
Towards Actor Programming for
High-Performance Computing

Dominik Charousset
dominik.charousset@haw-hamburg.de

iNET RG, Department of Computer Science
Hamburg University of Applied Sciences

August 2016

Concurrency & Beyond

Developers face not one, but multiple trends:
Concurrency: More cores on desktops & mobiles
Accelerators: One binary, multiple instruction sets
Cloud & cluster computing: Highly distributed deployment
Embedded platforms: Distributed with limited node capabilities

⇒ Heterogeneous platforms, concurrency & distribution

Dominik Charousset iNET – HAW Hamburg 2

Concurrency & Beyond

Developers face not one, but multiple trends:
Concurrency: More cores on desktops & mobiles
Accelerators: One binary, multiple instruction sets
Cloud & cluster computing: Highly distributed deployment
Embedded platforms: Distributed with limited node capabilities

⇒ Heterogeneous platforms, concurrency & distribution

Dominik Charousset iNET – HAW Hamburg 2

Concurrency & Beyond

Developers face not one, but multiple trends:
Concurrency: More cores on desktops & mobiles
Accelerators: One binary, multiple instruction sets
Cloud & cluster computing: Highly distributed deployment
Embedded platforms: Distributed with limited node capabilities

⇒ Heterogeneous platforms, concurrency & distribution

Dominik Charousset iNET – HAW Hamburg 2

Concurrency & Beyond

Developers face not one, but multiple trends:
Concurrency: More cores on desktops & mobiles
Accelerators: One binary, multiple instruction sets
Cloud & cluster computing: Highly distributed deployment
Embedded platforms: Distributed with limited node capabilities

⇒ Heterogeneous platforms, concurrency & distribution

Dominik Charousset iNET – HAW Hamburg 2

Concurrency & Beyond

Developers face not one, but multiple trends:
Concurrency: More cores on desktops & mobiles
Accelerators: One binary, multiple instruction sets
Cloud & cluster computing: Highly distributed deployment
Embedded platforms: Distributed with limited node capabilities

⇒ Heterogeneous platforms, concurrency & distribution

Dominik Charousset iNET – HAW Hamburg 2

We Need Scalable Abstractions

Programming tools should enable users to scale applications
Avoid race conditions by design (no locks!)
Keep API stable when transitioning from one to many nodes
Compose large systems out of small components (testability!)
Provide a runtime that scales from the IoT up to HPC

Microcontrollers Servers Supercomputers

Dominik Charousset iNET – HAW Hamburg 3

We Need Scalable Abstractions

Programming tools should enable users to scale applications
Avoid race conditions by design (no locks!)
Keep API stable when transitioning from one to many nodes
Compose large systems out of small components (testability!)
Provide a runtime that scales from the IoT up to HPC

Microcontrollers Servers Supercomputers

Dominik Charousset iNET – HAW Hamburg 3

We Need Scalable Abstractions

Programming tools should enable users to scale applications
Avoid race conditions by design (no locks!)
Keep API stable when transitioning from one to many nodes
Compose large systems out of small components (testability!)
Provide a runtime that scales from the IoT up to HPC

Microcontrollers Servers Supercomputers

Dominik Charousset iNET – HAW Hamburg 3

We Need Scalable Abstractions

Programming tools should enable users to scale applications
Avoid race conditions by design (no locks!)
Keep API stable when transitioning from one to many nodes
Compose large systems out of small components (testability!)
Provide a runtime that scales from the IoT up to HPC

Microcontrollers Servers Supercomputers

Dominik Charousset iNET – HAW Hamburg 3

We Need Scalable Abstractions

Programming tools should enable users to scale applications
Avoid race conditions by design (no locks!)
Keep API stable when transitioning from one to many nodes
Compose large systems out of small components (testability!)
Provide a runtime that scales from the IoT up to HPC

