CoRa

A Collision-Resistant LoRa Symbol Detector of Low Complexity José I. Álamos¹, Thomas C. Schmidt¹, Matthias Wählisch². ¹Hamburg University of Applied Sciences, Germany ²TU Dresden & Barkhausen Institut, Germany INFOCOM 2025 London, UK

LoRa Wireless Modulation Technique

Long range (up to 15 km)

High time on air (up to seconds)

Low power consumption (mJ)

Motivation

• LoRaWAN uses uncoordinated communication (ALOHA)

Motivation

- LoRaWAN uses uncoordinated communication (ALOHA)
- Long range increases aggregation at LoRaWAN gateways

Region	Population $(\frac{1}{km^2})$	10km-Radius Mean Arrival ($rac{1}{s}$)
Paris	21000	18325
London	5518	4815
Berlin	4000	3490

Draft IG LPWA Report (IEEE P802.15-17-0528-00-lpwa)

Motivation

- LoRaWAN uses uncoordinated communication (ALOHA)
- Long range increases aggregation at LoRaWAN gateways
- High collision rate due to long time on air

Region	Population $(\frac{1}{km^2})$	10km-Radius Mean Arrival ($rac{1}{s}$)
Paris	21000	18325
London	5518	4815
Berlin	4000	3490

Draft IG LPWA Report (IEEE P802.15-17-0528-00-lpwa)

Existing LoRa Receivers

• Baseline fails in multi-packet collisions

Existing LoRa Receivers

- Baseline fails in multi-packet collisions
- Prior work trades off throughput, complexity or needs symbol boundary information

Method	Throughput	Complexity	Requires Symbol Boundary Info.
AlignTrack (ICNP. '21)	Moderate	High	Yes
CIC (SIGCOMM '21)	High	High	Yes
TnB (<i>CoNEXT '22</i>)	High	Low	Yes
CoRa	High	Low	No

• Focus exclusively on the demodulation process

- Focus exclusively on the demodulation process
- No reliance on successful detection of colliding frames

Background

Core Idea

Evaluation

Conclusion

LoRa Modulation

Chirp Spread Spectrum $Y_0(t) = e^{j(\pi B t^2)}$

Chirp $(Y_0(t))$

Chirp spectrogram

Dechirp Procedure

Time

Dechirp Procedure

Time

Dechirp Procedure

Extracting Symbol Value from Dechirped Signal

Extracting Symbol Value from Dechirped Signal

Extracting Symbol Value from Dechirped Signal

Select frequency bin with the highest magnitude

LoRa Collisions

DFT Artifacts from Collisions

DFT Artifacts from Collisions

DFT Artifacts from Collisions

Goal

Detect the **complete** waveform in the dechirped signal within the demodulation window

Decomposition of a dechirped LoRa signal under collision

Proposal: Perform cross-correlation with a complex waveform template, inverted in the second half

Proposal: Perform cross-correlation with a complex waveform template, inverted in the second half

• 1. Linearity:

 $\langle s,h\rangle = \langle s_1,h_1\rangle + \langle s_2,h_2\rangle$

Proposal: Perform cross-correlation with a complex waveform template, inverted in the second half

• 1. Linearity:

 $\langle s,h
angle = \langle s_1,h_1
angle + \langle s_2,h_2
angle$

• 2. Phase-Shifting:

 $s_1(t) = k \cdot h_1(t)$, $s_2(t) = -k \cdot h_2(t)$

Proposal: Perform cross-correlation with a complex waveform template, inverted in the second half

• 1. Linearity:

 $\langle s,h
angle = \langle s_1,h_1
angle + \langle s_2,h_2
angle$

• 2. Phase-Shifting:

 $s_1(t) = k \cdot h_1(t)$, $s_2(t) = -k \cdot h_2(t)$

• Result:

$$\langle s_2, h_2 \rangle = - \langle s_2, h_1 \rangle \quad \Rightarrow \quad \langle s, h \rangle = 0$$

Signal (s(t))Magnitude $s_1(t)$ $s_2(t)$ $\frac{T}{2}$ Т 0 **Template** (h(t))Magnitude $h_1(t)$ $h_2(t$ 0 $\frac{T}{2}$ Т

Time

Efficient Cross-Correlation with DFT Tricks

Multiply the dechirped symbol by a phase-shifted mask m[n]:

$$\tilde{x}[n] = x[n] \cdot m[n]$$

Then compute:

$$\tilde{X}_k = \mathsf{DFT}\{\tilde{x}[n]\}$$

where

$$m[n] = \begin{cases} +1, & n < N/2\\ -1, & n \ge N/2 \end{cases}$$

 \Rightarrow Gives correlation with phase-shifted waveform at each k

• Phase-shifted mask introduces spectral leakage and therefore cannot be used directly as a feature

Phase-shifted DFT (\tilde{X}_k)

- Phase-shifted mask introduces spectral leakage and therefore cannot be used directly as a feature
- **Solution:** Pointwise minimum between X_k and \tilde{X}_k

- Phase-shifted mask introduces spectral leakage and therefore cannot be used directly as a feature
- **Solution:** Pointwise minimum between X_k and \tilde{X}_k

- Phase-shifted mask introduces spectral leakage and therefore cannot be used directly as a feature
- $\mathbf{h}_k = \frac{\min\left(|X_k|, |\tilde{X}_k|\right)}{|X_k|}$

- **Solution:** Pointwise minimum between X_k and \tilde{X}_k
- HPD: ratio of minimum-filtered to original DFT

HPD Alone Is Insufficient

Noise-induce spurious peaks yield false positives

Extending Feature Space: Peak Magnitude Deviation (PMD)

 Select peaks in the dechirped spectrum based on how closely their magnitude matched the expected peak magnitude (measured from preamble).

