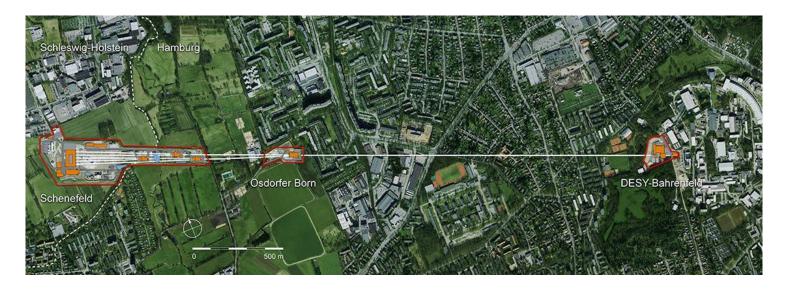


Towards Detection and Monitoring of Ageing Precursors on the XFEL Machine Beam Control Hardware

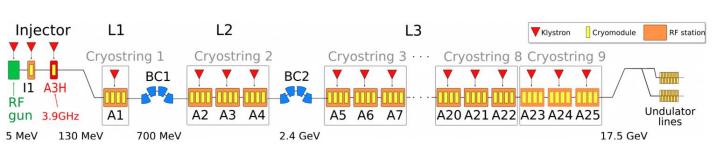
Leandro Lanzieri Deutsches Elektronen-Synchrotron, DASHH

leandro.lanzieri@desy.de


HAW Hamburg - INET Seminar 17.08.2022

Leandro Lanzieri

17.08.2022 | INET Seminar


European X-Ray Free-Electron Laser (XFEL)

- Longest superconducting linear accelerator in the world (3.4 Km)
 - 768 Niobium RF cavities over 1.7 Km
 - Maximum energy delivery of 17.4 GeV

Image: https://xfel.desy.de/

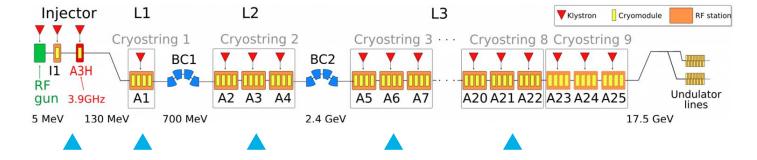
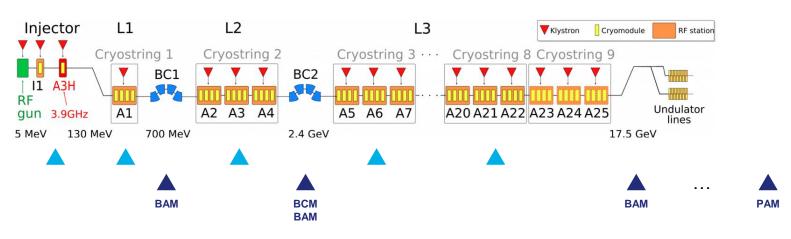

MSK Primary Operation Sub-Groups

Figure: Julien Branlard

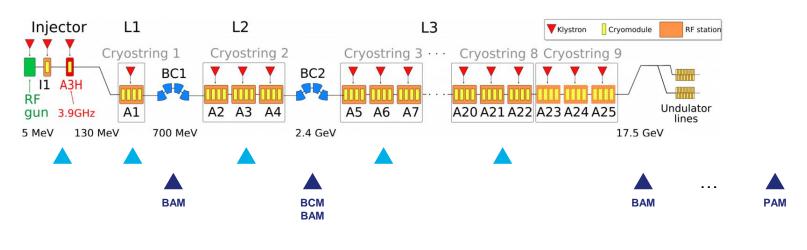
Leandro Lanzieri

17.08.2022 | INET Seminar

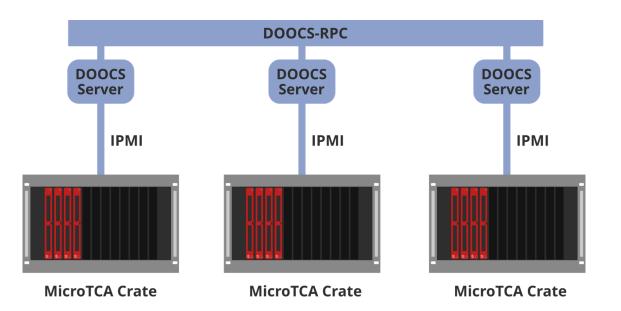

MSK Primary Operation Sub-Groups

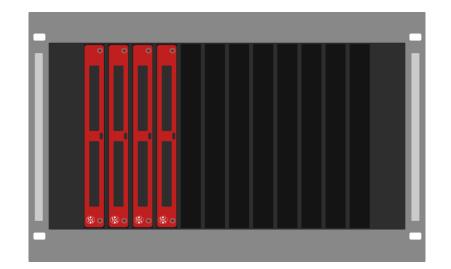
Low-Level RF Control

Figure: Julien Branlard


Leandro Lanzieri

17.08.2022 | INET Seminar


MSK Primary Operation Sub-Groups Low-Level RF Control Special Diagnostics


Figure: Julien Branlard

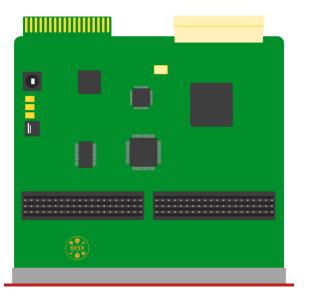

MSK Primary Operation Sub-Groups Low-Level RF Control Special Diagnostics Optical Synchronization

Figure: Julien Branlard

MicroTCA Crate

DAMC-FMC20 Carrier Board

FMC20 Carrier Board FMC25 Carrier Board TCK7 Data Processing and Telecommunication Board

and more ...

