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Abstract—The audience of shared content in Social Media
is often hard to determine. To protect users from over-sharing,
several services provide a feature for grouping contacts. Com-
munities, interest groups, and circles are common examples. In
this work, we investigate the structural properties of the circles in
Google+ in comparison to the well-known communities. Based on
several data sets and scoring functions, we search for the specific
characteristics of circles. Our findings indicate that circles indeed
form a special substructure that clearly differs from community
groups. While the internal connectivity of circles and communities
appear fairly similar, circles admit a much enhanced intensity of
external relations. Circles resemble communities to which a large
number of external links have been added. Selective sharing in
circles is thus less confined.

Keywords—Social media analysis; social graph structure; group
formation; privacy;

I. INTRODUCTION

In Social Media applications like Blogs, Online Social
Networks (OSNs), or Micro Feeds, users can communicate
and share content in groups. While the audience of direct
communication and private messages is explicitly known,
content sharing and status messaging are commonly distributed
via implicit replication on the platform. A possible large
audience of a post is often not considered by the user, but
may have significant impact on his personal life. The so called
over-sharing of content can be avoided using features for
selective sharing [1], which are provided by several Social
Media services. The concept of selective sharing was designed
to support a context-dependent publication behaviour. In dif-
ferent contexts like work, family, or friends, a person can
act differently according to appropriate norms and accepted
conventions. These so called facets [2] or foci [3] describe
different social aspects in the life of a person and provide the
theoretical background of selective sharing features.

Released only in 2011, Google+ is a latecomer in the world
of Online Social Networks. One of its characteristic features
are the circles. Circles allow users to group their contacts
in different containers provided by the platform, and manage
their different social facets. Preconfigured circles are friends,
family and acquaintances, as well as all following users. It is
also possible to rename the default circles or add customized
ones. The range of users, who can read a post, is limited to
members of the target circle that was selected when the post
was created. Besides selective sharing, the Google+ circles also
enable selective reception of content streams generated by the
contacts in each circle. While the circles are private to the
user per default, there is the option to share circles. Another

interesting feature of Google+ is directed edges, which are
created by adding users to circles. Outgoing edges are named
’In your circles’ and incoming edges ’In circles of others’.
These directed links in Google+ make it a hybrid network
between typical OSNs like Facebook and Micro-blogging
services like Twitter [4].

We are interested in understanding the group structures
within OSNs [5], [6]. In this work, we investigate the char-
acteristics of circles within the Google+ graph and compare
to well-known group structures like communities. We want to
find out how particular these circles are, and try to identify a
clear signature of their structure if available.

A circle is actively created and shaped by its owner, possi-
bly based on a personal perspective. In contrast, communities
or groups follow a subscribe model and are open for joining
by different users who share a common attribute. Given such
difference in composition, it is natural to question the similarity
of the results. Using a variety of empirical data sets, we explore
the following details:

1) Are circles pronounced structures in the social graph,
well distinguished from the underlying network?

2) Resemble circles communities or other group struc-
tures of classical social networks, or do circles show
distinct characteristics?

To answer these question, we analyze the data sets using
different scoring functions. We base our results on four scoring
functions from the field of community detection that focus on
specific characteristics of network communities. Our findings
indicate that circles do admit a very pronounced structure that
differs from other groups by its connectivity with the remaining
social graph. While traditional communities are rather closed
groups with few relations to the outside, circles in Google+ are
densely connected internally and externally. This makes them
appear like communities with many additional transit links.

The remainder of this paper is structured as follows. We
continue with reviewing related work on Google+ and its circle
feature. In Section III, we discuss the theoretical differences
between circles and traditional communities. The following
Section IV characterizes the Google+ and LiveJournal data
sets that we use in our evaluation. In Section V, we evaluate
and discuss the questions stated above. We conclude in Section
VI and give an outlook.



II. RELATED WORK

Since its release, Google+ has attracted research. Schiöberg
et al. [4] traced the social graph in the beta and initial public
phase. They found that the asymmetric relations in Google+
lead to a hybrid form composed of classic social network like
Facebook and of Social Media services like Twitter.

