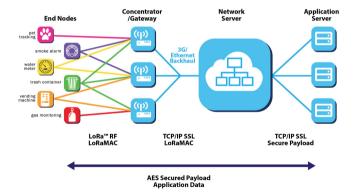
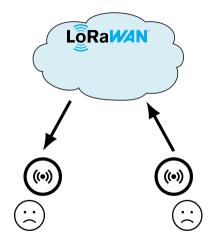
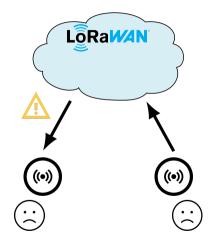
DSME-LoRa

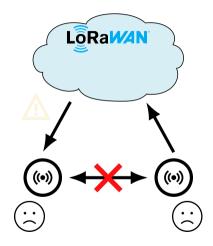
Seamless Long Range Communication Between Arbitrary Nodes in the Constrained IoT

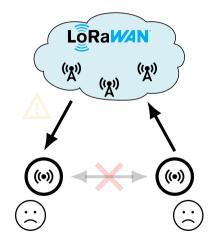

José I. Álamos *<jose.alamos@haw-hamburg.de>* ACM SenSys 2022, Boston, United States Tuesday, 8th November 2022




LoRaWAN

LPWAN specification over the proprietary LoRa modulation.




- Restricted downlink communication
- No peer to peer communication
- Requires permanent infrastructure backhaul

- Restricted downlink
 communication
- No peer to peer communication
- Requires permanent infrastructure backhaul

- Restricted downlink
 communication
- No peer to peer communication
- Requires permanent infrastructure backhaul

- Restricted downlink
 communication
- No peer to peer communication
- Requires permanent infrastructure backhaul

LoRaWAN is not suitable for many IoT control scenarios

 Requires permanent infrastructure backhaul

- Supports contention-based and contention-free transmissions.
- Out of the box peer to peer or cluster tree topologies.
- Low power operation.

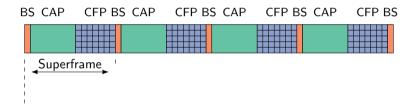
- Supports contention-based and contention-free transmissions.
- Out of the box peer to peer or cluster tree topologies.
- Low power operation.

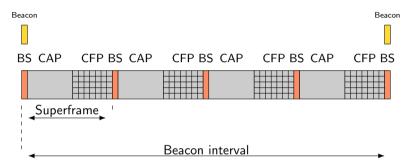
- Supports contention-based and contention-free transmissions.
- Out of the box peer to peer or cluster tree topologies.
- Low power operation.

Can DSME over LoRa overcome LoRaWAN limitations and enable direct and reliable peer to peer communication?

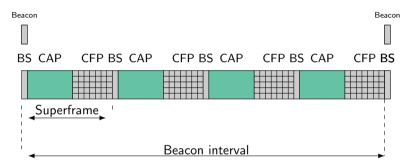
- DSME background
- DSME-LoRa PHY mappings
- Implementations
- Evaluation
- Large Scale DSME-LoRa
- Conclusions and outlook

DSME background

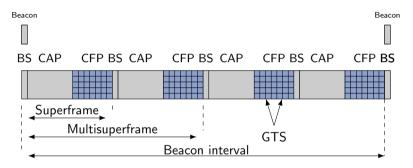

DSME-LoRa PHY mappings


Implementations

Evaluation


Large Scale DSME-LoRa

Conclusions and outlook



Beacon Slot: Synchronization

Contention Access Period: CSMA/CA transmission

Contention Free Period: Guaranteed Time Slot transmission

DSME background

DSME-LoRa PHY mappings

Implementations

Evaluation

Large Scale DSME-LoRa

Conclusions and outlook

PHY Mappings

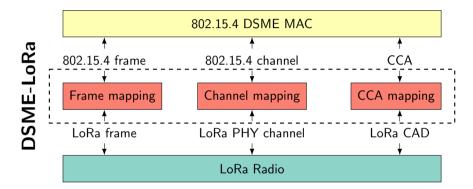


Figure: Overview of DSME-LoRa PHY mappings.

DSME background

DSME-LoRa PHY mappings

Implementations

Evaluation

Large Scale DSME-LoRa

Conclusions and outlook

Simulation environment

Figure: DSME-LoRa simulation environment and our contribution.