DASHH.

FMC20 Carrier Board FMC25 Carrier Board TCK7 Data Processing and Telecommunication Board

• High dependability

and more ...

DASHH.

FMC20 Carrier Board FMC25 Carrier Board

High dependability 🗵

International Electrotechnical Commission *"Ability to perform as and when required."* TCK7 Data Processing and Telecommunication Board

and more ...

DASHH

Carrier Board

Carrier Board

High dependability

International Electrotechnical Commission "Ability to perform as and when required."

Reliability, Availability, Maintainability...

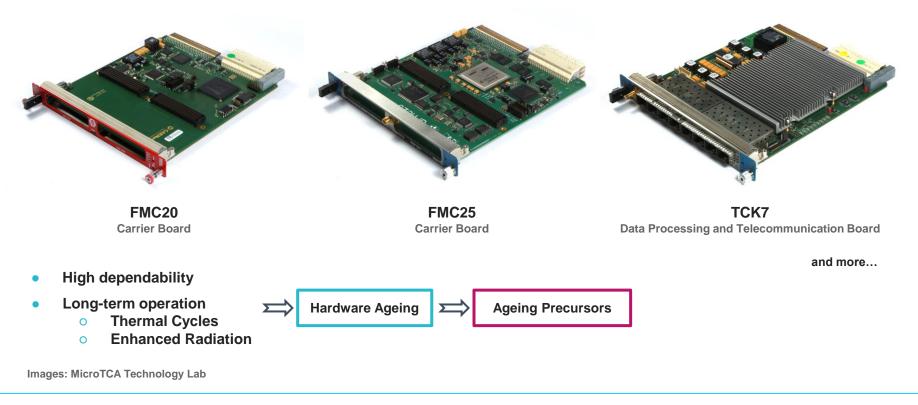
Data Processing and Telecommunication Board

and more...

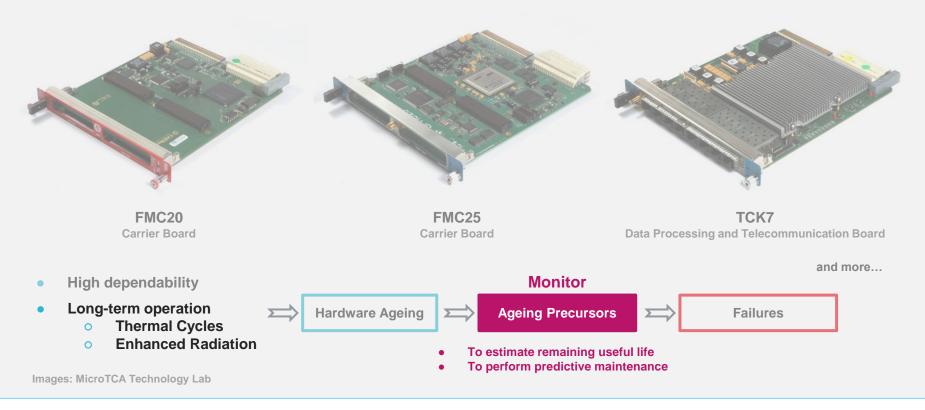
DASHH

FMC20 Carrier Board FMC25 Carrier Board TCK7 Data Processing and Telecommunication Board

- High dependability
- Long-term operation
 - Thermal Cycles
 - Enhanced Radiation


Images: MicroTCA Technology Lab


Leandro Lanzieri


and more...