Microcontrollers Servers Supercomputers

Dominik Charousset iNET – HAW Hamburg 3

Agenda

1 The Actor Model

2 CAF – Actors in C++11

3 Case Study: CAF vs. OpenMPI

4 Towards HPC Actor Programming

5 Possible Stepping Stones

6 Conclusion

Dominik Charousset iNET – HAW Hamburg 4

The Actor Model

Actors are concurrent entities, that ...
Communicate via message passing
Do not share state
Can create (“spawn”) more actors
Can monitor other actors

Dominik Charousset iNET – HAW Hamburg 5

Brief History of the Actor Model

Term was coined in 1973 by Hewitt, Bishop, and Steiger
Roots in artificial intelligence & functional programming
First widespread de facto implementation: Erlang (1986)
Sudden peak of interest with advent of multicore machines

Dominik Charousset iNET – HAW Hamburg 6

Implications of the Actor Model

Actor: universal primitive for parallelism
Actors run concurrently
Lightweight actors outperform equivalent thread-based approaches
Actor-based solutions often use divide & conquer strategies
Deployment at runtime independent from application logic
Communication between actors is network transparent

Dominik Charousset iNET – HAW Hamburg 7

Actor Programming

case 1

input: M pattern 1 matched M

case 2pattern 2 matched M

else

receive
next

message

case Npattern N matched M

else

else

Actor Programming is Message-Oriented Programming
Actors are active objects
No direct method invocation, only messages
Messages passing hides location of receiver

Dominik Charousset iNET – HAW Hamburg 8

Linking Actors

alice

exit message
(non-normal exit reason)

link

bob

quit()

Dominik Charousset iNET – HAW Hamburg 9

Linking Actors

alice

exit message
(non-normal exit reason)

link

bob

quit()

Bidirectional monitoring
Errors are propagated through exit messages
When receiving an exit message:

Actors fail for the same reason per default
Actors can override default to handle failures manually

Build systems where all actors are alive or have collectively failed

Dominik Charousset iNET – HAW Hamburg 9

Supervision Trees

High-level hierarchical error management in Erlang
Upper actors (supervisor) monitor lower actors (workers)
Policy-based restart of workers (possibly remotely) on failure

...W1 W2 W3 Wn

S

Example tree

1/4

Dominik Charousset iNET – HAW Hamburg 10

Supervision Trees

High-level hierarchical error management in Erlang
Upper actors (supervisor) monitor lower actors (workers)
Policy-based restart of workers (possibly remotely) on failure

...W1 W2 W3 Wn

S

re
sta

rt

One-for-one strategy

2/4

Dominik Charousset iNET – HAW Hamburg 10

Supervision Trees

High-level hierarchical error management in Erlang
Upper actors (supervisor) monitor lower actors (workers)
Policy-based restart of workers (possibly remotely) on failure

...W1 W2 W3 Wn

S

res
tart

restartre
sta

rt restart

One-for-all strategy

3/4

Dominik Charousset iNET – HAW Hamburg 10

Supervision Trees

High-level hierarchical error management in Erlang
Upper actors (supervisor) monitor lower actors (workers)
Policy-based restart of workers (possibly remotely) on failure

...W1 W2 W3 Wn

S

re
sta

rt restart

restart

Rest-for-one strategy

4/4

Dominik Charousset iNET – HAW Hamburg 10

Benefits of the Actor Model

High-level, explicit communication between SW components
Robust software design: No locks, no implicit sharing
High level of abstraction for developing software

Applies to concurrency and distribution
Abstraction over deployment
Messaging across heterogeneous HW components & networks

Provides strong failure semantics
Hierarchical error management
Re-deployment at runtime

Dominik Charousset iNET – HAW Hamburg 11

Benefits of the Actor Model

High-level, explicit communication between SW components
Robust software design: No locks, no implicit sharing
High level of abstraction for developing software

Applies to concurrency and distribution
Abstraction over deployment
Messaging across heterogeneous HW components & networks

Provides strong failure semantics
Hierarchical error management
Re-deployment at runtime

Dominik Charousset iNET – HAW Hamburg 11

Benefits of the Actor Model

High-level, explicit communication between SW components
Robust software design: No locks, no implicit sharing
High level of abstraction for developing software

Applies to concurrency and distribution
Abstraction over deployment
Messaging across heterogeneous HW components & networks

Provides strong failure semantics
Hierarchical error management
Re-deployment at runtime

Dominik Charousset iNET – HAW Hamburg 11

Actors in High Performance Computing?