Normalized Frequency

Extending Feature Space: Peak Magnitude Deviation (PMD)

- Select peaks in the dechirped spectrum based on how closely their magnitude matched the expected peak magnitude (measured from preamble).
- We define the Peak Magnitude Deviation as:

$$\mathbf{p}_{k} = \min\left(\frac{||X_{k}| - E[X_{p}]|}{E[X_{p}]}, 1\right)$$

Dechirped DFT (X_k)

Normalized Frequency

Extending Feature Space: Peak Magnitude Deviation (PMD)

- Select peaks in the dechirped spectrum based on how closely their magnitude matched the expected peak magnitude (measured from preamble).
- We define the Peak Magnitude Deviation as:

$$\mathbf{p}_{k} = \min\left(\frac{||X_{k}| - E[X_{p}]|}{E[X_{p}]}, 1\right)$$

• The true symbol peak yields a PMD value near zero

Dechirped DFT (X_k)

Normalized Frequency

PMD Alone Is Insufficient

Collision peaks may match expected magnitude

Combining Features: Symbol Classifier

 $C_k = 1 \rightarrow$ valid symbol candidate $C_k = 0 \rightarrow$ invalid (e.g., noise or collision)

• **Goal:** Estimate $P(C_k | p_k, h_k)$

- **Goal:** Estimate $P(C_k | p_k, h_k)$
- Bayes theorem:

$$P(C_k \mid p_k, h_k) = \frac{P(p_k, h_k \mid C_k) P(C_k)}{P(p_k, h_k)}$$

- **Goal:** Estimate $P(C_k | p_k, h_k)$
- Bayes theorem:

$$P(C_k \mid p_k, h_k) = \frac{P(p_k, h_k \mid C_k) P(C_k)}{P(p_k, h_k)}$$

· Likelihoods from simulated collisions

- **Goal:** Estimate $P(C_k | p_k, h_k)$
- Bayes theorem:

$$P(C_k \mid p_k, h_k) = \frac{P(p_k, h_k \mid C_k) P(C_k)}{P(p_k, h_k)}$$

- · Likelihoods from simulated collisions
- Priors from class frequencies

Likelihood of True Symbol

• For each candidate bin *k*, we compute the posterior probability:

$$P(C_k = 1 \mid p_k, h_k)$$

Likelihood of True Symbol

• For each candidate bin *k*, we compute the posterior probability:

$$P(C_k=1 \mid p_k, h_k)$$

• True symbols cluster in regions with low PMD and low HPD.

Output of Features and Bayes Classifier

Dechirped DFT (X_k)

PMD (p_k)

Preamble Collision

• Preamble peaks exhibit identical frequency across consecutive symbols

Spectrogram of dechirped symbols

Preamble Collision

- Preamble peaks exhibit identical frequency across consecutive symbols
- Interference preamble peaks resemble valid symbols (full oscillation, correct magnitude).

Spectrogram of dechirped symbols

Preamble Filtering

• Peaks stable across consecutive symbols are likely preamble artifacts.

Preamble Filtering

- Peaks stable across consecutive symbols are likely preamble artifacts.
- We refine symbol demodulation by penalizing candidates present in both the current symbol T_m and the previous T_{m-1} .

$$\mathsf{P}_{\mathsf{final}}(k) = \mathsf{P}_{\mathcal{T}_m}(\mathcal{C}_k = 1 \mid p_k, h_k) \cdot ig(1 - \mathsf{P}_{\mathcal{T}_{m-1}}(\mathcal{C}_k = 1 \mid p_k, h_k)ig)$$

Preamble Filtering

- Peaks stable across consecutive symbols are likely preamble artifacts.
- We refine symbol demodulation by penalizing candidates present in both the current symbol T_m and the previous T_{m-1} .

$$\mathsf{P}_{\mathsf{final}}(k) = \mathsf{P}_{\mathcal{T}_m}(\mathcal{C}_k = 1 \mid p_k, h_k) \cdot ig(1 - \mathsf{P}_{\mathcal{T}_{m-1}}(\mathcal{C}_k = 1 \mid p_k, h_k)ig)$$

