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LoRa Wireless Modulation Technique

Long range (up to 15 km)

=
LORa High time on air (up to seconds)
=

Low power consumption (mJ)




Motivation
« LoRaWAN uses uncoordinated communication (ALOHA)
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Motivation

« LoRaWAN uses uncoordinated communication (ALOHA)
 Long range increases aggregation at LoRaWAN gateways

« High collision rate due to long time on air

Region | Population (;2;) | 10km-Radius Mean Arrival (1)
Paris 21000 18325
London 5518 4815
Berlin 4000 3490

Draft IG LPWA Report (IEEE P802.15-17-0528-00-Ipwa)




Existing LoRa Receivers

« Baseline fails in multi-packet collisions




Existing LoRa Receivers

« Baseline fails in multi-packet collisions

« Prior work trades off throughput, complexity or needs
symbol boundary information

Method Throughput Complexity Requires Symbol Boundary Info.
AlignTrack (ICNP. '21)  Moderate High Yes
CIC (SIGCOMM '21) High High Yes
TnB (CoNEXT '22) High Low Yes
CoRa High Low No



Scope

« Focus exclusively on the demodulation process
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Scope

« Focus exclusively on the demodulation process

* No reliance on successful detection of colliding frames

Raw 1Q Sync Demod Decode Decoded

samples (TnB) | (CoRa) | (TnB) packets
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LoRa Modulation

Chirp Spread Spectrum
Yo(t) = e/(7B%)
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Dechirp Procedure
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Dechirp Procedure

LoRa symbol (X(t))

Downchirp (Xp(t))
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Dechirp Procedure

Spectrogram
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Extracting Symbol Value from Dechirped Signal

Spectrogram
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Extracting Symbol Value from Dechirped Signal

Spectrogram Frequency spectrum
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Extracting Symbol Value from Dechirped Signal

Spectrogram Frequency spectrum
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LoRa Collisions

Spectrogram of dechirped symbols
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DFT Artifacts from Collisions
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DFT Artifacts from Collisions

Spectrogram Frequency spectrum
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Baseline LoRa decoder may not detect
symbols under strong signal interference




Goal

Detect the complete waveform in the dechirped signal within the
demodulation window

Decomposition of a dechirped LoRa signal under collision

Col. artifact 7 >~ >
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Dechirped signal (Sum) /\/\

7. Time T




Detecting Complete Waveforms

Proposal: Perform cross-correlation with a Signal (s (t))
complex waveform template, inverted in the 3 ‘
second half 2 |
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Detecting Complete Waveforms

Proposal: Perform cross-correlation with a Signal (s (t))
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Detecting Complete Waveforms

Proposal: Perform cross-correlation with a Signal (s (t))
complex waveform template, inverted in the 3 ‘
second half 2 | ! |
c
* 1. Linearity: & L s1(t) | s2(t) -
= 0 T T
2

(s,h) = (s1, h1) + (2, h2)

* 2. Phase-Shifting: Template (h(t))
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Efficient Cross-Correlation with DFT Tricks

Multiply the dechirped symbol by a phase-shifted mask m[n]:
X[n] = x[n] - m[n]

Then compute: .
Xi = DFT{X[n]}

where

+1, n<N/2
min] =
-1, n>NJ/2

= Gives correlation with phase-shifted waveform at each k

Core Idea




Derivation of Half-Period Discriminator (HPD)

® Phase-shifted mask introduces spectral leakage and therefore
cannot be used directly as a feature

Phase-shifted DFT (X\)
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Derivation of Half-Period Discriminator (HPD)

® Phase-shifted mask introduces spectral leakage and therefore
cannot be used directly as a feature

* Solution: Pointwise minimum between X, and X
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Derivation of Half-Period Discriminator (HPD)

® Phase-shifted mask introduces spectral leakage and therefore
cannot be used directly as a feature

* Solution: Pointwise minimum between X, and X

Phase-shifted DFT (Xj) Dechirped DFT (X) min (Xi, X¢)
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Derivation of Half-Period Discriminator (HPD)

® Phase-shifted mask introduces spectral leakage and therefore min <|Xk|, |)N(k|)
cannot be used directly as a feature h, = T

* Solution: Pointwise minimum between X, and X

® HPD: ratio of minimum-filtered to original DFT

Phase-shifted DFT (Xj) Dechirped DFT (Xj) min (Xi, Xx)
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HPD Alone Is Insufficient

Noise-induce spurious peaks yield false positives
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Extending Feature Space: Peak Magnitude

Deviation (PMD)

® Select peaks in the dechirped spectrum based on
how closely their magnitude matched the expected
peak magnitude (measured from preamble).