HPC is getting more heterogeneous
Accelerators like NVIDIA Tesla & Intel Phi increase complexity
MPI and OpenMP only address individual problems at low level

In-transit and in situ analysis is challenging
Low-level messaging APIs come with strong coupling
Actors can help to decouple and allow flexible deployment

Actors systems can move computations instead of data
Data storages & networks are bottlenecks
Spawning actors near sources increases data locality

Dominik Charousset iNET – HAW Hamburg 12

Agenda

1 The Actor Model

2 CAF – Actors in C++11

3 Case Study: CAF vs. OpenMPI

4 Towards HPC Actor Programming

5 Possible Stepping Stones

6 Conclusion

Dominik Charousset iNET – HAW Hamburg 13

About CAF

Lightweight & fast actor model implementation
First commit: 4 Mar 2011
Developed at iNET research group (HAW Hamburg)
> 40,000 lines of code1

Active, international community

1https://www.openhub.net/p/actor-framework

Dominik Charousset iNET – HAW Hamburg 14

Who is using CAF?

CAF currently focuses on infrastructure software
Building blocks for essential software components
Emphasis on reliability, efficiency and maintainability
Relevant to users in both academia and industry

Dominik Charousset iNET – HAW Hamburg 15

CAF in MMOs

Dual Universe2

Single Shard Sandbox MMO
Backend based on CAF
Developed at Novaquark (Paris), currently in pre-alpha

2http://www.dual-thegame.com/

Dominik Charousset iNET – HAW Hamburg 16

CAF in Network Forensics

VAST: Visibility Across Space and Time3

Platform for network forensics and incident response
Distributed realtime indexing of network events
Interactive, iterative queries on large data sets
Developed at UC Berkeley, currently in pre-alpha

3http://vast.io

Dominik Charousset iNET – HAW Hamburg 17

CAF in Communication Backends

Broker4: Bro’s Messaging Library
Implements Bro’s high-level communication patterns
Subscription-based communication model
Distributed data store and event handling
Developed at ICSI Berkeley, currently in beta

4https://github.com/bro/broker

Dominik Charousset iNET – HAW Hamburg 18

CAF Actors are meant to Scale

Flexible C++ runtime that adapts to deployment
Scale up/down from motes to high-end servers
Scale in/out from desktops to clusters

Efficient program execution
Low memory footprint
Fast, lock-free mailbox implementation

Transparent integration of OpenCL-based actors
Hide complexity of communicating with heterogeneous hardware
Offload work to GPGPUs simply by sending messages

Dominik Charousset iNET – HAW Hamburg 19

CAF Actors are meant to Scale

Flexible C++ runtime that adapts to deployment
Scale up/down from motes to high-end servers
Scale in/out from desktops to clusters

Efficient program execution
Low memory footprint
Fast, lock-free mailbox implementation

Transparent integration of OpenCL-based actors
Hide complexity of communicating with heterogeneous hardware
Offload work to GPGPUs simply by sending messages

Dominik Charousset iNET – HAW Hamburg 19

CAF Actors are meant to Scale

Flexible C++ runtime that adapts to deployment
Scale up/down from motes to high-end servers
Scale in/out from desktops to clusters

Efficient program execution
Low memory footprint
Fast, lock-free mailbox implementation

Transparent integration of OpenCL-based actors
Hide complexity of communicating with heterogeneous hardware
Offload work to GPGPUs simply by sending messages