• Select k maximizing $P_{\text{final}}(k)$

Evaluation platform

Target platform: Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz

Evaluation scenario

• Real-world SDR captures under varying SNR conditions

	CIC Dataset (SIGCOMM '21')			TnB Dataset (CoNEXT '22')				
Parameter	D1	D2	D3	D4	Indoor	Outdoor1	Outdoor2	
Spreading Factor	8			8, 10				
Bandwidth [kHz]			250		125			
Coding Rate	4/5			4/5, 4/6, 4/7, 4/8				
Sampling Rate [MHz]			2		1			
SNR (SF8) [dB]	30 to 42	30 to 42	10 to 30	-17 to 5	-5 to 17	-10 to 10	-8 to 14	
SNR (SF10) [dB]	-		-9 to 23	-17 to 12	-13 to 12			
Payload size [B]	12			12				
Deployment area [m ²]	15 imes 10	100×60	170×100	1200 imes 1600	100×120	400×240	220×200	
TX Rate [pkt/s]	5 to 100			20, 25				
Capture Time [s]			60			30		

Evaluation scenario

- Real-world SDR captures under varying SNR conditions
- **CIC dataset:** fixed SF and coding rate, multiple transmission rates, short time on air

	CIC Dataset (SIGCOMM '21')			TnB Dataset (<i>CoNEXT '22'</i>)			
Parameter	D1	D2	D3	D4	Indoor	Outdoor1	Outdoor2
Spreading Factor			8		8, 10		
Bandwidth [kHz]			250		125		
Coding Rate	4/5				4/5, 4/6, 4/7, 4/8		
Sampling Rate [MHz]			2			1	
SNR (SF8) [dB]	30 to 42	30 to 42	10 to 30	-17 to 5	-5 to 17	-10 to 10	-8 to 14
SNR (SF10) [dB]			-		-9 to 23	-17 to 12	-13 to 12
Payload size [B]	12			12			
Deployment area [m ²]	15 imes 10	100×60	170 imes 100	1200 imes 1600	100×120	400×240	220×200
TX Rate [pkt/s]	5 to 100			20, 25			
Capture Time [s]			60			30	

Evaluation scenario

- Real-world SDR captures under varying SNR conditions
- **CIC dataset:** fixed SF and coding rate, multiple transmission rates, short time on air
- TnB dataset: fixed rate, varying SF and coding rate

	CIC Dataset (SIGCOMM '21')			TnB Dataset (CoNEXT '22')			
Parameter	D1	D2	D3	D4	Indoor	Outdoor1	Outdoor2
Spreading Factor	8			8, 10			
Bandwidth [kHz]			250		125		
Coding Rate	4/5				4/5, 4/6, 4/7, 4/8		
Sampling Rate [MHz]			2		1		
SNR (SF8) [dB]	30 to 42	30 to 42	10 to 30	-17 to 5	-5 to 17	-10 to 10	-8 to 14
SNR (SF10) [dB]			-		-9 to 23	-17 to 12	-13 to 12
Payload size [B]	12			12			
Deployment area [m ²]	15 imes10	100 imes 60	170 imes 100	1200×1600	100×120	400×240	220×200
TX Rate [pkt/s]	5 to 100			20, 25			
Capture Time [s]			60			30	

Throughput evaluation: CIC Dataset

 Up to 60 pkt/s under high SNR, and up to 40 pkt/s below the noise floor

Throughput evaluation: CIC Dataset

- Up to 60 pkt/s under high SNR, and up to 40 pkt/s below the noise floor
- Outperforms TnB, CIC and the baseline

Throughput evaluation: TnB Dataset

 CoRa outperforms other alternatives at highest coding rate

Throughput evaluation: TnB Dataset

- CoRa outperforms other alternatives at highest coding rate
- Best gain at low spreading factor and high SNR

Throughput evaluation: TnB Dataset

- CoRa outperforms other alternatives at highest coding rate
- Best gain at low spreading factor and high SNR
- Matches TnB under low SNR, high spreading factors and moderate coding rate

Performance Overhead

- CoRa runs in bounded time
 - \approx 3× the baseline demodulation
 - Still less than 2.5% of symbol time

Performance Overhead

- CoRa runs in bounded time
 - \approx 3× the baseline demodulation
 - Still less than 2.5% of symbol time
- TnB and CIC are excluded due to non-comparable implementations
 - Their execution is unbounded, as it grows with the number of collisions

Conclusions

High throughput	Comparable or exceeding SOTA techniques
Low latency processing	Less than 2.5% of the symbol time
Symbol scoped	Robust against frame detection failures
Robust to low SNR	Reliable under weak signal conditions.

Thank you for your attention!

We fully support reproducible research and open source software

Source code & Artifacts https://zenodo.org/records/14515243

Future work

- **Towards full packet recovery:** Explore new synchronization and decoding techniques to boost collision resolution.
- **Real-World Validation:** Implement the CoRa framework on a real SDR platform and evaluate performance under realistic deployment scenarios.

Throughput in simulated LTE ETU Channel²

²: 3GPP, Technical Report 36.873 V12.7.0, 2017

CoRa

A Collision-Resistant LoRa Symbol Detector of Low Complexity José I. Álamos¹, Thomas C. Schmidt¹, Matthias Wählisch². ¹Hamburg University of Applied Sciences, Germany ²TU Dresden & Barkhausen Institut, Germany INFOCOM 2025 London, UK