Gonzales et al. [7] likewise performed several crawls of the
Google+ graph in a one year period. Their extensive analysis
captures the connectivity of the network, user activity and
information sharing. The authors conclude that Google+ is
a broadcast social media system with a small group of very
active users. These users create the largest part of the visible
activity and attract other users to join. Our work backs these
first-hand observations by a quantitative structural analysis.

Magno et al. [8] also crawled Google+ in its creation phase.
While the authors evaluated metrics typical for social network
analysis, they also included reciprocity. This measure describes
describes the correlation between in- and out-degrees for a
given vertex or set of vertices. Besides the network structure,
the authors focus on demographic properties and investigate
the geo-location of users.

Aside from the typical social network features, circles are
an interesting field for analyzing social behaviour. Kairam et
al. [1] focus on the selective sharing aspect and how it is used
in Google+. They apply the theory of facets of a person’s
life. Each facet covers a specific group of personal contacts
from daily life. While some people share the same information
with all people they know, some people want to share targeted
information just with some people. Kairam et al. show in
their work, that circles on Goolge+ correspond to these natural
groupings.

McCauley and Leskovec [9] propose a model for auto-
matically discovering circles in a given ego-network. The
ego-network of a user covers all vertices he is connected
to and all edges between these vertices. Based on the ego-
network of a user, they formulate the circle detection as a
clustering problem that is applied to a user’s ego-network.
The authors aim at modelling properties with respect to the
assumed characteristics of circles: i) vertices in a circle share
a common property or aspect, ii) each circle is formed by a
different aspect and iii) circles can overlap meaning that strong
circles can be within weaker ones. These characteristics define
circles as some kind of network community, and we want to
evaluate how far this agreement holds.

Fang et al. [10] investigate the impact of the circle-sharing
feature for the network growth and structure of the Google+
social network. According to their clustering, shared circles
can be categorized into two main groups: communities, which
have a high link density and reciprocity, as well as celebrities,
which have a low in-circle density, low reciprocity but a very
high in-degree. These two categories show the main motivation
of users to share their circles: they want to share group of users,
which may have a common attribute or represent a facet of
their life, or they want to share a group of popular people.

In a methodological study of common concern, Yang and
Leskovec [11] evaluate community metrics on data sets, which
include ground-truth communities. The authors map ground-
truth communities to crawled network communities, which are

explicitly labelled in the provided evaluation data. They use
230 different social, collaboration and information networks
to test 13 scoring functions, which characterize how well a set
of vertices is connected. As one of their major findings, the
scoring functions correlate and can be grouped in four subsets
based on the community characteristics they measure. We base
our work on this categorization of scoring functions and use
three data sets which the authors provide.

III. CIRCLES VS. COMMUNITIES

Circles are a core features of Google+. While other social
networks like Facebook support groups for selective sharing,
Google+ forces the user to put new contacts in circles. It
thus inverts the application logic of communities. Whereas
groups in traditional OSNs form optional overlays of the social
graph, circles are mandatory sub-structures of a user network in
Google+. Some users try to avoid this categorization by putting
all contacts in one circle, but the majority actively adopts this
perspective change when building social contacts [12].

The mapping from contacts to users is only visible to the
creator of the circle, which makes quantitative evaluations on
circles difficult from the public perspective. The only way to
extract circles from Google+ without asking users to manually
publish their circles is to search for posts with shared circles.
Users are able to share circles they created by others. While
reasons for sharing a circle are manifold, this feature creates an
opportunity of accessing the structure of circles. The limitation
of shared circles is that they may be created only for sharing
and do not represent an actual facet of the creator. Fang et
al. [10] found that there are two main categories of shared-
circles. Circles, that cover communities. They have a very high
density and a high reciprocity with the circle owner. And there
are circles which cover very popular users. The popularity is
determined by the users in-degree.

Communities can be found in different types of networks
like social, biological, or information networks. They all refer
to a common attribute of the vertices that centers connectivity.
A general definition of communities in networks is that a
community is a set of vertices with many connections within
the set and just few connections from the community to the
remaining network [11], [13].

