _           | Credit-based stream (CBM)        | 0  | 8918   | 0.00 | 0    | 9412            | 0.00 | 0    | 8880   | 0.00 | 0    | 8875    | 0.00 | 0    | 8882   | 0.00 |
| Application | Credit-based stream (Tokens)     | 0  | 8003   | 0.00 | 2238 | 7173            | 0.24 | 1814 | 6183   | 0.23 | 30   | 7973    | 0.00 | 12   | 7985   | 0.00 |
| lica        | Credit-based stream (Tokens+SDU) | 0  | 8003   | 0.00 | 5717 | 3694            | 0.61 | 4603 | 3394   | 0.58 | 30   | 7973    | 0.00 | 12   | 7985   | 0.00 |
| dd√         | ATS stream (MRT=0, CBS=4)        | 26 | 7937   | 0.00 | 8571 | 842             | 0.91 | 7226 | 774    | 0.90 | 3448 | 4515    | 0.43 | 1907 | 6093   | 0.24 |
| V           | ATS stream (MRT=300, CBS=1)      | 22 | 7986   | 0.00 | 9180 | 228             | 0.98 | 7266 | 741    | 0.91 | 3420 | 4588    | 0.43 | 1977 | 6030   | 0.25 |
|             | Credit-based stream (CBM)        | 0  | 8367   | 0.00 | 8931 | 483             | 0.95 | 5862 | 2513   | 0.70 | 2    | 8389    | 0.00 | 1    | 8378   | 0.00 |
| <b>.</b>    | Credit-based stream (Tokens)     | 0  | 8131   | 0.00 | 6255 | 3156            | 0.66 | 2532 | 5718   | 0.31 | 6    | 8155    | 0.00 | 21   | 8194   | 0.00 |
| Link        | Credit-based stream (Tokens+SDU) | 0  | 8131   | 0.00 | 8074 | 1337            | 0.86 | 7034 | 1216   | 0.85 | 6    | 8155    | 0.00 | 21   | 8194   | 0.00 |
| Ι           | ATS stream (MRT=0, CBS=4)        | 24 | 7959   | 0.00 | 8368 | 1045            | 0.89 | 7217 | 773    | 0.90 | 2037 | 5946    | 0.26 | 2376 | 5614   | 0.30 |
|             | ATS stream (MRT=300, CBS=1)      | 28 | 7980   | 0.00 | 9083 | 325             | 0.97 | 7270 | 725    | 0.91 | 1983 | 6025    | 0.25 | 2356 | 5639   | 0.29 |





| Lover       | Traffic pattern                  | F  | Climina | tion | ]    | Injectio | n    | Ma   | nipula | tion | R    | eorderi | ng   | Re   | schedu | <del></del><br>ling |
|-------------|----------------------------------|----|---------|------|------|----------|------|------|--------|------|------|---------|------|------|--------|---------------------|
| Layer       | Traine pattern                   | TP | FN      | R    | TP   | FN       | R    | TP   | FN     | R    | TP   | FN      | R    | TP   | FN     | R                   |
| _           | Credit-based stream (CBM)        | 0  | 8918    | 0.00 | 0    | 9412     | 0.00 | 0    | 8880   | 0.00 | 0    | 8875    | 0.00 | 0    | 8882   | 0.00                |
| Application | Credit-based stream (Tokens)     | 0  | 8003    | 0.00 | 2238 | 7173     | 0.24 | 1814 | 6183   | 0.23 | 30   | 7973    | 0.00 | 12   | 7985   | 0.00                |
| lica        | Credit-based stream (Tokens+SDU) | 0  | 8003    | 0.00 | 5717 | 3694     | 0.61 | 4603 | 3394   | 0.58 | 30   | 7973    | 0.00 | 12   | 7985   | 0.00                |
| ďď          | ATS stream (MRT=0, CBS=4)        | 26 | 7937    | 0.00 | 8571 | 842      | 0.91 | 7226 | 774    | 0.90 | 3448 | 4515    | 0.43 | 1907 | 6093   | 0.24                |
| A           | ATS stream (MRT=300, CBS=1)      | 22 | 7986    | 0.00 | 9180 | 228      | 0.98 | 7266 | 741    | 0.91 | 3420 | 4588    | 0.43 | 1977 | 6030   | 0.25                |
|             | Credit-based stream (CBM)        | 0  | 8367    | 0.00 | 8931 | 483      | 0.95 | 5862 | 2513   | 0.70 | 2    | 8389    | 0.00 | 1    | 8378   | 0.00                |
|             | Credit-based stream (Tokens)     | 0  | 8131    | 0.00 | 6255 | 3156     | 0.66 | 2532 | 5718   | 0.31 | 6    | 8155    | 0.00 | 21   | 8194   | 0.00                |
| Jink        | Credit-based stream (Tokens+SDU) | 0  | 8131    | 0.00 | 8074 | 1337     | 0.86 | 7034 | 1216   | 0.85 | 6    | 8155    | 0.00 | 21   | 8194   | 0.00                |
|             | ATS stream (MRT=0, CBS=4)        | 24 | 7959    | 0.00 | 8368 | 1045     | 0.89 | 7217 | 773    | 0.90 | 2037 | 5946    | 0.26 | 2376 | 5614   | 0.30                |
|             | ATS stream (MRT=300, CBS=1)      | 28 | 7980    | 0.00 | 9083 | 325      | 0.97 | 7270 | 725    | 0.91 | 1983 | 6025    | 0.25 | 2356 | 5639   | 0.29                |