Implementation in RIOT OS

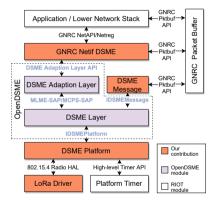


Figure: DSME-LoRa integration into the networking subsystem of RIOT.

- DSME background
- DSME-LoRa PHY mappings
- Implementations
- Evaluation
- Large Scale DSME-LoRa
- Conclusions and outlook

Evaluation scenario

- B-L072z-LRWAN1 (STM32L0) on IoT-LAB testbed.
 - ARM Cortex-M0+ @ 32 MHz
 - 256 kB ROM, 20 kB RAM
 - SX1276 LoRa transceiver.
- 7.68 s superframe duration
 - Minimal duration for TX of 127 bytes IEEE 802.15.4 frames over LoRa
- One superframe per multisuperframe
 - Renders only 7 slots.
 - A slot repeats every 7.68 s

Data transmission: CSMA/CA

TX interval=20 s

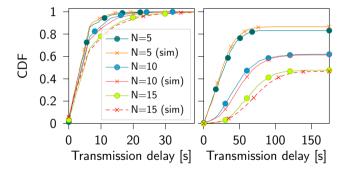


Figure: Transmission delays and PRR for confirmed transmissions in simulation environment and testbed. We vary the number (N) of source devices and the TX interval

Data transmission: CSMA/CA

TX interval=20 s TX interval=5 s

\uparrow Network traffic \Rightarrow \uparrow TX delay, \Downarrow PRR

0 10 20 30 0 50 100 150 Transmission delay [s] Transmission delay [s]

Figure: Transmission delays and PRR for confirmed transmissions in simulation environment and testbed. We vary the number (N) of source devices and the TX interval

Data transmission: GTS (slotted)

TX interval=20 s

TX interval=5 s

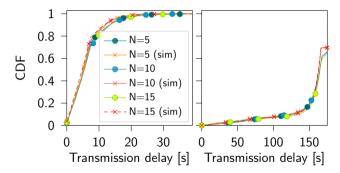


Figure: Comparison of transmission delays and PRR for confirmed transmissions (single GTS) in simulation environment and testbed. We vary the number (N) of source devices and the transmission interval

Data transmission: GTS (slotted)

TX interval=20 s TX interval=5 s

TX Delay and PRR depend on MAC queue system utilization

0 10 20 30 0 50 100 150 Transmission delay [s] Transmission delay [s]

Figure: Comparison of transmission delays and PRR for confirmed transmissions (single GTS) in simulation environment and testbed. We vary the number (N) of source devices and the transmission interval

Energy consumption

МО	Delay [s]	Power [mW]	Lifetime [y]
3	3.87	0.58	1.82
4	7.81	0.47	2.24
5	15.9	0.42	2.53
6	32.97	0.39	2.71
7	71.16	0.38	2.81

Table: Comparison of average transmission delay [s], power [mW] and lifetime [y] for a DSME-LoRa sender device with GTS transmissions, TX interval=15 m, Beacon Interval=123 s and transceiver off during CAP, for varying multisuperframe order. We assume 2800 mAh batteries for the lifetime estimation

Energy consumption

MO	Delay [s]	Power [mW]	Lifetime [y]
3	3.87	0.58	1.82
Л	7.01	0.47	0.04

Suitable for battery-powered devices

DSME-LoRa sender device with GTS transmissions, TX interval=15 m, Beacon Interval=123 s and transceiver off during CAP, for varying multisuperframe order. We assume 2800 mAh batteries for the lifetime estimation

Other insights

- LoRa CAD effective as CCA mechanism.
 - Increases PRR by up to 17 %
 - Decreases frame retransmissions by up to 95 %
- DSME-LoRa can operate under LoRaWAN cross-traffic.
- Heavy interference on common channel may lead to device desynchronization.