Like classical communities, circles are created around a
common attribute. Unlike communities, circles directly relate
to the creating user and may only carry meaning for its
creator. Thus a community can be regarded as a member-
initiated rendezvous, whereas a circle more closely resembles
a replication channel of the initiator. The underlying nature
of sharing is pull-based for communities, but push-based for
circles. Another distincton of circles in comparison to classical
communities is that only vertices from the ego-network of the
creator can be added to the circle.

IV. DATA DESCRIPTION

In the remainder of the paper, we refer to the social graph
as the directed graph G(V,E), where V are the user profiles
and E the relations between them. A vertex v ∈ V has an ID
to identify it. Other available attributes are not considered, as
we are only interested in evaluating the structural properties
of the social graph. Based on the directed graph G(V,E), we



TABLE I. NOMENCLATURE

Notation Description
n Number of vertices in the graph

m Number of edges in the graph

f Scoring function

C Circle/ community

nC Number of vertices in C

mC Number of edges in C

cC Number of edges at the boundary of C

d(v) Degree of vertex v

define n as the number of vertices in the graph n = |V | and
m as the number of edges m = |E|. A scoring function f
is applied to a circle C of nC vertices in C, nC = |C|, mC

edges in C and cC edges on the boundary of C. d(v) is the
degree of a vertex v.

A. Google+

Even if the contacts of a user are publicly available and
there are shared circles, it is difficult to load the data from
Google+, because the official API does not provide calls
for loading relationships. We use the only available data set
provided by McCauley and Leskovec [9], which includes
circles. It covers 133 ego-networks of users, who share at
least two circles. While the authors also use Facebook and
Twitter for their evaluations, they crawl a Google+ data set.
Since circles are per default private to users, they had to
select users, who shared at least two circles, and then crawled
their ego-network. Even though the data set only consists of
ego-networks, by joining all ego-networks a large connected
component is formed with 107.614 vertices and 13.673.453
edges.

Fig. 1. Schematic visualization of the data set from McAuley and Leskovec:
Red vertices are the owners of the ego-networks, the vertices in the overlapping
ego-networks are the bridges between the ego-networks.

Data, which is generated with this method, is biased
towards too dense components, connected only by a few edges
between each other. Figure 1 visualises the nature of the data
set. It consists of ego-networks (light blue areas) that include
the owners (red vertex). Owners are indirectly connected to
each other via blue vertices from their ego-networks. Because
several vertices appear in more than one ego-network, the joint
graph of all ego-networks is a fully connected component. We
find that 93,5 % of the ego-network in the data set overlap. This
means that they share at least one common vertex. The overlap
of ego-networks is shown in Figure 2. More than 55.000
vertices are only in one, and around 14.000 in two networks.

Comparing to this high count of vertices, there are just a few
vertices, which are members of more than 50 ego-networks.
These vertices have a high impact on the connectivity of the
data set.
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Fig. 2. Log plot of vertex membership count in ego-networks.

Before we start with the core evaluations, we want to char-
acterize the data set by applying common structural features
of Online Social Networks: Degree Distribution, Clustering
Coefficient and Node Separation [14].

1) Degree Distribution: The degree d(v) of a vertex v
in a graph G is defined as the number of connected edges.
Previous research on Online Social Networks indicated that
the distribution of the degree often follows a power-law distri-
bution. Magno et al. [8] even claimed a power-law distribution
in their Google+ data set. Gonzales et al. [7] also found a
power-law distribution in a snapshot of the largest connected
component they crawl. To investigate the degree distribution
in the McAuley and Leskovec [9] dataset, we use a set
of methods introduced by Clauset et al. [15]. The authors
stress that determining a power-law distribution by simply
comparing plots is insufficient. Previously, Van Mieghem [16]
had disclosed several prominent claims of power laws in the
Internet as mistaken. Following the method, we create models
for a power-law, exponential and log-normal distribution and
than check which fits best to the degrees in the used data set
using the log likelihood ratio.
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Fig. 3. Log-log plot of the in-degree distribution of the Google+ data set.
The red solid line shows the fit of the log-normal distribution.

When following the proposed method, we cannot match
a power-law distribution to the degree distribution of the
Google+ data set. Rather we find an approximate fit of a
log-normal distribution for the in-degree of the vertices (see
Figure 3). The latter corresponds to an exponential of a Normal



random process and would indicate that inviting membership
into circles is rather a multiplicative than an additive process.