| Lover       | Traffic pattern                  | F  | Elimina | tion | ]    | Injectio | n    | Ma   | nipula | tion | R    | eorderi | ng   | Re   | schedu | <del></del><br>ling |
|-------------|----------------------------------|----|---------|------|------|----------|------|------|--------|------|------|---------|------|------|--------|---------------------|
| Layer<br>   | Trainc pattern                   | TP | FN      | R    | TP   | FN       | R    | TP   | FN     | R    | TP   | FN      | R    | TP   | FN     | R                   |
| _           | Credit-based stream (CBM)        | 0  | 8918    | 0.00 | 0    | 9412     | 0.00 | 0    | 8880   | 0.00 | 0    | 8875    | 0.00 | 0    | 8882   | 0.00                |
| Application | Credit-based stream (Tokens)     | 0  | 8003    | 0.00 | 2238 | 7173     | 0.24 | 1814 | 6183   | 0.23 | 30   | 7973    | 0.00 | 12   | 7985   | 0.00                |
| lica        | Credit-based stream (Tokens+SDU) | 0  | 8003    | 0.00 | 5717 | 3694     | 0.61 | 4603 | 3394   | 0.58 | 30   | 7973    | 0.00 | 12   | 7985   | 0.00                |
| dd√         | ATS stream (MRT=0, CBS=4)        | 26 | 7937    | 0.00 | 8571 | 842      | 0.91 | 7226 | 774    | 0.90 | 3448 | 4515    | 0.43 | 1907 | 6093   | 0.24                |
| •           | ATS stream (MRT=300, CBS=1)      | 22 | 7986    | 0.00 | 9180 | 228      | 0.98 | 7266 | 741    | 0.91 | 3420 | 4588    | 0.43 | 1977 | 6030   | 0.25                |
|             | Credit-based stream (CBM)        | 0  | 8367    | 0.00 | 8931 | 483      | 0.95 | 5862 | 2513   | 0.70 | 2    | 8389    | 0.00 | 1    | 8378   | 0.00                |
| 4           | Credit-based stream (Tokens)     | 0  | 8131    | 0.00 | 6255 | 3156     | 0.66 | 2532 | 5718   | 0.31 | 6    | 8155    | 0.00 | 21   | 8194   | 0.00                |
| Link        | Credit-based stream (Tokens+SDU) | 0  | 8131    | 0.00 | 8074 | 1337     | 0.86 | 7034 | 1216   | 0.85 | 6    | 8155    | 0.00 | 21   | 8194   | 0.00                |
| I           | ATS stream (MRT=0, CBS=4)        | 24 | 7959    | 0.00 | 8368 | 1045     | 0.89 | 7217 | 773    | 0.90 | 2037 | 5946    | 0.26 | 2376 | 5614   | 0.30                |
|             | ATS stream (MRT=300, CBS=1)      | 28 | 7980    | 0.00 | 9083 | 325      | 0.97 | 7270 | 725    | 0.91 | 1983 | 6025    | 0.25 | 2356 | 5639   | 0.29                |





| Lover       | Traffic pattern                  | F  | Climina | tion | ]    | njectio | n    | Ma   | nipula | tion | R    | eorderi | ng   | Re   | schedu | ———<br>ling |
|-------------|----------------------------------|----|---------|------|------|---------|------|------|--------|------|------|---------|------|------|--------|-------------|
| Layer<br>   | Traine pattern                   | TP | FN      | R    | TP   | FN      | R    | TP   | FN     | R    | TP   | FN      | R    | TP   | FN     | R           |
| _           | Credit-based stream (CBM)        | 0  | 8918    | 0.00 | 0    | 9412    | 0.00 | 0    | 8880   | 0.00 | 0    | 8875    | 0.00 | 0    | 8882   | 0.00        |
| Application | Credit-based stream (Tokens)     | 0  | 8003    | 0.00 | 2238 | 7173    | 0.24 | 1814 | 6183   | 0.23 | 30   | 7973    | 0.00 | 12   | 7985   | 0.00        |
| lica        | Credit-based stream (Tokens+SDU) | 0  | 8003    | 0.00 | 5717 | 3694    | 0.61 | 4603 | 3394   | 0.58 | 30   | 7973    | 0.00 | 12   | 7985   | 0.00        |
| √pp         | ATS stream (MRT=0, CBS=4)        | 26 | 7937    | 0.00 | 8571 | 842     | 0.91 | 7226 | 774    | 0.90 | 3448 | 4515    | 0.43 | 1907 | 6093   | 0.24        |
| <b>V</b>    | ATS stream (MRT=300, CBS=1)      | 22 | 7986    | 0.00 | 9180 | 228     | 0.98 | 7266 | 741    | 0.91 | 3420 | 4588    | 0.43 | 1977 | 6030   | 0.25        |
|             | Credit-based stream (CBM)        | 0  | 8367    | 0.00 | 8931 | 483     | 0.95 | 5862 | 2513   | 0.70 | 2    | 8389    | 0.00 | 1    | 8378   | 0.00        |
| <b>.</b>    | Credit-based stream (Tokens)     | 0  | 8131    | 0.00 | 6255 | 3156    | 0.66 | 2532 | 5718   | 0.31 | 6    | 8155    | 0.00 | 21   | 8194   | 0.00        |
| Link        | Credit-based stream (Tokens+SDU) | 0  | 8131    | 0.00 | 8074 | 1337    | 0.86 | 7034 | 1216   | 0.85 | 6    | 8155    | 0.00 | 21   | 8194   | 0.00        |
|             | ATS stream (MRT=0, CBS=4)        | 24 | 7959    | 0.00 | 8368 | 1045    | 0.89 | 7217 | 773    | 0.90 | 2037 | 5946    | 0.26 | 2376 | 5614   | 0.30        |
|             | ATS stream (MRT=300, CBS=1)      | 28 | 7980    | 0.00 | 9083 | 325     | 0.97 | 7270 | 725    | 0.91 | 1983 | 6025    | 0.25 | 2356 | 5639   | 0.29        |





