
uTimer: A Uniform Low-level Timer-API
for RIOT-OS

MINF-PJH

Niels Gandraß <Niels.Gandrass@haw-hamburg.de>

September 02, 2021

Hamburg University of Applied Sciences
Faculty of Engineering & Computer Science



Table of Contents

1. Introduction

2. The Problem of Abstracting Timer Hardware

3. A Unified Timer-API for RIOT-OS

4. Validation and Evaluation

5. Conclusion

1



Introduction



Introduction

• Timers are fundamental parts of every embedded system

• MCU manufacturers offer a wide range of peripherals, including:
• General-purpose timers
• Low-power timers
• High-speed timers
• Real-time clocks (RTCs)

• Each timer type possesses its own feature-set

^ The Challenge

Embedded OSs need to keep up with the ever-growing variety of timers.
Offering broad out-of-the-box peripheral support while maintaining

application portability is challenging.

2



The Problem of Abstracting
Timer Hardware



The Problem of Abstracting Timer Hardware

6 The Abstraction Trade-off * vs. Ê

Direct HW-register access
Yields Near-optimal performance,
but is highly error-prone, laborious,
and prevents portability.

Strongly abstracted timer-API
Is portable and user-friendly, but
decreased performance.

6 The Time-memory Trade-off ¿ vs. &

Mitigation of performance loss is partly possible by sacrificing system
memory to reduce computational complexity

Choosing an appropriate level of abstraction therefore is challenging.

3



Current Low-level Timer-APIs in RIOT-OS

Three generic modules interface common timer
types and two special-purpose modules provide
higher-level features, such as signal generation.

– Only basic timer operations supported

– API functionality overlaps, but they differ in
use and exposed features

– Underlying timer types differ between MCUs

– Peripherals can simultaneously be used by
multiple APIs (resource allocation conflicts)

– Timer selection and configuration via
platform-dependent headers files

Modules
periph/

• timer (ï)

• rtc (¿)

• rtt (¹)

• pwm (Ú)

• wdt (`)

4



STM32L476RG Timer Support in RIOT-OS

RIOT-OS Modules
periph/

• timer (ï)

• rtc (¿)

• rtt (¹)

• pwm (Ú)

• wdt (`)

STM32L476RG Peripherals
• General-purpose timer (1/7 ï) (2/7 Ú)

• 32- and 16-bit

• Basic timer (0/2)

• Advanced-control timer (1/2 Ú)

• Low-power timer (1/2 ¹)

• Real-time-clock (1/1 ¿)

• SysTick timer (0/1)

• Watchdog (1/2 `)

  Peripheral Availability

• Only 35% of the available timers are actually usable

• 2 timer types are not exposed by any periph module

5



Application developers should not

(re-)write low-level driver code!

5



A Unified Timer-API for
RIOT-OS



A Unified Timer-API for RIOT-OS

Our Goal

Streamline existing APIs into a uniform interface, fostering a transparent
and interchangeable use of all available timer peripherals. Provide basic
timer functions and out-of-the-box support for device-specific feature,

while preserving platform-independence whenever possible.

To base our API design on, we conducted . . .

• Large-scale analysis of timer hardware
– Covering 43 device families from 8 different manufacturers

• Review of existing low-level timer modules

• Survey of related work

6



Key Design Aspects

• Separation of hardware-facing (hAPI) and user-facing API (uAPI)

• One low-level driver utim_driver_t per timer type

• Exposed timers represented by a utim_periph_t instance,
referencing corresponding utim_driver_t and providing static
timer properties

• Interactive timer selection and configuration via KConfig

General-
purpose 

User Application / 
High-level OS Modules

Low-power

RTC

U
se

r-f
ac

in
g 

AP
I

H
W

-fa
ci

ng
 A

PI

Driver A

Driver B

periph_utimer

Timer 
0

Timer 
1

Timer 
2

Figure 1: Architecture of the proposed low-level timer-API design
7



Key Design Aspects – Hardware-facing API Ñ

One low-level driver struct utim_driver_t per timer type

• Consisting of minimal function pointer sets

• Common basic features are directly accessible
and device-specific features are exposed via a
compact property interface

• Related functions are bundled into single calls

• Driver granular reusability across timer types

• Function granular reusability across drivers

• Virtual drivers allow representation of chained
timers as one atomic timer instance, re-using
existing driver code

Base 
Driver

fn

fn

fn

fnVirtual 
Driver

Timer 
0

Timer 
1

Timer 
0+1

Figure 2: Virtual timer
driver

8



Key Design Aspects – User-facing API �

A single set of functions, independent of the underlying timer type

• Function calls are either directly delegated to the driver or
implemented as multiple subsequent hAPI driver calls