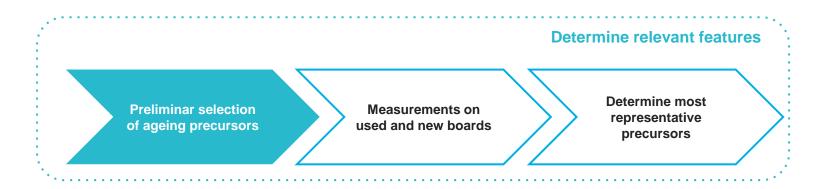
Images: MicroTCA Technology Lab

Leandro Lanzieri

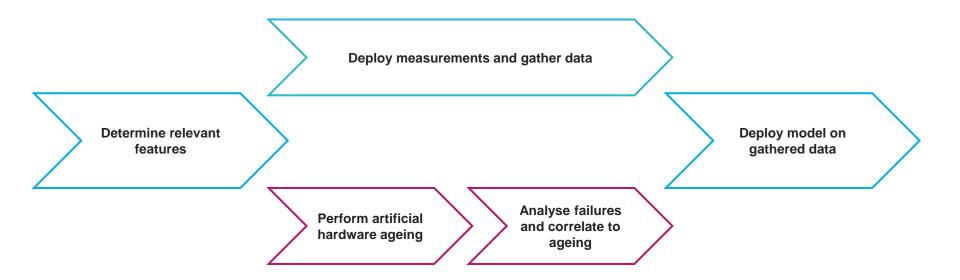
17.08.2022 | INET Seminar

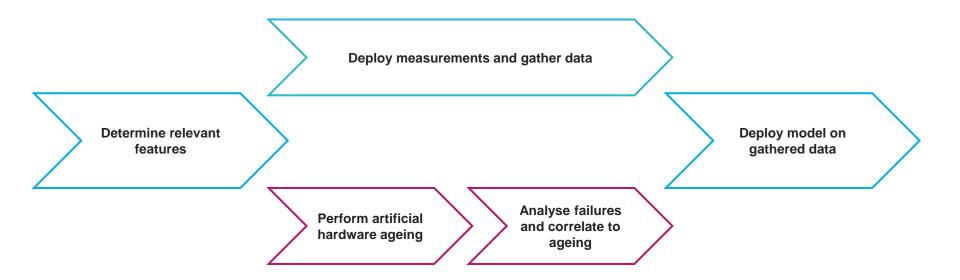
Preliminar selection of ageing precursors

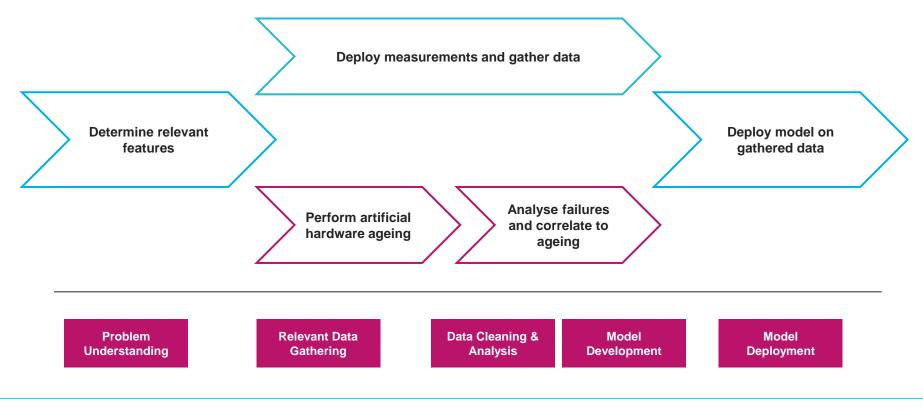
Preliminar selection of ageing precursors

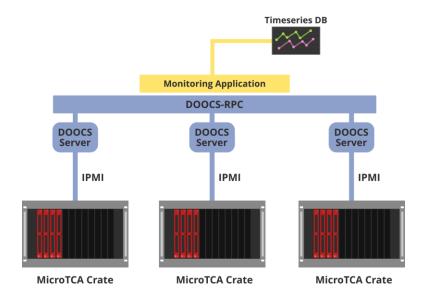

Measurements on used and new boards

Preliminar selection of ageing precursors Measurements on used and new boards


Determine most representative precursors


Project Plan Overview


Project Plan Overview



Project Plan Overview

Ageing Precursors Monitoring Overview & Challenges

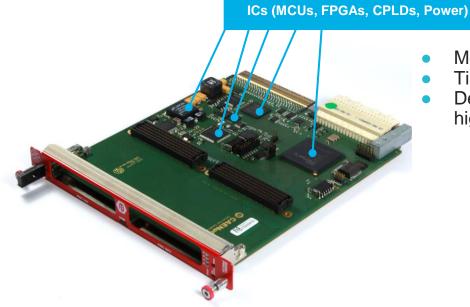
• Devices

- Perform self-tests
- Expose parameters on DOOCS
- Monitoring application
 - Collects measurements of exposed parameters
 - Stores data in a time series DB for analysis

Challenges

- Select representative ageing precursors
- Self-tests without hardware alterations
- No interference with running applications

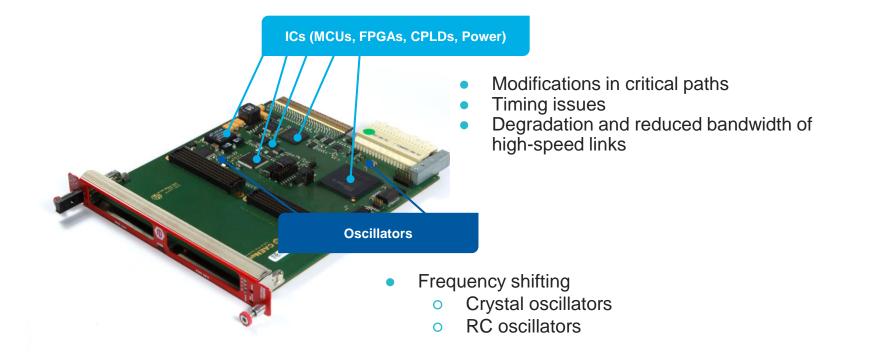
Potentially Affected Components


Image: MicroTCA Technology Lab

Leandro Lanzieri

17.08.2022 | INET Seminar

Potentially Affected Components

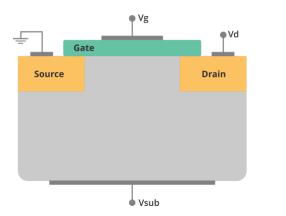


- Modifications in critical paths
- Timing issues
- Degradation and reduced bandwidth of high-speed links