| Lover       | Traffic pattern                  | F  | Climina | tion | ]    | njectio | n    | Ma   | nipula | tion | R    | eorderi | ng   | Re   | schedu | ling |
|-------------|----------------------------------|----|---------|------|------|---------|------|------|--------|------|------|---------|------|------|--------|------|
| Layer       | Traine pattern                   | TP | FN      | R    | TP   | FN      | R    | TP   | FN     | R    | TP   | FN      | R    | TP   | FN     | R    |
| _           | Credit-based stream (CBM)        | 0  | 8918    | 0.00 | 0    | 9412    | 0.00 | 0    | 8880   | 0.00 | 0    | 8875    | 0.00 | 0    | 8882   | 0.00 |
| Application | Credit-based stream (Tokens)     | 0  | 8003    | 0.00 | 2238 | 7173    | 0.24 | 1814 | 6183   | 0.23 | 30   | 7973    | 0.00 | 12   | 7985   | 0.00 |
| lica        | Credit-based stream (Tokens+SDU) | 0  | 8003    | 0.00 | 5717 | 3694    | 0.61 | 4603 | 3394   | 0.58 | 30   | 7973    | 0.00 | 12   | 7985   | 0.00 |
| ddv         | ATS stream (MRT=0, CBS=4)        | 26 | 7937    | 0.00 | 8571 | 842     | 0.91 | 7226 | 774    | 0.90 | 3448 | 4515    | 0.43 | 1907 | 6093   | 0.24 |
| A           | ATS stream (MRT=300, CBS=1)      | 22 | 7986    | 0.00 | 9180 | 228     | 0.98 | 7266 | 741    | 0.91 | 3420 | 4588    | 0.43 | 1977 | 6030   | 0.25 |
|             | Credit-based stream (CBM)        | 0  | 8367    | 0.00 | 8931 | 483     | 0.95 | 5862 | 2513   | 0.70 | 2    | 8389    | 0.00 | 1    | 8378   | 0.00 |
|             | Credit-based stream (Tokens)     | 0  | 8131    | 0.00 | 6255 | 3156    | 0.66 | 2532 | 5718   | 0.31 | 6    | 8155    | 0.00 | 21   | 8194   | 0.00 |
| Link        | Credit-based stream (Tokens+SDU) | 0  | 8131    | 0.00 | 8074 | 1337    | 0.86 | 7034 | 1216   | 0.85 | 6    | 8155    | 0.00 | 21   | 8194   | 0.00 |
| Ι           | ATS stream (MRT=0, CBS=4)        | 24 | 7959    | 0.00 | 8368 | 1045    | 0.89 | 7217 | 773    | 0.90 | 2037 | 5946    | 0.26 | 2376 | 5614   | 0.30 |
|             | ATS stream (MRT=300, CBS=1)      | 28 | 7980    | 0.00 | 9083 | 325     | 0.97 | 7270 | 725    | 0.91 | 1983 | 6025    | 0.25 | 2356 | 5639   | 0.29 |





| Lavar       | Traffic pattern                  | F  | Climina | tion | ]    | njectio | n    | Ma   | nipula | tion | R    | eorderi | ng   | Re   | schedu | ———<br>ling |
|-------------|----------------------------------|----|---------|------|------|---------|------|------|--------|------|------|---------|------|------|--------|-------------|
| Layer       | Traine pattern                   | TP | FN      | R    | TP   | FN      | R    | TP   | FN     | R    | TP   | FN      | R    | TP   | FN     | R           |
| _           | Credit-based stream (CBM)        | 0  | 8918    | 0.00 | 0    | 9412    | 0.00 | 0    | 8880   | 0.00 | 0    | 8875    | 0.00 | 0    | 8882   | 0.00        |
| tion        | Credit-based stream (Tokens)     | 0  | 8003    | 0.00 | 2238 | 7173    | 0.24 | 1814 | 6183   | 0.23 | 30   | 7973    | 0.00 | 12   | 7985   | 0.00        |
| Application | Credit-based stream (Tokens+SDU) | 0  | 8003    | 0.00 | 5717 | 3694    | 0.61 | 4603 | 3394   | 0.58 | 30   | 7973    | 0.00 | 12   | 7985   | 0.00        |
| ddv         | ATS stream (MRT=0, CBS=4)        | 26 | 7937    | 0.00 | 8571 | 842     | 0.91 | 7226 | 774    | 0.90 | 3448 | 4515    | 0.43 | 1907 | 6093   | 0.24        |
| V           | ATS stream (MRT=300, CBS=1)      | 22 | 7986    | 0.00 | 9180 | 228     | 0.98 | 7266 | 741    | 0.91 | 3420 | 4588    | 0.43 | 1977 | 6030   | 0.25        |
|             | Credit-based stream (CBM)        | 0  | 8367    | 0.00 | 8931 | 483     | 0.95 | 5862 | 2513   | 0.70 | 2    | 8389    | 0.00 | 1    | 8378   | 0.00        |
| 4           | Credit-based stream (Tokens)     | 0  | 8131    | 0.00 | 6255 | 3156    | 0.66 | 2532 | 5718   | 0.31 | 6    | 8155    | 0.00 | 21   | 8194   | 0.00        |
| Link        | Credit-based stream (Tokens+SDU) | 0  | 8131    | 0.00 | 8074 | 1337    | 0.86 | 7034 | 1216   | 0.85 | 6    | 8155    | 0.00 | 21   | 8194   | 0.00        |
| Ι           | ATS stream (MRT=0, CBS=4)        | 24 | 7959    | 0.00 | 8368 | 1045    | 0.89 | 7217 | 773    | 0.90 | 2037 | 5946    | 0.26 | 2376 | 5614   | 0.30        |
|             | ATS stream (MRT=300, CBS=1)      | 28 | 7980    | 0.00 | 9083 | 325     | 0.97 | 7270 | 725    | 0.91 | 1983 | 6025    | 0.25 | 2356 | 5639   | 0.29        |