Dominik Charousset iNET – HAW Hamburg 19

Core Architecture of CAF

Type System

1/8

Dominik Charousset iNET – HAW Hamburg 20

Core Architecture of CAF

Type System

Pattern Matching EngineSerialization Layer

2/8

Dominik Charousset iNET – HAW Hamburg 20

Core Architecture of CAF

Type System

Pattern Matching EngineSerialization Layer

Middleman

Cooperative Scheduler

OpenCL Binding

3/8

Dominik Charousset iNET – HAW Hamburg 20

Core Architecture of CAF

Type System

Pattern Matching EngineSerialization Layer

Middleman

Cooperative Scheduler

OpenCL Binding

Proxy Actor
Local (CPU) Actor

OpenCL Actor Facade

4/8

Dominik Charousset iNET – HAW Hamburg 20

Core Architecture of CAF

Type System

Pattern Matching EngineSerialization Layer

Middleman

Message Passing Layer

Proxy Actor
Local (CPU) Actor

Cooperative Scheduler

OpenCL Actor Facade

OpenCL Binding

5/8

Dominik Charousset iNET – HAW Hamburg 20

Core Architecture of CAF

Type System

Pattern Matching EngineSerialization Layer

Middleman

Cooperative Scheduler

OpenCL Binding

Proxy Actor
Local (CPU) Actor

OpenCL Actor Facade

Message Passing Layer

Managed completely
by middleman

6/8

Dominik Charousset iNET – HAW Hamburg 20

Core Architecture of CAF

Type System

Pattern Matching EngineSerialization Layer

Middleman

Cooperative Scheduler

OpenCL Binding

Proxy Actor
Local (CPU) Actor

OpenCL Actor Facade

Message Passing Layer

Crated by using
spawn_cl<Signature>(

kernel_source,
kernel_name,
dimensions);

7/8

Dominik Charousset iNET – HAW Hamburg 20

Core Architecture of CAF

Type System

Pattern Matching EngineSerialization Layer

Middleman

Cooperative Scheduler

OpenCL Binding

Proxy Actor
Local (CPU) Actor

OpenCL Actor Facade

Message Passing Layer

Crated by using one of:
spawn(fun, args…);

spawn<Impl>(ctor_args…);

8/8

Dominik Charousset iNET – HAW Hamburg 20

Class vs. Actor Interfaces

class KeyValStore {
public:

void set(Key k, Val v);
Val get(Key k) const;

};

Method invocation

Race conditions likely

Concurrent performance
is a function of
developer skill

using KeyValStore =
typed_actor <
reacts_to <set , Key , Val >,
replies_to <get , Key >

::with <Val >>;

Message passing

Data race impossible

Supports massively
parallel access &
remote invocation

Dominik Charousset iNET – HAW Hamburg 21

Class vs. Actor Interfaces

class KeyValStore {
public:

void set(Key k, Val v);
Val get(Key k) const;

};

Method invocation

Race conditions likely

Concurrent performance
is a function of
developer skill

using KeyValStore =
typed_actor <
reacts_to <set , Key , Val >,
replies_to <get , Key >

::with <Val >>;

Message passing

Data race impossible

Supports massively
parallel access &
remote invocation

Dominik Charousset iNET – HAW Hamburg 21

Class vs. Actor Interfaces

class KeyValStore {
public:

void set(Key k, Val v);
Val get(Key k) const;

};

Method invocation

Race conditions likely

Concurrent performance
is a function of
developer skill

using KeyValStore =
typed_actor <
reacts_to <set , Key , Val >,
replies_to <get , Key >

::with <Val >>;

Message passing

Data race impossible

Supports massively
parallel access &
remote invocation

Dominik Charousset iNET – HAW Hamburg 21

Class vs. Actor Interfaces

class KeyValStore {
public:

void set(Key k, Val v);
Val get(Key k) const;

};

Method invocation

Race conditions likely

Concurrent performance
is a function of
developer skill

using KeyValStore =
typed_actor <
reacts_to <set , Key , Val >,
replies_to <get , Key >

::with <Val >>;