Potentially Affected Components

Ageing Mechanisms

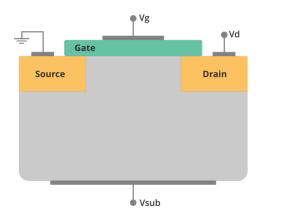
- Semiconductors
- Interconnects
- Crystals



Ageing Mechanisms

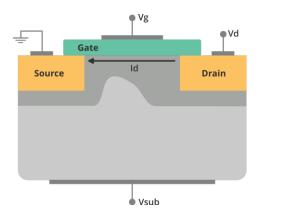
- Semiconductors
- Interconnects
- Crystals

Ageing Mechanisms Semiconductors



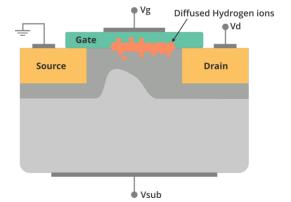
- The Metal-Oxide-Semiconductor Field-Effect Transistor (**MOSFET**) is the building-block of today's electronics
- Widely used as an electrical switch in digital electronics

Ageing Mechanisms Semiconductors



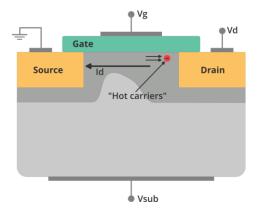
- The Metal-Oxide-Semiconductor Field-Effect Transistor (**MOSFET**) is the building-block of today's electronics
- Widely used as an electrical switch in digital electronics
- When a voltage is applied only to the Drain (V_d), no current passes

Ageing Mechanisms Semiconductors

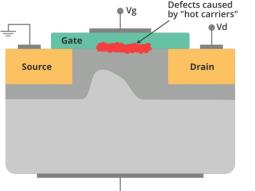


- The Metal-Oxide-Semiconductor Field-Effect Transistor (**MOSFET**) is the building-block of today's electronics
- Widely used as an electrical switch in digital electronics
- When a voltage is applied only to the Drain (V_d), no current passes
- When, in addition, a voltage on the Gate (V_g) greater than a threshold V_{th} is applied, a channel forms allowing a current to flow.

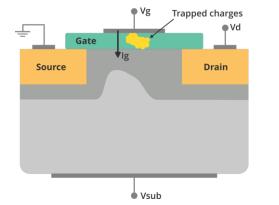
Ageing Mechanisms Semiconductors - Negative Bias Temperature Instability (NBTI)



- Static mechanism affecting p-MOSFETs due to interface traps
 - Increased V_{th}
 - Reduced drain current
 - Slower switching speed
- Partial recovery exists => degradation depends on duty cycle


Ageing Mechanisms Semiconductors - Hot Carrier Injection (HCI)

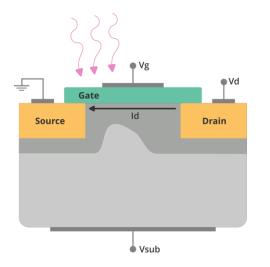
Ageing Mechanisms Semiconductors - Hot Carrier Injection (HCI)



🜢 Vsub

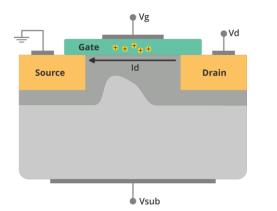
- Dynamic mechanism at high V_d
 - Increased V_{th}
 - Slower switching speed
- Has no recovery mechanism => degradation depends on switching activity

Ageing Mechanisms Semiconductors - Time-Dependent Dielectric Breakdown (TDDB)

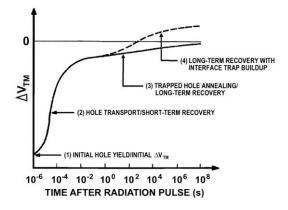


- Static mechanism due to oxide defects
 - **Increased** gate leakage current (I_q)
 - Slower switching speed
- Has no recovery mechanism

Ageing Mechanisms


Semiconductors - Radiation-Induced Trapped Charges

Ageing Mechanisms Semiconductors - Radiation-Induced Trapped Charges

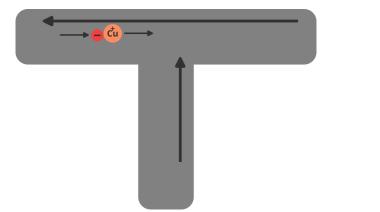


- Ionizing radiation causes positive charges to be trapped in the oxide
 - **Decreased** $V_{th} =>$ potential latch-up
- Has a slow recovery mechanism (from seconds to years)

Ageing Mechanisms Semiconductors - Radiation-Induced Trapped Charges

- Ionizing radiation causes positive charges to be trapped in the oxide
 - **Decreased** $V_{th} =>$ potential latch-up
- Has a slow recovery mechanism (from seconds to years)

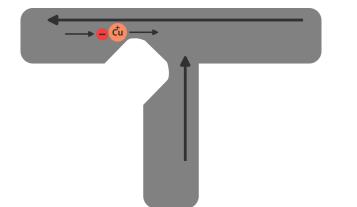
T. R. Oldham and F. B. McLean, "Total ionizing dose effects in MOS oxides and devices," in IEEE Transactions on Nuclear Science, vol. 50, no. 3, pp. 483-499, June 2003 doi: 10.1109/TNS.2003.812927.