| Lavor       | Traffic pattern                  | F  | limina | tion | ]    | <b>Injectio</b> | n    | Ma   | nipula | tion | R    | eorderi | ing  | Re   | schedu | ling |
|-------------|----------------------------------|----|--------|------|------|-----------------|------|------|--------|------|------|---------|------|------|--------|------|
| Layer       | Traine pattern                   | TP | FN     | R    | TP   | FN              | R    | TP   | FN     | R    | TP   | FN      | R    | TP   | FN     | R    |
| _           | Credit-based stream (CBM)        | 0  | 8918   | 0.00 | 0    | 9412            | 0.00 | 0    | 8880   | 0.00 | 0    | 8875    | 0.00 | 0    | 8882   | 0.00 |
| Application | Credit-based stream (Tokens)     | 0  | 8003   | 0.00 | 2238 | 7173            | 0.24 | 1814 | 6183   | 0.23 | 30   | 7973    | 0.00 | 12   | 7985   | 0.00 |
| lica        | Credit-based stream (Tokens+SDU) | 0  | 8003   | 0.00 | 5717 | 3694            | 0.61 | 4603 | 3394   | 0.58 | 30   | 7973    | 0.00 | 12   | 7985   | 0.00 |
| √pp         | ATS stream (MRT=0, CBS=4)        | 26 | 7937   | 0.00 | 8571 | 842             | 0.91 | 7226 | 774    | 0.90 | 3448 | 4515    | 0.43 | 1907 | 6093   | 0.24 |
| N.          | ATS stream (MRT=300, CBS=1)      | 22 | 7986   | 0.00 | 9180 | 228             | 0.98 | 7266 | 741    | 0.91 | 3420 | 4588    | 0.43 | 1977 | 6030   | 0.25 |
|             | Credit-based stream (CBM)        | 0  | 8367   | 0.00 | 8931 | 483             | 0.95 | 5862 | 2513   | 0.70 | 2    | 8389    | 0.00 | 1    | 8378   | 0.00 |
| 4           | Credit-based stream (Tokens)     | 0  | 8131   | 0.00 | 6255 | 3156            | 0.66 | 2532 | 5718   | 0.31 | 6    | 8155    | 0.00 | 21   | 8194   | 0.00 |
| Link        | Credit-based stream (Tokens+SDU) | 0  | 8131   | 0.00 | 8074 | 1337            | 0.86 | 7034 | 1216   | 0.85 | 6    | 8155    | 0.00 | 21   | 8194   | 0.00 |
|             | ATS stream (MRT=0, CBS=4)        | 24 | 7959   | 0.00 | 8368 | 1045            | 0.89 | 7217 | 773    | 0.90 | 2037 | 5946    | 0.26 | 2376 | 5614   | 0.30 |
|             | ATS stream (MRT=300, CBS=1)      | 28 | 7980   | 0.00 | 9083 | 325             | 0.97 | 7270 | 725    | 0.91 | 1983 | 6025    | 0.25 | 2356 | 5639   | 0.29 |





| Lavan       | Traffic pattern                  | F  | Climina | tion | ]    | Injectio | n    | Ma   | nipula | tion | R    | eorderi | ing  | Re   | schedu | ———<br>ling |
|-------------|----------------------------------|----|---------|------|------|----------|------|------|--------|------|------|---------|------|------|--------|-------------|
| Layer       | Traine pattern                   | TP | FN      | R    | TP   | FN       | R    | TP   | FN     | R    | TP   | FN      | R    | TP   | FN     | R           |
| _           | Credit-based stream (CBM)        | 0  | 8918    | 0.00 | 0    | 9412     | 0.00 | 0    | 8880   | 0.00 | 0    | 8875    | 0.00 | 0    | 8882   | 0.00        |
| tior        | Credit-based stream (Tokens)     | 0  | 8003    | 0.00 | 2238 | 7173     | 0.24 | 1814 | 6183   | 0.23 | 30   | 7973    | 0.00 | 12   | 7985   | 0.00        |
| Application | Credit-based stream (Tokens+SDU) | 0  | 8003    | 0.00 | 5717 | 3694     | 0.61 | 4603 | 3394   | 0.58 | 30   | 7973    | 0.00 | 12   | 7985   | 0.00        |
| ďd√         | ATS stream (MRT=0, CBS=4)        | 26 | 7937    | 0.00 | 8571 | 842      | 0.91 | 7226 | 774    | 0.90 | 3448 | 4515    | 0.43 | 1907 | 6093   | 0.24        |
| V           | ATS stream (MRT=300, CBS=1)      | 22 | 7986    | 0.00 | 9180 | 228      | 0.98 | 7266 | 741    | 0.91 | 3420 | 4588    | 0.43 | 1977 | 6030   | 0.25        |
|             | Credit-based stream (CBM)        | 0  | 8367    | 0.00 | 8931 | 483      | 0.95 | 5862 | 2513   | 0.70 | 2    | 8389    | 0.00 | 1    | 8378   | 0.00        |
| <b>₩</b>    | Credit-based stream (Tokens)     | 0  | 8131    | 0.00 | 6255 | 3156     | 0.66 | 2532 | 5718   | 0.31 | 6    | 8155    | 0.00 | 21   | 8194   | 0.00        |
| Link        | Credit-based stream (Tokens+SDU) | 0  | 8131    | 0.00 | 8074 | 1337     | 0.86 | 7034 | 1216   | 0.85 | 6    | 8155    | 0.00 | 21   | 8194   | 0.00        |
| Ι           | ATS stream (MRT=0, CBS=4)        | 24 | 7959    | 0.00 | 8368 | 1045     | 0.89 | 7217 | 773    | 0.90 | 2037 | 5946    | 0.26 | 2376 | 5614   | 0.30        |
|             | ATS stream (MRT=300, CBS=1)      | 28 | 7980    | 0.00 | 9083 | 325      | 0.97 | 7270 | 725    | 0.91 | 1983 | 6025    | 0.25 | 2356 | 5639   | 0.29        |