Message passing

Data race impossible

Supports massively
parallel access &
remote invocation

Dominik Charousset iNET – HAW Hamburg 21

Simple Calculator in CAF

using math_t = typed_actor <replies_to <int ,int >::with <int >>;
math_t :: behavior_type math_server () {

return {
[](int a, int b) {

return a + b;
}

};
}
void math_client(event_based_actor* self , math_t ms) {

self ->request(ms , 10s, 40, 2). then(
[=](int result) {

cout << "40 + 2 = " << result << endl;
}

);
}
// system.spawn(math_client , system.spawn(math_server));

Dominik Charousset iNET – HAW Hamburg 22

Simple Calculator in CAF

using math_t = typed_actor <replies_to <int ,int >::with <int >>;
math_t :: behavior_type math_server () {

return {
[](int a, int b) {

return a + b;
}

};
}
void math_client(event_based_actor* self , math_t ms) {

self ->request(ms , 10s, 40, 2). then(
[=](int result) {

cout << "40 + 2 = " << result << endl;
}

);
}
// system.spawn(math_client , system.spawn(math_server));

typedef with interface definition
for convenience

Dominik Charousset iNET – HAW Hamburg 22

Simple Calculator in CAF

using math_t = typed_actor <replies_to <int ,int >::with <int >>;
math_t :: behavior_type math_server () {

return {
[](int a, int b) {

return a + b;
}

};
}
void math_client(event_based_actor* self , math_t ms) {

self ->request(ms , 10s, 40, 2). then(
[=](int result) {

cout << "40 + 2 = " << result << endl;
}

);
}
// system.spawn(math_client , system.spawn(math_server));

return message handler for
incoming messages (used until

replaced or actor is done)

Dominik Charousset iNET – HAW Hamburg 22

Simple Calculator in CAF

using math_t = typed_actor <replies_to <int ,int >::with <int >>;
math_t :: behavior_type math_server () {

return {
[](int a, int b) {

return a + b;
}

};
}
void math_client(event_based_actor* self , math_t ms) {

self ->request(ms , 10s, 40, 2). then(
[=](int result) {

cout << "40 + 2 = " << result << endl;
}

);
}
// system.spawn(math_client , system.spawn(math_server));

types of message handlers
must match interface definition

Dominik Charousset iNET – HAW Hamburg 22

Simple Calculator in CAF

using math_t = typed_actor <replies_to <int ,int >::with <int >>;
math_t :: behavior_type math_server () {

return {
[](int a, int b) {

return a + b;
}

};
}
void math_client(event_based_actor* self , math_t ms) {

self ->request(ms , 10s, 40, 2). then(
[=](int result) {

cout << "40 + 2 = " << result << endl;
}

);
}
// system.spawn(math_client , system.spawn(math_server));

send a message and then
wait for response

 (using a "one-shot handler")

Dominik Charousset iNET – HAW Hamburg 22

Agenda

1 The Actor Model

2 CAF – Actors in C++11

3 Case Study: CAF vs. OpenMPI

4 Towards HPC Actor Programming

5 Possible Stepping Stones

6 Conclusion

Dominik Charousset iNET – HAW Hamburg 23

Case Study: Distributed Mandelbrot

Calculate images of the Mandelbrot set in C++
Simple, highly distributable algorithm
Distributed using (1) CAF and (2) OpenMPI

Same source code for calculation
Only the message passing layers differ

Dominik Charousset iNET – HAW Hamburg 24

Case Study Results

4 8 1 2 1 6 2 0 2 4 2 8 3 2 3 6 4 0 4 4 4 8 5 2 5 6 6 0 6 40
5 0 0

1 0 0 0
1 5 0 0
2 0 0 0
2 5 0 0
3 0 0 0
3 5 0 0
4 0 0 0

3 2 3 6 4 0 4 4 4 8 5 2 5 6 6 0 6 42 0 0
2 5 0
3 0 0
3 5 0
4 0 0
4 5 0
5 0 0

 Tim
e [

s]

N u m b e r o f W o r k e r V M s [#]