Ageing Mechanisms

- Semiconductors
- Interconnects
- Crystals

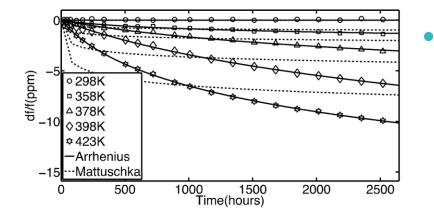
Ageing Mechanisms Interconnects - Electro Migration (EM)



- lons migrate due to high current density
 - Increased impedance
 - Slower switching
 - Open / Short circuits
- Has no recovery mechanism

Ageing Mechanisms Interconnects - Electro Migration (EM)

- lons migrate due to high current density
 - Increased impedance
 - Slower switching
 - Open / Short circuits
- Has no recovery mechanism



Ageing Mechanisms

- Semiconductors
- Interconnects
- <u>Crystals</u>

Ageing Mechanisms Quartz Crystals

DASHH.

Frequency shifting due to

- Mass transfer due to contamination
- Stress relief (mounts, bonds, etc.)
- Radiation
- Quartz degassing

S. -y. Wang et al., "Aging models and parameters of quartz crystal resonators and oscillators," 2015 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA), 2015, pp. 382-385, doi: 10.1109/SPAWDA.2015.7364512.

Sensing Ageing Effects

- Field Programmable Gate Array (FPGA)
- Microcontroller
- Static RAM (SRAM)
- Low Drop-Out Voltage Regulator
- Oscillator

Sensing Ageing Effects

Field Programmable Gate Array (FPGA)

- Microcontroller
- Static RAM (SRAM)
- Low Drop-Out Voltage Regulator
- Oscillator

Sensing Ageing Effects FPGA Propagation Delay Measurement

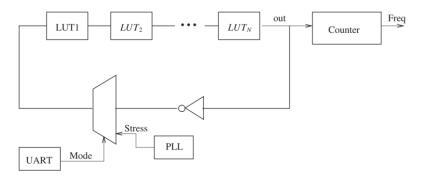
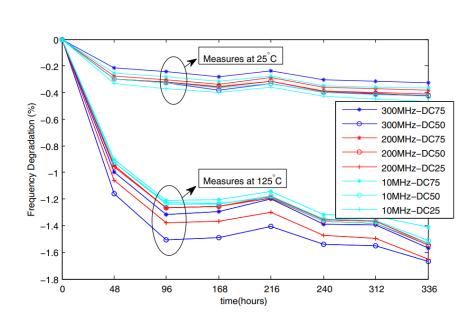


Fig. 1. RO-based sensor structure.

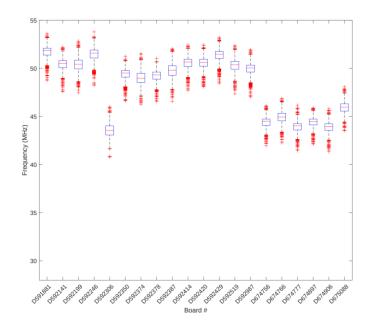

- Ring-Oscillator (RO) sensor circuit
 - Odd number of inverters
 - Frequency proportional to propagation delay (switching speed)
 - Artificially aged by a stress signal
- Tests conditions
 - Different temperatures
 - Varying stress signals
 - Multiple RO architectures

M. Slimani et al., "Analysis of ageing effects on ARTIX7 XILINX FPGA", Microelectronics Reliability,Volumes 76–77, 2017, pp. 168-173, doi: 10.1016/j.microrel.2017.07.006

Leandro Lanzieri

Sensing Ageing Effects FPGA Propagation Delay Impact

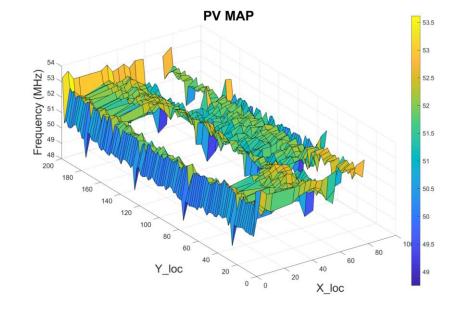
DASHH


- Highly dependent on stress signal duty cycle
- More degradation at higher temperature and frequency (due to recovery)
- Average frequency degradation of 1.7%

M. Slimani et al., "Analysis of ageing effects on ARTIX7 XILINX FPGA", Microelectronics Reliability, Volumes 76–77, 2017, pp. 168-173, doi: 10.1016/j.microrel.2017.07.006

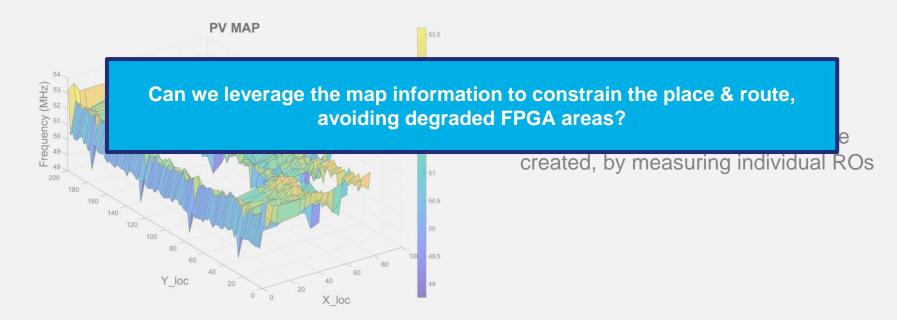
Leandro Lanzieri

Sensing Ageing Effects FPGA Propagation Delay Mapping


- Instantiation of multiple RO sensor circuits over the FPGA fabric at the same time
- Evaluation on multiple aged devices