| Lavar       | Traffic pattern                  | F  | Elimina | tion | ]    | Injectio | n    | Ma   | nipula | tion | R    | eorderi | ng   | Re   | schedu | ——<br>ling |
|-------------|----------------------------------|----|---------|------|------|----------|------|------|--------|------|------|---------|------|------|--------|------------|
| Layer       | Traine pattern                   | TP | FN      | R    | TP   | FN       | R    | TP   | FN     | R    | TP   | FN      | R    | TP   | FN     | R          |
| _           | Credit-based stream (CBM)        | 0  | 8918    | 0.00 | 0    | 9412     | 0.00 | 0    | 8880   | 0.00 | 0    | 8875    | 0.00 | 0    | 8882   | 0.00       |
| Application | Credit-based stream (Tokens)     | 0  | 8003    | 0.00 | 2238 | 7173     | 0.24 | 1814 | 6183   | 0.23 | 30   | 7973    | 0.00 | 12   | 7985   | 0.00       |
| lica        | Credit-based stream (Tokens+SDU) | 0  | 8003    | 0.00 | 5717 | 3694     | 0.61 | 4603 | 3394   | 0.58 | 30   | 7973    | 0.00 | 12   | 7985   | 0.00       |
| ddv         | ATS stream (MRT=0, CBS=4)        | 26 | 7937    | 0.00 | 8571 | 842      | 0.91 | 7226 | 774    | 0.90 | 3448 | 4515    | 0.43 | 1907 | 6093   | 0.24       |
| A           | ATS stream (MRT=300, CBS=1)      | 22 | 7986    | 0.00 | 9180 | 228      | 0.98 | 7266 | 741    | 0.91 | 3420 | 4588    | 0.43 | 1977 | 6030   | 0.25       |
|             | Credit-based stream (CBM)        | 0  | 8367    | 0.00 | 8931 | 483      | 0.95 | 5862 | 2513   | 0.70 | 2    | 8389    | 0.00 | 1    | 8378   | 0.00       |
| <b>₩</b>    | Credit-based stream (Tokens)     | 0  | 8131    | 0.00 | 6255 | 3156     | 0.66 | 2532 | 5718   | 0.31 | 6    | 8155    | 0.00 | 21   | 8194   | 0.00       |
| Link        | Credit-based stream (Tokens+SDU) | 0  | 8131    | 0.00 | 8074 | 1337     | 0.86 | 7034 | 1216   | 0.85 | 6    | 8155    | 0.00 | 21   | 8194   | 0.00       |
| 1           | ATS stream (MRT=0, CBS=4)        | 24 | 7959    | 0.00 | 8368 | 1045     | 0.89 | 7217 | 773    | 0.90 | 2037 | 5946    | 0.26 | 2376 | 5614   | 0.30       |
|             | ATS stream (MRT=300, CBS=1)      | 28 | 7980    | 0.00 | 9083 | 325      | 0.97 | 7270 | 725    | 0.91 | 1983 | 6025    | 0.25 | 2356 | 5639   | 0.29       |





| Lavar       | Traffic pattern                  | F  | Elimina | tion | ]    | Injectio | n    | Ma   | nipula | tion | R    | eorderi | ng   | Re   | schedu | <del></del><br>ling |
|-------------|----------------------------------|----|---------|------|------|----------|------|------|--------|------|------|---------|------|------|--------|---------------------|
| Layer       | Traine pattern                   | TP | FN      | R    | TP   | FN       | R    | TP   | FN     | R    | TP   | FN      | R    | TP   | FN     | R                   |
| _           | Credit-based stream (CBM)        | 0  | 8918    | 0.00 | 0    | 9412     | 0.00 | 0    | 8880   | 0.00 | 0    | 8875    | 0.00 | 0    | 8882   | 0.00                |
| Application | Credit-based stream (Tokens)     | 0  | 8003    | 0.00 | 2238 | 7173     | 0.24 | 1814 | 6183   | 0.23 | 30   | 7973    | 0.00 | 12   | 7985   | 0.00                |
| lica        | Credit-based stream (Tokens+SDU) | 0  | 8003    | 0.00 | 5717 | 3694     | 0.61 | 4603 | 3394   | 0.58 | 30   | 7973    | 0.00 | 12   | 7985   | 0.00                |
| ďd√         | ATS stream (MRT=0, CBS=4)        | 26 | 7937    | 0.00 | 8571 | 842      | 0.91 | 7226 | 774    | 0.90 | 3448 | 4515    | 0.43 | 1907 | 6093   | 0.24                |
| V           | ATS stream (MRT=300, CBS=1)      | 22 | 7986    | 0.00 | 9180 | 228      | 0.98 | 7266 | 741    | 0.91 | 3420 | 4588    | 0.43 | 1977 | 6030   | 0.25                |
|             | Credit-based stream (CBM)        | 0  | 8367    | 0.00 | 8931 | 483      | 0.95 | 5862 | 2513   | 0.70 | 2    | 8389    | 0.00 | 1    | 8378   | 0.00                |
|             | Credit-based stream (Tokens)     | 0  | 8131    | 0.00 | 6255 | 3156     | 0.66 | 2532 | 5718   | 0.31 | 6    | 8155    | 0.00 | 21   | 8194   | 0.00                |
| Link        | Credit-based stream (Tokens+SDU) | 0  | 8131    | 0.00 | 8074 | 1337     | 0.86 | 7034 | 1216   | 0.85 | 6    | 8155    | 0.00 | 21   | 8194   | 0.00                |
| I           | ATS stream (MRT=0, CBS=4)        | 24 | 7959    | 0.00 | 8368 | 1045     | 0.89 | 7217 | 773    | 0.90 | 2037 | 5946    | 0.26 | 2376 | 5614   | 0.30                |
|             | ATS stream (MRT=300, CBS=1)      | 28 | 7980    | 0.00 | 9083 | 325      | 0.97 | 7270 | 725    | 0.91 | 1983 | 6025    | 0.25 | 2356 | 5639   | 0.29                |