- DSME background
- DSME-LoRa PHY mappings
- Implementations
- Evaluation
- Large Scale DSME-LoRa
- Conclusions and outlook

Large scale DSME-LoRa: CSMA/CA

TX interval=80 s

1 N = 1000.8 N = 300CDF 0.6 0.4 0.2 0 2 0 6 8 0 2 6 8 4 Δ

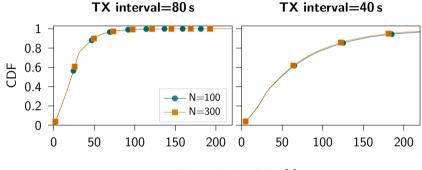
Transmission delay [s]

TX interval=40 s

Figure: Comparison of transmission delays for relaxed and stressed scenarios, during CAP (CSMA/CA), for confirmed transmissions and a varying number (N) of nodes.

Large scale DSME-LoRa: CSMA/CA

TX interval=80 s TX interval=40 s


$\mathsf{CSMA}/\mathsf{CA}\;\mathsf{TX}$ not suitable for large scale deployments

0 2 4 0 0 0 2 4 0 0

Transmission delay [s]

Figure: Comparison of transmission delays for relaxed and stressed scenarios, during CAP (CSMA/CA), for confirmed transmissions and a varying number (\overline{N}) of nodes.

Large scale DSME-LoRa: GTS

Transmission delay [s]

Figure: Comparison of transmission delays for relaxed and stressed scenarios, during CFP (GTS), for confirmed transmissions and a varying number (N) of nodes. We set 4 superframes per multisuperframe.

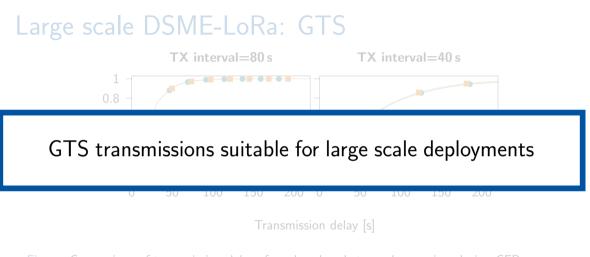


Figure: Comparison of transmission delays for relaxed and stressed scenarios, during CFP (GTS), for confirmed transmissions and a varying number (N) of nodes. We set 4 superframes per multisuperframe.

Markov model for queue length distribution on slotted transmissions

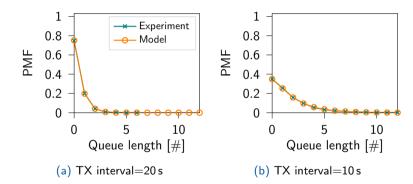


Figure: Validation of the analytical stochastic model with experimental results. Comparison of transmission delay distributions for varying transmission intervals.

Queue length and system utilization

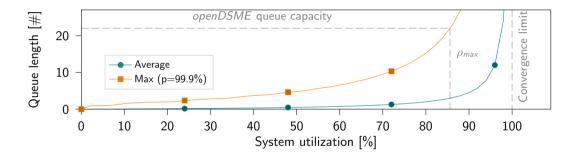


Figure: Estimation of avg. and max. queue length varying system utilization (single GTS case).

- DSME background
- DSME-LoRa PHY mappings
- Implementations
- Evaluation
- Large Scale DSME-LoRa
- Conclusions and outlook

DSME-LoRa enables reliable long range P2P communication

• Suitable for large networks and battery-powered applications uture work

- IPv6 over DSME-LoRa
- Dynamic slot allocation
- Suitable network layers and performance under massive industrial deployments.

DSME-LoRa enables reliable long range P2P communication

• Suitable for large networks and battery-powered applications

Future work

- IPv6 over DSME-LoRa
- Dynamic slot allocation
- Suitable network layers and performance under massive industrial deployments.

DSME-LoRa enables reliable long range P2P communication

- Suitable for large networks and battery-powered applications Future work
 - IPv6 over DSME-LoRa
 - Dynamic slot allocation
 - Suitable network layers and performance under massive industrial deployments.

DSME-LoRa enables reliable long range P2P communication

- Suitable for large networks and battery-powered applications Future work
 - IPv6 over DSME-LoRa
 - Dynamic slot allocation
 - Suitable network layers and performance under massive industrial deployments.

DSME-LoRa enables reliable long range P2P communication

- Suitable for large networks and battery-powered applications Future work
 - IPv6 over DSME-LoRa
 - Dynamic slot allocation
 - Suitable network layers and performance under massive industrial deployments.

Thanks!

We fully support reproducible research and open source software

https://github.com/inetrg/tosn-dsmelora22