Core Idea
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Extending Feature Space: Peak Magnitude

Deviation (PMD)

® Select peaks in the dechirped spectrum based on
how closely their magnitude matched the expected
peak magnitude (measured from preamble).

* We define the Peak Magnitude Deviation as:
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Extending Feature Space: Peak Magnitude
Deviation (PMD)

Dechirped DFT (Xy)
® Select peaks in the dechirped spectrum based on

how closely their magnitude matched the expected
peak magnitude (measured from preamble).

(]
* We define the Peak Magnitude Deviation as: :é EX,]
oy
&0
(11X = E[Xp]| ) i
Px = min (, 1 =
E[Xp]

® The true symbol peak yields a PMD value near zero

Core Idea




PMD Alone Is Insufficient
Collision peaks may match expected magnitude

Dechirped DFT (X) PMD (px)
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Combining Features: Symbol Classifier

HPD
(h)

] Classifier

CkE 0,1

PMD | 0.1
(Pk)

Cx =1 — valid symbol candidate  Cx = 0 — invalid (e.g., noise or collision)




Bayesian Classification

- Goal: Estimate P(Cy | px, hk)




Bayesian Classification

- Goal: Estimate P(Cy | px, hk)

« Bayes theorem:

P(px, hi | Ci) P(Ck)

P(Ci | pi hie) =

’D(p/ﬁ hk)




Bayesian Classification

- Goal: Estimate P(Cy | px, hk)
« Bayes theorem:
P(px, he | Ci) P(Ck)

P(Ck | pkvhk) - P(pk hk)

o Likelihoods from simulated collisions




Bayesian Classification

- Goal: Estimate P(Cy | px, hk)
« Bayes theorem:
P(px, he | Ci) P(Ck)

P(Ck | pkvhk) - P(pk hk)

o Likelihoods from simulated collisions

* Priors from class frequencies




Likelihood of True Symbol

« For each candidate bin k, we compute
the posterior probability:

P(Cx = 1| px, h)




Likelihood of True Symbol

« For each candidate bin k, we compute
the posterior probability:

P(Cy =1 px, hy)

« True symbols cluster in regions with low
PMD and low HPD.
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Preamble Collision
« Preamble peaks exhibit identical frequency across consecutive

symbols
Spectrogram of dechirped symbols
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Preamble Collision
« Preamble peaks exhibit identical frequency across consecutive

symbols
« Interference preamble peaks resemble valid symbols (full

oscillation, correct magnitude).

Spectrogram of dechirped symbols
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Preamble Filtering

 Peaks stable across consecutive symbols are likely preamble
artifacts.




Preamble Filtering

 Peaks stable across consecutive symbols are likely preamble
artifacts.

« We refine symbol demodulation by penalizing candidates
present in both the current symbol T,, and the previous T,,_1.

Phinal(k) = P1,(Ck = 1| pi, he) - (1 = Pr, ,(Ce = 1| px, hi))




Preamble Filtering

 Peaks stable across consecutive symbols are likely preamble
artifacts.

« We refine symbol demodulation by penalizing candidates
present in both the current symbol T,, and the previous T,,_1.

Phinal(k) = P1,(Ck = 1| pi, he) - (1 = Pr, ,(Ce = 1| px, hi))

e Select k maximizing Pinai(k)




Evaluation platform

TnB Sync CoRa TnB BEC Decoder
(MATLAB) . (Python) (MATLAB)

|

Target platform:

Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz




Evaluation scenario

« Real-world SDR captures under varying SNR conditions

CIC Dataset (SIGCOMM '21’)

TnB Dataset (CoNEXT '22')