| Lover       | Traffic pattern                  | F  | limina | tion | ]    | njectio | n    | Ma   | nipula | tion | R    | eorderi | ng   | Re   | schedu | <del></del><br>ling |
|-------------|----------------------------------|----|--------|------|------|---------|------|------|--------|------|------|---------|------|------|--------|---------------------|
| Layer<br>   | Traine pattern                   | TP | FN     | R    | TP   | FN      | R    | TP   | FN     | R    | TP   | FN      | R    | TP   | FN     | R                   |
| _           | Credit-based stream (CBM)        | 0  | 8918   | 0.00 | 0    | 9412    | 0.00 | 0    | 8880   | 0.00 | 0    | 8875    | 0.00 | 0    | 8882   | 0.00                |
| Application | Credit-based stream (Tokens)     | 0  | 8003   | 0.00 | 2238 | 7173    | 0.24 | 1814 | 6183   | 0.23 | 30   | 7973    | 0.00 | 12   | 7985   | 0.00                |
| lica        | Credit-based stream (Tokens+SDU) | 0  | 8003   | 0.00 | 5717 | 3694    | 0.61 | 4603 | 3394   | 0.58 | 30   | 7973    | 0.00 | 12   | 7985   | 0.00                |
| \dd\        | ATS stream (MRT=0, CBS=4)        | 26 | 7937   | 0.00 | 8571 | 842     | 0.91 | 7226 | 774    | 0.90 | 3448 | 4515    | 0.43 | 1907 | 6093   | 0.24                |
| 4           | ATS stream (MRT=300, CBS=1)      | 22 | 7986   | 0.00 | 9180 | 228     | 0.98 | 7266 | 741    | 0.91 | 3420 | 4588    | 0.43 | 1977 | 6030   | 0.25                |
|             | Credit-based stream (CBM)        | 0  | 8367   | 0.00 | 8931 | 483     | 0.95 | 5862 | 2513   | 0.70 | 2    | 8389    | 0.00 | 1    | 8378   | 0.00                |
| <b>.</b>    | Credit-based stream (Tokens)     | 0  | 8131   | 0.00 | 6255 | 3156    | 0.66 | 2532 | 5718   | 0.31 | 6    | 8155    | 0.00 | 21   | 8194   | 0.00                |
| Link        | Credit-based stream (Tokens+SDU) | 0  | 8131   | 0.00 | 8074 | 1337    | 0.86 | 7034 | 1216   | 0.85 | 6    | 8155    | 0.00 | 21   | 8194   | 0.00                |
| 1           | ATS stream (MRT=0, CBS=4)        | 24 | 7959   | 0.00 | 8368 | 1045    | 0.89 | 7217 | 773    | 0.90 | 2037 | 5946    | 0.26 | 2376 | 5614   | 0.30                |
|             | ATS stream (MRT=300, CBS=1)      | 28 | 7980   | 0.00 | 9083 | 325     | 0.97 | 7270 | 725    | 0.91 | 1983 | 6025    | 0.25 | 2356 | 5639   | 0.29                |





| Lavon       | Traffic pattern                  |    | Elimination |      |      | Injection |      |      | Manipulation |      |      | Reordering |      |      | Rescheduling |      |  |
|-------------|----------------------------------|----|-------------|------|------|-----------|------|------|--------------|------|------|------------|------|------|--------------|------|--|
| Layer<br>   | Traine pattern                   | TP | FN          | R    | TP   | FN        | R    | TP   | FN           | R    | TP   | FN         | R    | TP   | FN           | R    |  |
| _           | Credit-based stream (CBM)        | 0  | 8918        | 0.00 | 0    | 9412      | 0.00 | 0    | 8880         | 0.00 | 0    | 8875       | 0.00 | 0    | 8882         | 0.00 |  |
| tior        | Credit-based stream (Tokens)     | 0  | 8003        | 0.00 | 2238 | 7173      | 0.24 | 1814 | 6183         | 0.23 | 30   | 7973       | 0.00 | 12   | 7985         | 0.00 |  |
| Application | Credit-based stream (Tokens+SDU) | 0  | 8003        | 0.00 | 5717 | 3694      | 0.61 | 4603 | 3394         | 0.58 | 30   | 7973       | 0.00 | 12   | 7985         | 0.00 |  |
|             | ATS stream (MRT=0, CBS=4)        | 26 | 7937        | 0.00 | 8571 | 842       | 0.91 | 7226 | 774          | 0.90 | 3448 | 4515       | 0.43 | 1907 | 6093         | 0.24 |  |
| A           | ATS stream (MRT=300, CBS=1)      | 22 | 7986        | 0.00 | 9180 | 228       | 0.98 | 7266 | 741          | 0.91 | 3420 | 4588       | 0.43 | 1977 | 6030         | 0.25 |  |
|             | Credit-based stream (CBM)        | 0  | 8367        | 0.00 | 8931 | 483       | 0.95 | 5862 | 2513         | 0.70 | 2    | 8389       | 0.00 | 1    | 8378         | 0.00 |  |
| <b>.</b>    | Credit-based stream (Tokens)     | 0  | 8131        | 0.00 | 6255 | 3156      | 0.66 | 2532 | 5718         | 0.31 | 6    | 8155       | 0.00 | 21   | 8194         | 0.00 |  |
| Link        | Credit-based stream (Tokens+SDU) | 0  | 8131        | 0.00 | 8074 | 1337      | 0.86 | 7034 | 1216         | 0.85 | 6    | 8155       | 0.00 | 21   | 8194         | 0.00 |  |
| Ι           | ATS stream (MRT=0, CBS=4)        | 24 | 7959        | 0.00 | 8368 | 1045      | 0.89 | 7217 | 773          | 0.90 | 2037 | 5946       | 0.26 | 2376 | 5614         | 0.30 |  |
|             | ATS stream (MRT=300, CBS=1)      | 28 | 7980        | 0.00 | 9083 | 325       | 0.97 | 7270 | 725          | 0.91 | 1983 | 6025       | 0.25 | 2356 | 5639         | 0.29 |  |





