

Dynamic Clock Reconfiguration for the Constrained IoT and its Application to Energy-efficient Networking

Michel Rottleuthner - HAW Hamburg

Thomas C. Schmidt - HAW Hamburg Matthias Wählisch - Freie Universität Berlin

EWSN'22 | 5. October 2022

IoT Firmware Development

ARMmbed

Zephyr[™]

Freie Universität

• Agile development

- Faster time to market
- Better interoperability
- Improved software support and updates (better security ?)

IoT Firmware Development

ARMmbed

Freie Universität

• Agile development

- Faster time to market
- Better interoperability
- Improved software support and updates (better security ?)

- Limited access to very hardware specific features
- \rightarrow Needed for low-power optimizations
- \rightarrow Must be added to the HAL to employ it cross-platform

Outline

- Motivation
 - A Catch with Modern IoT Firmware Development
- Energy in the Constrained IoT
- Dynamic Clock Configuration
- Our Approach: ScaleClock
 - Evaluation
 - Application: Energy-efficient Networking
- Conclusion & Future Work

Freie Universität

• Q&A

Dynamic Clock Reconfiguration for the Constrained IoT and its Application to Energy-efficient Networking

In the Constrained IoT

EWSN22 | 5. October 2022 | Michel Rottleuthner | michel.rottleuthner@haw-hamburg.de

- Duty Cycling
 - Put system to sleep on idle
 - Wakeup via timers or interrupts
 - No processing during sleep

- Duty Cycling
 - Put system to sleep on idle
 - Wakeup via timers or interrupts
 - No processing during sleep

- Duty Cycling
 - Put system to sleep on idle
 - Wakeup via timers or interrupts
 - No processing during sleep
- Power Gating
 - Disable unneeded peripherals
 - External and MCU-internal peripherals

- Duty Cycling
 - Put system to sleep on idle
 - Wakeup via timers or interrupts
 - No processing during sleep
- Power Gating
 - Disable unneeded peripherals
 - External and MCU-internal peripherals

Freie Universität

- Duty Cycling
 - Put system to sleep on idle
 - Wakeup via timers or interrupts
 - No processing during sleep
- Power Gating
 - Disable unneeded peripherals
 - External and MCU-internal peripherals

- Duty Cycling
 - Put system to sleep on idle
 - Wakeup via timers or interrupts
 - No processing during sleep
- Power Gating
 - Disable unneeded peripherals
 - External and MCU-internal peripherals

Freie Universität

- Duty Cycling
 - Put system to sleep on idle
 - Wakeup via timers or interrupts
 - No processing during sleep
- Power Gating
 - Disable unneeded peripherals
 - External and MCU-internal peripherals

Freie Universität

- Duty Cycling
 - Put system to sleep on idle
 - Wakeup via timers or interrupts
 - No processing during sleep
- Power Gating
 - Disable unneeded peripherals
 - External and MCU-internal peripherals
- Dynamic Voltage and Frequency Scaling
 - Fine grained performance control
 - Low-power processing

How to provide dynamic clock configuration with unified tooling?

Power Gating

- Turn off unused subsystems
- Dynamic Voltage and Frequency Scaling (DVFS)
 - Precise performance control
 - Requires access to the clock configuration subsystem

Not part of unified tooling

Dynamic Clock Reconfiguration for the Constrained IoT and its Application to Energy-efficient Networking

Problem Overview

EWSN22 | 5. October 2022 | Michel Rottleuthner | michel.rottleuthner@haw-hamburg.de

[6], [7]

[6], [7]

range(frequency) >> range(voltage) and voltage μ frequency

- Operations not always scale well with frequency (memory and peripheral access, radio communication, ...)
 - Scalability bottlenecks waste energy

HAMBURG

range(frequency) >> range(voltage) and voltage If frequency

How to detect those bottlenecks to save energy?

(from STM32L476RG reference manual RM0351)

Dynamic Clock Reconfiguration for the Constrained IoT and its Application to Energy-efficient Networking 27

(from STM32L476RG reference manual RM0351)

G Freie Universität

Dynamic Clock Reconfiguration for the Constrained IoT and its Application to Energy-efficient Networking 28

(from STM32L476RG reference manual RM0351)

STM32L476RG

EFM32PG12B

Dynamic Clock Reconfiguration for the Constrained IoT and its Application to Energy-efficient Networking

Our Approach: ScaleClock

EWSN22 | 5. October 2022 | Michel Rottleuthner | michel.rottleuthner@haw-hamburg.de

Clock Tree Abstraction in ScaleClock

Clock Tree Abstraction in ScaleClock

Freie Universität

How to provide dynamic clock configuration with unified tooling?

How to detect bottlenecks to save energy?

specific	Gale IVIUX Scaler Range Constraints	
Hardware		
	G Free University 🗊 Berlin Dynamic Clock Reconfiguration for the Constrained IoT and its Application to Energy-efficient Networki	

Performance Utilization Metric

How to detect bottlenecks to save energy?