Parameter D1 D2 D3 D4 Indoor Outdoorl Outdoor2
Spreading Factor 8 8, 10

Bandwidth [kHz] 250 125

Coding Rate 4/5 4/5,4/6, 4/7, 4/8

Sampling Rate [MHz] 2 1

SNR (SF8) [dB] 30 to 42 30 to 42 10 to 30 -17to 5 -5 to 17 -10 to 10 -8 to 14

SNR (SF10) [dB] - 9to0 23 17t012  -13to 12
Payload size [B] 12 12

Deployment area [mz] 15 x 10 100 x 60 170 x 100 1200 x 1600 100 x 120 400 x 240 220 x 200
TX Rate [pkt/s] 5 to 100 20, 25

Capture Time [s] 60 30




Evaluation scenario

« Real-world SDR captures under varying SNR conditions
 CIC dataset: fixed SF and coding rate, multiple transmission
rates, short time on air

CIC Dataset (SIGCOMM '21’)

TnB Dataset (CoNEXT '22')

Parameter D1 D2 D3 D4 Indoor Outdoorl Outdoor2
Spreading Factor 8 8, 10

Bandwidth [kHz] 250 125

Coding Rate 4/5 4/5,4/6, 4/7, 4/8

Sampling Rate [MHz] 2 1
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Evaluation scenario

« Real-world SDR captures under varying SNR conditions

 CIC dataset: fixed SF and coding rate, multiple transmission
rates, short time on air

- TnB dataset: fixed rate, varying SF and coding rate

CIC Dataset (SIGCOMM '21’)

TnB Dataset (CoNEXT '22')

Parameter D1 D2 D3 D4 Indoor Outdoorl Outdoor2
Spreading Factor 8 8, 10

Bandwidth [kHz] 250 125

Coding Rate 4/5 4/5,4/6, 4/7, 4/8

Sampling Rate [MHz] 2 1

SNR (SF8) [dB] 30 to 42 30 to 42 10 to 30 -17to 5 -5 to 17 -10 to 10 -8 to 14

SNR (SF10) [dB] - 9to0 23 17t012  -13to 12
Payload size [B] 12 12

Deployment area [mz] 15 x 10 100 x 60 170 x 100 1200 x 1600 100 x 120 400 x 240 220 x 200
TX Rate [pkt/s] 5 to 100 20, 25

Capture Time [s] 60 30

Evaluation
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Throughput evaluation: CIC Dataset
« Up to 60 pkt/s under high

D1 (High SNR) D2 (High SNR w/o LoS)
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Throughput evaluation: CIC Dataset
« Up to 60 pkt/s under high
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Throughput evaluation: TnB Dataset

« CoRa outperforms other
alternatives at highest coding
rate
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Throughput evaluation: TnB Dataset

« CoRa outperforms other
alternatives at highest coding
rate

« Best gain at low spreading
factor and high SNR
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Throughput evaluation: TnB Dataset

« CoRa outperforms other
alternatives at highest coding
rate

Spreading Factor 8 Spreading Factor 10
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« Best gain at low spreading §05 5 5 5 55 s
factor and high SNR

« Matches TnB under low SNR,
high spreading factors and
moderate coding rate
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Performance Overhead

« CoRa runs in bounded time

CoRa
* =¥ 3 the baseline demodulation
« Still less than 2.5% of symbol time
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Performance Overhead

« CoRa runs in bounded time .
» &~ 3% the baseline demodulation -

« Still less than 2.5% of symbol time
« TnB and CIC are excluded due to
non-comparable implementations

» Their execution is unbounded, as it

Spreading Factor

Baseline
grows with the number of collisions % =
Eﬁo . Argma
Ea
=
20 -
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Conclusions

High throughput Comparable or exceeding SOTA techniques

Low latency processing Less than 2.5% of the symbol time

Symbol scoped Robust against frame detection failures

Robust to low SNR Reliable under weak signal conditions.




Thank you for your attention!

We fully support reproducible research and open source software

=], o]

Source code & Artifacts
https://zenodo.org/records/14515243

Conclusion



https://zenodo.org/records/14515243
https://zenodo.org/records/14515243

Future work

« Towards full packet recovery: Explore new synchronization
and decoding techniques to boost collision resolution.

« Real-World Validation: Implement the CoRa framework on a
real SDR platform and evaluate performance under realistic
deployment scenarios.

Conclusion CoRa 32




Throughput in simulated LTE ETU Channel?
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2. 3GPP, Technical Report 36.873 V12.7.0, 2017
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