| Lover       | Traffic pattern                  |    | Elimination |      |      | Injectio | n    | Ma   | nipula | tion | Reordering |      |      | Rescheduling |      |      |
|-------------|----------------------------------|----|-------------|------|------|----------|------|------|--------|------|------------|------|------|--------------|------|------|
| Layer       | Traine pattern                   | TP | FN          | R    | TP   | FN       | R    | TP   | FN     | R    | TP         | FN   | R    | TP           | FN   | R    |
| _           | Credit-based stream (CBM)        | 0  | 8918        | 0.00 | 0    | 9412     | 0.00 | 0    | 8880   | 0.00 | 0          | 8875 | 0.00 | 0            | 8882 | 0.00 |
| Application | Credit-based stream (Tokens)     | 0  | 8003        | 0.00 | 2238 | 7173     | 0.24 | 1814 | 6183   | 0.23 | 30         | 7973 | 0.00 | 12           | 7985 | 0.00 |
| lica        | Credit-based stream (Tokens+SDU) | 0  | 8003        | 0.00 | 5717 | 3694     | 0.61 | 4603 | 3394   | 0.58 | 30         | 7973 | 0.00 | 12           | 7985 | 0.00 |
| dd          | ATS stream (MRT=0, CBS=4)        | 26 | 7937        | 0.00 | 8571 | 842      | 0.91 | 7226 | 774    | 0.90 | 3448       | 4515 | 0.43 | 1907         | 6093 | 0.24 |
| V           | ATS stream (MRT=300, CBS=1)      | 22 | 7986        | 0.00 | 9180 | 228      | 0.98 | 7266 | 741    | 0.91 | 3420       | 4588 | 0.43 | 1977         | 6030 | 0.25 |
|             | Credit-based stream (CBM)        | 0  | 8367        | 0.00 | 8931 | 483      | 0.95 | 5862 | 2513   | 0.70 | 2          | 8389 | 0.00 | 1            | 8378 | 0.00 |
| <b>.</b>    | Credit-based stream (Tokens)     | 0  | 8131        | 0.00 | 6255 | 3156     | 0.66 | 2532 | 5718   | 0.31 | 6          | 8155 | 0.00 | 21           | 8194 | 0.00 |
| Link        | Credit-based stream (Tokens+SDU) | 0  | 8131        | 0.00 | 8074 | 1337     | 0.86 | 7034 | 1216   | 0.85 | 6          | 8155 | 0.00 | 21           | 8194 | 0.00 |
|             | ATS stream (MRT=0, CBS=4)        | 24 | 7959        | 0.00 | 8368 | 1045     | 0.89 | 7217 | 773    | 0.90 | 2037       | 5946 | 0.26 | 2376         | 5614 | 0.30 |
|             | ATS stream (MRT=300, CBS=1)      | 28 | 7980        | 0.00 | 9083 | 325      | 0.97 | 7270 | 725    | 0.91 | 1983       | 6025 | 0.25 | 2356         | 5639 | 0.29 |





| Lavan       | Traffic pattern                  | Elimination |      |      | Injection |      |      | Manipulation |      |      | Reordering |      |      | Rescheduling |      |      |
|-------------|----------------------------------|-------------|------|------|-----------|------|------|--------------|------|------|------------|------|------|--------------|------|------|
| Layer       |                                  | TP          | FN   | R    | TP        | FN   | R    | TP           | FN   | R    | TP         | FN   | R    | TP           | FN   | R    |
| _           | Credit-based stream (CBM)        | 0           | 8918 | 0.00 | 0         | 9412 | 0.00 | 0            | 8880 | 0.00 | 0          | 8875 | 0.00 | 0            | 8882 | 0.00 |
| Application | Credit-based stream (Tokens)     | 0           | 8003 | 0.00 | 2238      | 7173 | 0.24 | 1814         | 6183 | 0.23 | 30         | 7973 | 0.00 | 12           | 7985 | 0.00 |
| lica        | Credit-based stream (Tokens+SDU) | 0           | 8003 | 0.00 | 5717      | 3694 | 0.61 | 4603         | 3394 | 0.58 | 30         | 7973 | 0.00 | 12           | 7985 | 0.00 |
| ddv         | ATS stream (MRT=0, CBS=4)        | 26          | 7937 | 0.00 | 8571      | 842  | 0.91 | 7226         | 774  | 0.90 | 3448       | 4515 | 0.43 | 1907         | 6093 | 0.24 |
| <b>₹</b>    | ATS stream (MRT=300, CBS=1)      | 22          | 7986 | 0.00 | 9180      | 228  | 0.98 | 7266         | 741  | 0.91 | 3420       | 4588 | 0.43 | 1977         | 6030 | 0.25 |
|             | Credit-based stream (CBM)        | 0           | 8367 | 0.00 | 8931      | 483  | 0.95 | 5862         | 2513 | 0.70 | 2          | 8389 | 0.00 | 1            | 8378 | 0.00 |
| <b>₩</b>    | Credit-based stream (Tokens)     | 0           | 8131 | 0.00 | 6255      | 3156 | 0.66 | 2532         | 5718 | 0.31 | 6          | 8155 | 0.00 | 21           | 8194 | 0.00 |
| Link        | Credit-based stream (Tokens+SDU) | 0           | 8131 | 0.00 | 8074      | 1337 | 0.86 | 7034         | 1216 | 0.85 | 6          | 8155 | 0.00 | 21           | 8194 | 0.00 |
| Ι           | ATS stream (MRT=0, CBS=4)        | 24          | 7959 | 0.00 | 8368      | 1045 | 0.89 | 7217         | 773  | 0.90 | 2037       | 5946 | 0.26 | 2376         | 5614 | 0.30 |
|             | ATS stream (MRT=300, CBS=1)      | 28          | 7980 | 0.00 | 9083      | 325  | 0.97 | 7270         | 725  | 0.91 | 1983       | 6025 | 0.25 | 2356         | 5639 | 0.29 |