Keithley DMM7510

Silicon Labs EFM32 slstk3402a

STMicroelectronics nucleo-l476rg

Dynamic Clock Reconfiguration for the Constrained IoT

and its Application to Energy-efficient Networking

Experiments & Evaluation Results

EWSN22 | 5. October 2022 | Michel Rottleuthner | michel.rottleuthner@haw-hamburg.de

Power Reduction

Power Reduction

→ Static power offset and slope differ between platforms
 → Instruction types impact consumption considerably

Topology Impact

(same task at different clock topology and frequency; compared to default)

HAMBURG

Topology Impact

(same task at different clock topology and frequency; compared to default)

→ Explicit topology control is needed due to its significant impact
 → Scaling closer to the source is preferrable

HAMBURG

Task Scalability

Task Scalability

Task-specific Performance Utilization

Task-specific Performance Utilization

→ Online assessed PU metric tracks energy-optimal frequency

PU-based DFS Control of Multithreaded Applications

Two tasks, one with low PU value (acquisition) and one with high PU value (processing)

HAMBURG

PU-based DFS Control of Multithreaded Applications

Two tasks, one with low PU value (acquisition) and one with high PU value (processing)

→ Performance Utilization metric serves as viable frequency control input

Dynamic Clock Reconfiguration for the Constrained IoT

and its Application to Energy-efficient Networking

Case Study Results

EWSN22 | 5. October 2022 | Michel Rottleuthner | michel.rottleuthner@haw-hamburg.de

(Frequency Impact)

(Frequency Impact)

inet

(Frequency Impact)

inet

RX, 64 Bytes UDP

Dynamic Clock Reconfiguration for the Constrained IoT and its Application to Energy-efficient Networking 54 Freie Universität

(Frequency Impact)

RX, 64 Bytes UDP

(Payload Size Impact; Energy-optimized vs. default; Normalized to max payload)

TΧ 18Energy [Normalized] ·★··Energy (default) -Energy (optimized) 15••••• Time (default) Time (optimized) 8 .5 -9 -6 ¥11¥11111 3 150200250 $\overline{50}$ 1000 Payload Size [Byte]

(Payload Size Impact; Energy-optimized vs. default; Normalized to max payload)

TΧ 18Energy [Normalized] ·★··Energy (default) -Energy (optimized) 15••••• Time (default) Time (optimized) 8 .5 9 Enerav Reduction 6 ¥11×11111 3 150 200 $\overline{50}$ 1002500 Payload Size [Byte]

HAMBURG

(Payload Size Impact; Energy-optimized vs. default; Normalized to max payload)

HAMBURG

(Payload Size Impact; Energy-optimized vs. default; Normalized to max payload)

(Payload Size Impact; Energy-optimized vs. default; Normalized to max payload)

→ Optimization beneficial for all UDP payload sizes
 → Temporal performance impact higher for RX

HAMBURG

Conclusion & Future Work

What did we learn and what's next?

EWSN22 | 5. October 2022 | Michel Rottleuthner | michel.rottleuthner@haw-hamburg.de

Conclusion

- Generic clock configuration feasible for common IoT platforms
 - Enables self-optimization for energy-aware systems

Application			
Utilization	OS / Scheduler		
Monitor Query	Transition Manager	Calback	
Generic Module -	Clock Configurator	Core Voltage Module	
Unified Interface -	Abstract Clock]	
Static Model &	Properties, Constraints, Flags Gate Mux Scaler	Voltage & Frequency Range Constraints	
Hardware			

Conclusion

- Generic clock configuration feasible for common IoT platforms
 - Enables self-optimization for energy-aware systems
- Frequency scaling is not enough
 - Voltage and topology control offer significant benefits
 - Online PU-assessment for task specific performance

Conclusion

- Generic clock configuration feasible for common IoT platforms
 - Enables self-optimization for energy-aware systems
- Frequency scaling is not enough
 - Voltage and topology control offer significant benefits
 - Online PU-assessment for task specific performance
- For energy-efficient networking

Freie Universität

- ... 40% energy can be saved without noticable performance impact
- ... 80% energy can be saved in case of non-critical timing

• More platforms & applications

- More platforms & applications
- Parametric power model for the clock subsystem
 - Determine parameters automatically

- More platforms & applications
- Parametric power model for the clock subsystem
 - Determine parameters automatically
- Optimize task characterization

- More platforms & applications
- Parametric power model for the clock subsystem
 - Determine parameters automatically
- Optimize task characterization
- Integration of different control mechanisms
 - Threshold selection, PID, AI, ...

Questions & Discussion

ScaleClock Sources
https://github.com/inetrg/RIOT/tree/ScaleClock

Related Websites

Internet Technologies research group | https://inet.haw-hamburg.de/ RIOT OS | https://www.riot-os.org/

Contact

Michel Rottleuthner | michel.rottleuthner@haw-hamburg.de Thomas C. Schmidt | t.schmidt@haw-hamburg.de Matthias Wählisch | m.waehlisch@fu-berlin.de

EWSN22 | 5. October 2022 | Michel Rottleuthner | michel.rottleuthner@haw-hamburg.de