 C A F
 O p e n M P I

Both implementations exhibit equal scaling behavior
Doubling the number of worker nodes halves the runtime
CAF slightly faster despite higher level of abstraction

Dominik Charousset iNET – HAW Hamburg 25

Case Study Discussion

Higher level of abstraction does not imply lower performance
Message passing in CAF has minimal overhead
Relatively small number of nodes in test setup (64)
No other MPI implementations tested (e.g. Intel MPI)
CAF not yet ready for HPC technologies such as Infiniband

Dominik Charousset iNET – HAW Hamburg 26

Agenda

1 The Actor Model

2 CAF – Actors in C++11

3 Case Study: CAF vs. OpenMPI

4 Towards HPC Actor Programming

5 Possible Stepping Stones

6 Conclusion

Dominik Charousset iNET – HAW Hamburg 27

Goal: Data-driven Actors

User defines high-level data model
Runtime instantiates actors on demand
Self-organizing runtime instead of hard-wired messaging
Maximize data locality by moving actors, not data
Build extensible message flows and computation steps
Tools for visualization of system state & live data

Dominik Charousset iNET – HAW Hamburg 28

Benefits for HPC Developers

Reduced complexity
Faster development cycles
Domain-specific data models
Composability and re-usability

Dominik Charousset iNET – HAW Hamburg 29

Challenges for CAF

HPC network backend (Infiniband)
DSL for defining data models and task dependencies
New tools for visualization and debugging
Optimize CAF internals further, particularly memory access
Scalable algorithms for self-organizing actors

Dominik Charousset iNET – HAW Hamburg 30

Agenda

1 The Actor Model

2 CAF – Actors in C++11

3 Case Study: CAF vs. OpenMPI

4 Towards HPC Actor Programming

5 Possible Stepping Stones

6 Conclusion

Dominik Charousset iNET – HAW Hamburg 31

Improve Existing HPC Tool

Parallel actor pipelines as first step
Model data processing steps as actors
Gain experience with “less critical” post processing
Example: parallel Climate Data Operators (CDO) with CAF

Dominik Charousset iNET – HAW Hamburg 32

Integrate CAF into Existing Middleware

Deploy actors in data streams of Net-CDF4/HDF5
Re-use data processing actors for in-transit operations
Proof of concept for dynamic in-transit work flows with CAF

Dominik Charousset iNET – HAW Hamburg 33

Agenda

1 The Actor Model

2 CAF – Actors in C++11

3 Case Study: CAF vs. OpenMPI

4 Towards HPC Actor Programming

5 Possible Stepping Stones

6 Conclusion

Dominik Charousset iNET – HAW Hamburg 34

Conclusion

We believe actor programming is a good fit for HPC
A high level of abstraction can increase robustness & efficiency
Data-driven actors are also relevant in smaller deployments
The most important first step for us is finding the right community

Dominik Charousset iNET – HAW Hamburg 35

Conclusion

We believe actor programming is a good fit for HPC
A high level of abstraction can increase robustness & efficiency
Data-driven actors are also relevant in smaller deployments
The most important first step for us is finding the right community

Dominik Charousset iNET – HAW Hamburg 35

Conclusion

We believe actor programming is a good fit for HPC
A high level of abstraction can increase robustness & efficiency
Data-driven actors are also relevant in smaller deployments
The most important first step for us is finding the right community

Dominik Charousset iNET – HAW Hamburg 35

Conclusion

We believe actor programming is a good fit for HPC
A high level of abstraction can increase robustness & efficiency
Data-driven actors are also relevant in smaller deployments
The most important first step for us is finding the right community

Dominik Charousset iNET – HAW Hamburg 35

Thank you for your attention!

Home page: http://actor-framework.org

iNET research group: http://inet.cpt.haw-hamburg.de

Sources: https://github.com/actor-framework/actor-framework

Dominik Charousset iNET – HAW Hamburg 36

	The Actor Model
	CAF – Actors in C++11
	Case Study: CAF vs. OpenMPI
	Towards HPC Actor Programming
	Possible Stepping Stones
	Conclusion