- > ATS enables higher detection rates with zero false positives
- > Detection of reordering and rescheduling is possible





#### Concurrent Streams Scenarios Results

| Lover       | Traffic pattern                  | Elimination |      |      | Injection |      |      | Manipulation |      |      | Reordering |      |      | Rescheduling |      |      |
|-------------|----------------------------------|-------------|------|------|-----------|------|------|--------------|------|------|------------|------|------|--------------|------|------|
| Layer       |                                  | TP          | FN   | R    | TP        | FN   | R    | TP           | FN   | R    | TP         | FN   | R    | TP           | FN   | R    |
| u u         | Credit-based stream (Tokens)     | 0           | 6671 | 0.00 | 2203      | 7208 | 0.23 | 1329         | 5359 | 0.20 | 13         | 6658 | 0.00 | 0            | 6688 | 0.00 |
| Application | Credit-based stream (Tokens+SDU) | 0           | 6671 | 0.00 | 5672      | 3739 | 0.60 | 3394         | 3294 | 0.51 | 13         | 6658 | 0.00 | 0            | 6688 | 0.00 |
| plic        | ATS stream (MRT=0, CBS=2)        | 0           | 7990 | 0.00 | 9282      | 131  | 0.99 | 6776         | 1218 | 0.85 | 4007       | 3983 | 0.50 | 0            | 7994 | 0.00 |
| Ap          | ATS stream (MRT=200, CBS=1)      | 0           | 7985 | 0.00 | 9349      | 64   | 0.99 | 6804         | 1149 | 0.86 | 7984       | 1    | 1.00 | 4060         | 3893 | 0.51 |
|             | Credit-based stream (Tokens)     | 0           | 7050 | 0.00 | 6255      | 3156 | 0.66 | 2231         | 4940 | 0.31 | 42         | 7124 | 0.01 | 18           | 7116 | 0.00 |
| <b>×</b>    | Credit-based stream (Tokens+SDU) | 0           | 7050 | 0.00 | 8074      | 1337 | 0.86 | 6142         | 1029 | 0.86 | 42         | 7124 | 0.01 | 18           | 7116 | 0.00 |
| Link        | ATS stream (MRT=0, CBS=2)        | 0           | 8010 | 0.00 | 9245      | 168  | 0.98 | 6766         | 1228 | 0.85 | 4055       | 3955 | 0.51 | 0            | 7994 | 0.00 |
|             | ATS stream (MRT=200, CBS=1)      | 0           | 7999 | 0.00 | 9413      | 0    | 1.00 | 6840         | 1147 | 0.86 | 7999       | 0    | 1.00 | 1465         | 6522 | 0.18 |





#### Concurrent Streams Scenarios Results

| Loven       | Traffic pattern                  | Elimination |      |      | ]    | Injectio | n    | Ma   | nipula | tion | Reordering |      |      | Re   | schedu | ling |
|-------------|----------------------------------|-------------|------|------|------|----------|------|------|--------|------|------------|------|------|------|--------|------|
| Layer       |                                  | TP          | FN   | R    | TP   | FN       | R    | TP   | FN     | R    | TP         | FN   | R    | TP   | FN     | R    |
| <b>u</b>    | Credit-based stream (Tokens)     | 0           | 6671 | 0.00 | 2203 | 7208     | 0.23 | 1329 | 5359   | 0.20 | 13         | 6658 | 0.00 | 0    | 6688   | 0.00 |
| Application | Credit-based stream (Tokens+SDU) | 0           | 6671 | 0.00 | 5672 | 3739     | 0.60 | 3394 | 3294   | 0.51 | 13         | 6658 | 0.00 | 0    | 6688   | 0.00 |
| plic        | ATS stream (MRT=0, CBS=2)        | 0           | 7990 | 0.00 | 9282 | 131      | 0.99 | 6776 | 1218   | 0.85 | 4007       | 3983 | 0.50 | 0    | 7994   | 0.00 |
| Ap          | ATS stream (MRT=200, CBS=1)      | 0           | 7985 | 0.00 | 9349 | 64       | 0.99 | 6804 | 1149   | 0.86 | 7984       | 1    | 1.00 | 4060 | 3893   | 0.51 |
|             | Credit-based stream (Tokens)     | 0           | 7050 | 0.00 | 6255 | 3156     | 0.66 | 2231 | 4940   | 0.31 | 42         | 7124 | 0.01 | 18   | 7116   | 0.00 |
| ¥           | Credit-based stream (Tokens+SDU) | 0           | 7050 | 0.00 | 8074 | 1337     | 0.86 | 6142 | 1029   | 0.86 | 42         | 7124 | 0.01 | 18   | 7116   | 0.00 |
| Link        | ATS stream (MRT=0, CBS=2)        | 0           | 8010 | 0.00 | 9245 | 168      | 0.98 | 6766 | 1228   | 0.85 | 4055       | 3955 | 0.51 | 0    | 7994   | 0.00 |
|             | ATS stream (MRT=200, CBS=1)      | 0           | 7999 | 0.00 | 9413 | 0        | 1.00 | 6840 | 1147   | 0.86 | 7999       | 0    | 1.00 | 1465 | 6522   | 0.18 |

- > ATS sensitivity to the frame order increases with MRT > 0
- > Detection is enhanced with higher frame order sensitivity





IV.

# Conclusion & Outlook





#### Conclusion

- ATS independently describes normal stream behavior
- MRT and CBS jointly influence valid configurations
- ATS improves detection rates with zero false positives
- All anomaly classes except elimination are detectable
- Use for in-vehicular network anomaly detection is feasible





#### Outlook

- Testing in real-world scenarios
- Exposing to real attack traces
- Comparing against dedicated detection algorithms





# Anomaly Detection in Real-Time Networks Using Asynchronous Traffic Shaping

Thank you for your attention!
All simulations are available as open source



https://github.com/CoRE-RG/NIDSDatasetCreation

Contact: philipp.meyer@haw-hamburg.de