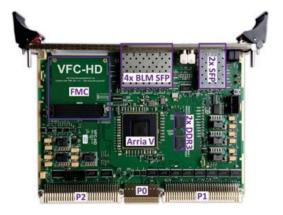
P. Cheng, "Study of Monitoring Circuitry for Ageing in FPGAs", Master Thesis, 2021, Department of Electrical and Information Technology, Lund University, Sweden DASHH

Sensing Ageing Effects FPGA Propagation Delay Mapping

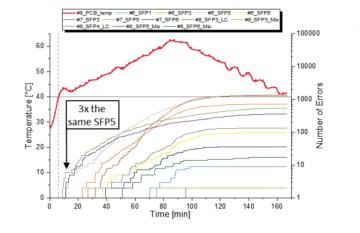

 Using placement information, a frequency degradation map can be created, by measuring individual ROs

P. Cheng, "Study of Monitoring Circuitry for Ageing in FPGAs", Master Thesis, 2021, Department of Electrical and Information Technology, Lund University, Sweden

Sensing Ageing Effects FPGA Propagation Delay Mapping

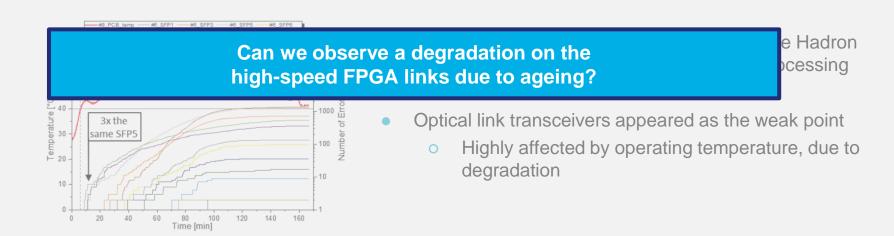


P. Cheng, "Study of Monitoring Circuitry for Ageing in FPGAs", Master Thesis, 2021, Department of Electrical and Information Technology, Lund University, Sweden



- Test and validation strategy for the new Large Hadron Collider (LHC) Beam Loss Monitor (BLM) processing module
- Optical link transceivers appeared as the weak point
 - Highly affected by operating temperature, due to degradation

V. Schramm et al., "Combined Testing And Validation Strategy For The New LHC BLM Processing Module" 2019 Annual Reliability and Maintainability Symposium (RAMS), 2019, pp. 1-7, DOI: 10.1109/RAMS.2019.8769268.



- Test and validation strategy for the new Large Hadron Collider (LHC) Beam Loss Monitor (BLM) processing module
- Optical link transceivers appeared as the weak point
 - Highly affected by operating temperature, due to degradation

V. Schramm et al., "Combined Testing And Validation Strategy For The New LHC BLM Processing Module" 2019 Annual Reliability and Maintainability Symposium (RAMS), 2019, pp. 1-7, DOI: 10.1109/RAMS.2019.8769268.

V. Schramm et al., "Combined Testing And Validation Strategy For The New LHC BLM Processing Module" 2019 Annual Reliability and Maintainability Symposium (RAMS), 2019, pp. 1-7, DOI: 10.1109/RAMS.2019.8769268.

Leandro Lanzieri

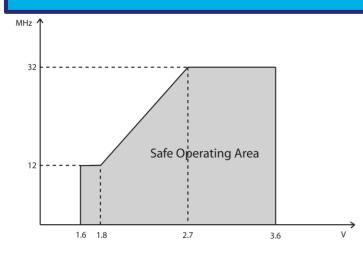
V. Schramm et al., "Combined Testing And Validation Strategy For The New LHC BLM Processing Module" 2019 Annual Reliability and Maintainability Symposium (RAMS), 2019, pp. 1-7, DOI: 10.1109/RAMS.2019.8769268.

Leandro Lanzieri

Sensing Ageing Effects

- Field Programmable Gate Array (FPGA)
- <u>Microcontroller</u>
- Static RAM (SRAM)
- Low Drop-Out Voltage Regulator
- Oscillator

Sensing Ageing Effects MCU Switching Speed


Can we detect degraded switching speed on the MCU?

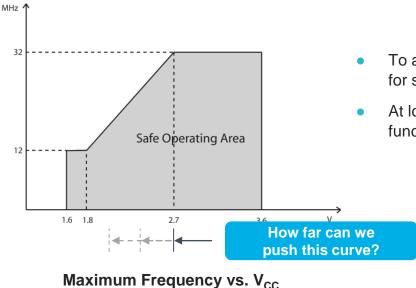
- To account for hardware ageing, vendors define bandgaps for safe operation during the guaranteed lifetime
- At lower supply voltages, the increased V_{th} may affect functionality if the clock frequency is not reduced accordingly

Sensing Ageing Effects MCU Switching Speed

Can we detect degraded switching speed on the MCU?