• Previously bundled hAPI functions are unbundled

• Static attributes and run-time dynamic properties are made available

• Compare match and overflow interrupts can be handled separately

• Clock source is run-time configurable

User-facing API Hardware-facing API

timer_set()

read()

1
2
3

set_channel()

Figure 3: Compound uAPI function consisting of multiple hAPI driver calls
9



Validation and Evaluation



Validation and Evaluation

1. Cross-platform Validation via automated platform-independent test
suites with CI integration.

2. Performance Benchmarks using a HiL testbed wit CI integration,
comparing the existing periph_timer to our novel periph_utimer.

+ Scope

• STMicroelectronics: STM32L476RG (Nucleo-L476RG)

• STMicroelectronics: STM32F070RB (Nucleo-F070RB)

• Silicon Labs: EFM32PG12B500 (SLSTK3402A)

• Espressif Systems: ESP32 (ESP32-WROOM)

Selected MCUs cover different manufacturers, CPU architectures,
counter widths from 16 to 64 bit, common basic timers, advanced

ultra low-power peripherals and chainable timers.

10



Performance Benchmarks – Setup Architecture

Benchmarks consist of a RIOT-based test firmware
and a Robot Framework (RF) test suite.

GPIO traces are captured during benchmarks. Measurement start and
stop is signaled by consecutive rising and falling edges. Hardware limits
like GPIO latency and hold-off times are accounted for.

Figure 4: Architecture of our benchmarking setup
11



Performance Benchmarks – Conducted Benchmarks

The following aspects were assessed by our benchmarks:

1. PHiLIP hardware limits

2. GPIO Latency

3. API abstraction overhead
• User-facing API
• Hardware-facing API
• No additional abstraction

4. Timer base operations
• Read counter register
• Write counter register
• Set channel
• Clear channel

5. Timeout latency

12



Performance Benchmarks – API Abstraction Overhead

Isolating the APIs abstraction overhead:

• Read and write operations replaced with no operations (NOPs)

• Operations performed via both uAPI and direct hAPI driver calls

• Measured execution time converted to equivalent CPU cycles

÷ API Abstraction Overhead

• Abstraction via uAPI introduces 6 CPU cycles

• No generic hAPI overhead
– One additional CPU cycle on STM32 due to pipeline refill artifacts.

13



Performance Benchmarks – Timeout Latency

Timeout latency, jitter and error were assessed:

• Timer frequencies between 10 kHz and 10MHz

• Timeout durations between 10 µs and 1 s

• Duration between arming and callback execution is measured

• Difference of expected and actual timeout length is calculated

Í Timeout Latency and Error 1ms @ 1MHz
Timeout latency Ltout increased by between 0.76 µs± 0.02 µs on the
SLSTK3402A (best) and 2.34 µs± 0.01 µs on the ESP32 (worst).

The respective timeout error Etout therefore increased by
between 0.0751% (best) and 0.2338% (worst).

14



Performance Benchmarks – Timeout Latency

* Edge case: Very short timeouts (≤ 10 µs)

• Every slight increase in timeout latency Ltout significantly
contributes to the timeout error Etout

• In such cases, unnecessary indirection should be avoided

• Direct hAPI use or active waiting (i.e. spinning) is recommended

¡ Edge case: Long-running timeouts (≥ 1 s)

• Impact of timeout latency Ltout increase on timeout error Etout

becomes insignificantly small

• Other factors, such as oscillator accuracy, become dominant

15



Additional Aspects

During our evaluation we further found:

• ROM size on 32-bit devices increased by 12 bytes per configured
timer peripheral and 28 bytes for every required timer type driver.

• RAM use was not affected by uTimer.

• Number of out-of-the-box available peripherals and channels
significantly increased and advanced timer types are supported.

• Code quality and usability benefited from the streamlined API.

16



Conclusion



Conclusion

The proposed uTimer API streamlines existing RIOT-OS modules
into a uniform interface.

¢

– Abstraction and time-memory trade-offs were successfully balanced,
allowing convenient use while maintaining performance.

– Both platform-independent and platform-specific timer features are
exposed, preserving portability whenever possible.

– Application developers are relieved from modifying OS code and
deep diving into vendor datasheets or SDKs.

17



Questions ?

Discussion (

17


	Introduction
	The Problem of Abstracting Timer Hardware
	A Unified Timer-API for RIOT-OS
	Validation and Evaluation
	Conclusion