- To account for hardware ageing, vendors define bandgaps for safe operation during the guaranteed lifetime
- At lower supply voltages, the increased V_{th} may affect functionality if the clock frequency is not reduced accordingly

Maximum Frequency vs. V_{cc}


Figure: Microchip ATxmega128A1U Data Sheet

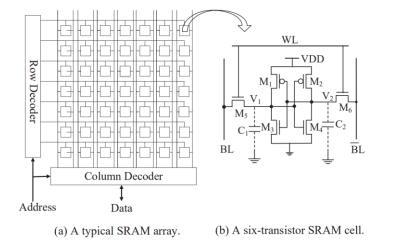
Leandro Lanzieri

Sensing Ageing Effects MCU Switching Speed

- To account for hardware ageing, vendors define bandgaps for safe operation during the guaranteed lifetime
- At lower supply voltages, the increased V_{th} may affect functionality if the clock frequency is not reduced accordingly

Figure: Microchip ATxmega128A1U Data Sheet

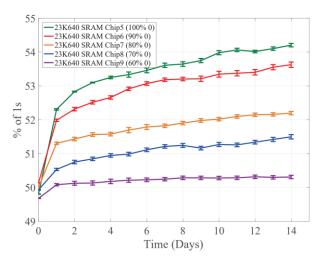
Leandro Lanzieri



Sensing Ageing Effects

- Field Programmable Gate Array (FPGA)
- Microcontroller
- Static RAM (SRAM)
- Low Drop-Out Voltage Regulator
- Oscillator

Sensing Ageing Effects SRAM Startup Pattern

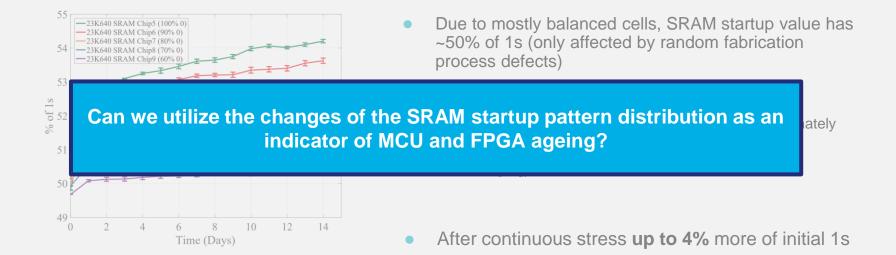


- Due to mostly balanced cells, SRAM startup value has ~50% of 1s (only affected by random fabrication process defects)
- Ageing additionally introduces a variation of V_{th}
 - Small V_{th} difference => initial values are approximately random
 - Big V_{th} difference => initial values are biased

U. Guin et al., "Detecting Recycled SoCs by Exploiting Aging Induced Biases in Memory Cells" 2019 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 72-80, doi: 10.1109/HST.2019.8741032.

Sensing Ageing Effects SRAM Startup Pattern

- Due to mostly balanced cells, SRAM startup value has ~50% of 1s (only affected by random fabrication process defects)
- Ageing additionally introduces a variation of V_{th}
 - Small V_{th} difference => initial values are approximately random
 - Big V_{th} difference => initial values are biased
- After continuous stress **up to 4%** more of initial 1s

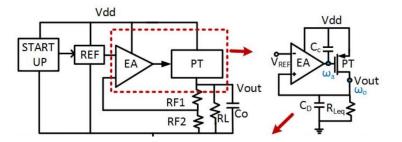


U. Guin et al., "Detecting Recycled SoCs by Exploiting Aging Induced Biases in Memory Cells" 2019 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 72-80, doi: 10.1109/HST.2019.8741032.

DASHH

Sensing Ageing Effects SRAM Startup Pattern

U. Guin et al., "Detecting Recycled SoCs by Exploiting Aging Induced Biases in Memory Cells" 2019 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 72-80, doi: 10.1109/HST.2019.8741032.


Leandro Lanzieri

Sensing Ageing Effects

- Field Programmable Gate Array (FPGA)
- Microcontroller
- Static RAM (SRAM)
- Low Drop-Out Voltage Regulator
- Oscillator

Sensing Ageing Effects Low drop-out (LDO) Regulators

LDO regulators provide a constant voltage and protect from V_{dd} noise

• The Power Supply Rejection Ratio (PSRR) is the capability to suppress voltage ripples:

$$PSRR\,=\,20\,\log\left(rac{v_{out}}{v_{in}}
ight)$$

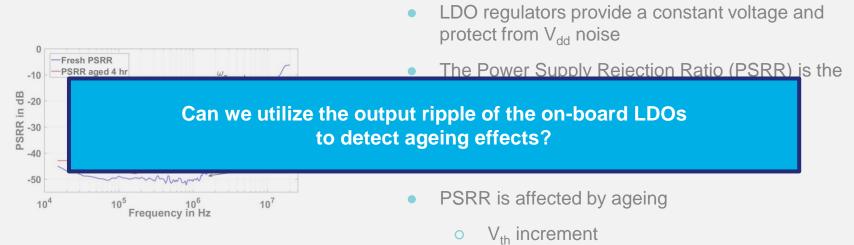
S. Chowdhury et al., "Aging Analysis of Low Dropout Regulator for Universal Recycled IC Detection" 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 604-609, doi: 10.1109/ISVLSI.2019.00113. **DASHH**

Sensing Ageing Effects Low drop-out (LDO) Regulators

$\begin{array}{c} 0 \\ -10 \\ \hline \\ -80 \\ -20 \\ \hline \\$

S. Chowdhury et al., "Aging Analysis of Low Dropout Regulator for Universal Recycled IC Detection" 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 604-609, doi: 10.1109/ISVLSI.2019.00113.

- LDO regulators provide a constant voltage and protect from V_{dd} noise
- The Power Supply Rejection Ratio (PSRR) is the capability to suppress voltage ripples:

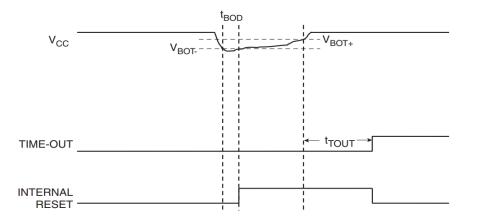

$$PSRR \,=\, 20\,\log\left(rac{v_{out}}{v_{in}}
ight)$$

- PSRR is affected by ageing
 - V_{th} increment
 - I_D decrement
 - Changes in capacitance and transconductance

Sensing Ageing Effects Low drop-out (LDO) Regulators

- o I_D decrement
- Changes in capacitance and transconductance

S. Chowdhury et al., "Aging Analysis of Low Dropout Regulator for Universal Recycled IC Detection" 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 604-609, doi: 10.1109/ISVLSI.2019.00113.


Leandro Lanzieri

Can we detect PSRR degradation on the On-Chip LDO regulators?

Can we detect PSRR degradation on the On-Chip LDO regulators?

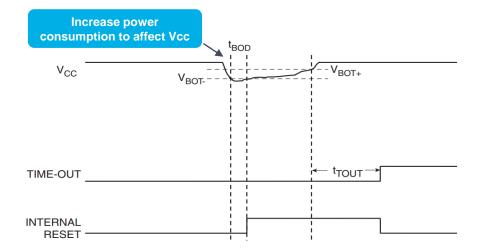

Brownout Detection Reset

Figure: Microchip XMEGA AU Manual

Leandro Lanzieri

DASHH.

Can we detect PSRR degradation on the On-Chip LDO regulators?

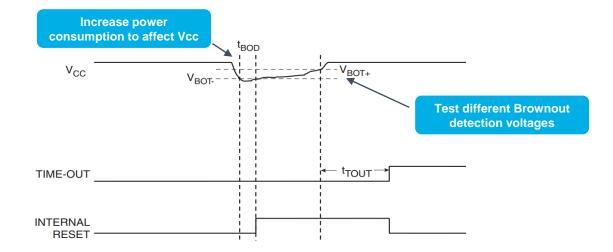

Brownout Detection Reset

Figure: Microchip XMEGA AU Manual

Leandro Lanzieri

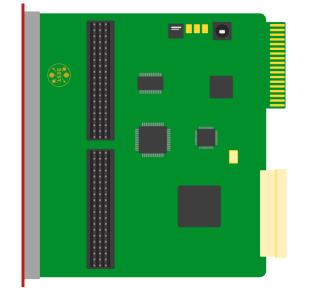
DASHH.

Can we detect PSRR degradation on the On-Chip LDO regulators?

Brownout Detection Reset

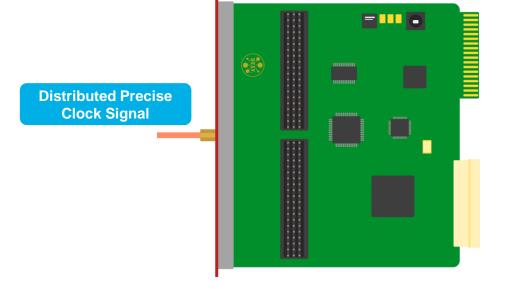
Figure: Microchip XMEGA AU Manual

Leandro Lanzieri



Sensing Ageing Effects

- Field Programmable Gate Array (FPGA)
- Microcontroller
- Static RAM (SRAM)
- Low Drop-Out Voltage Regulator
- Oscillator


Sensing Ageing Effects Oscillators Frequency Shift

Sensing Ageing Effects Oscillators Frequency Shift

- Connect the external precise clock signal
- Compare crystal and internal oscillators to the known reference

Summary

- Multiple **ageing mechanisms** come into play:
 - **Silicon**: NBTI, HCI, TDDB, radiation
 - Interconnects: EM
 - **Crystals**: Stress relief, mass transfer, radiation

Summary

DASHH

- Multiple **ageing mechanisms** come into play:
 - **Silicon**: NBTI, HCI, TDDB, radiation
 - Interconnects: EM
 - **Crystals**: Stress relief, mass transfer, radiation
- We plan on **assessing the overall ageing** status via:
 - Propagation delay with ring oscillators
 - High-speed links
 - Maximum FPGA-DDR bandwidth
 - Quality of FPGA MGT signals
 - Sensitivity against low voltage at high frequencies
 - Distribution of SRAM startup pattern
 - LDO regulators PSRR (external, on-chip)
 - Oscillators frequency shift (crystal and RC)

Thank you

Leandro Lanzieri Deutsches Elektronen-Synchrotron

leandro.lanzieri@desy.de

Leandro Lanzieri