2) Clustering Coefficient: Besides the degree distribution,
the Clustering Coefficient (CC) is a common measure on
OSN. It tests for the local clustering structure of vertices, i.e.,
whether neighbours of a vertex tend to connect to each other as
well [14]. This property is formalized by counting the number
of triangles a vertex is part of in relation to the maximum
number of triangles a vertex could possibly be part of [8].

The distribution of the clustering coefficient for our
Google+ data set is displayed in Figure 4. It admits a smooth,
almost symmetric shape with an average of 0.4901. Clustering
thus seems a rather random phenomenon in the data without
any pronounced tendency. This indicates that users in Google+
interconnect rather independent of a common circle member-
ship. These findings are in contrast to the results of previous
measurements. Magno et al. observe asymmetry with a low
average coefficient of ≈ 2.5. Gong et al. [17] continuously
evaluated the CC during the creation phase of Google+. The
highest value they observed at the very beginning of Google+
was about 0.32. These previous results rather indicate a layout
of many small stars with neighboring users that do not connect.
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Fig. 4. CDF of the Clustering Coefficient of the Google+ data set.

3) Node Separation: As a third characteristic of OSNs, we
measure the Node Separation. Node Separation relates to the
initial observation from social network research, known as the
small world problem by Milgram 1967 [18]. The diameter of
a network, which is the length of the longest shortest path
between all vertices, remains surprisingly short in the small
world. While we observe a diameter of 13, Gong et al. [17]
find a value of 6 in their data set, and Magno et al. [8] even
see 19. We also evaluate the average path length of the dataset
with 3.32 (Magno et al. 5.9).

Comparing the statistics from our evaluation with the
results obtained by Magno et al. [8], it becomes visible that the
data set we use is significantly smaller and better connected.
Table II presents an overview of the two data sets. Magno
et al. crawled a graph that has 326 times more vertices
than ours, but the edge count is only enhanced by 40. The
Magno data set only has 42 times more edges than ours. The
higher connectivity visible in our evaluation corresponds to a
divergent average degree of the vertices in the two networks.
While the Magno network has an average of 16 edges per
vertex, the vertices in our data set have an average degree
of 127. This difference is caused by the crawling methods.
While Magno et al. use a breath-first-search, the McAuley

TABLE II. STATISTICAL COMPARISON OF THE MCAULEY AND

LESKOVEC [9] AND MAGNO ET AL. [8] DATA SETS. (ASP: AVERAGE

SHORTEST PATH)

Metric Magno et al. McAuley and Leskovec
Vertices 35.114.957 107.614

Edges 575.141.097 13.673.453

Diameter 19 13

ASP 5.9 3.32

Degree
distribution (in) power-law α = 1.3 log-normal

distribution (out) power-law α = 1.2 -

average degree (in) 16.4 127

average degree (out) 16.4 189

and Leskovec data set is crawled around predefined users
and their ego-networks. It is important to consider the high
connectivity of our data set in the evaluation, because we
investigate the structure of circles within the network, focusing
on their internal connectivity. Metrics applied to the circles,
which are based on the vertex edge ratio, will produce high
values, because of the overall high density in the network as
compared to the result of the same metric in other Google+
data sets.

B. Other Data Sets

For comparison, we use several other social network graphs
in addition to the Google+ data set. To extend the analysis
of circles, we add a Twitter data set to our evaluation. Like
Google+, Twitter consists of a directed graph created by users
start following the post of others. The data set is also provided
by McAuley and Leskovec [9] and forms a graph with 81,306
vertices and 1,768,149 edges. The 100 included communities
are created by a selective sharing feature called lists in Twitter.

To compare these circle-like structures with classical com-
munities, we also use data sets of two traditional OSNs. The
first data is crawled from the LiveJournal OSN by Yang and
Leskovec [11]. It includes 3,997,962 vertices and 34,681,189
edges. The communities within the network are explicitly la-
belled as interest-based groups. The same type of communities
are included in the second traditional OSN data obtained from
Orkut. The Orkut data set has been crawled by Mislove et al.
[19] and provided by [11]. It subsumes 3,072,441 vertices and
117,185,083 edges. We restrict our evaluation to the top 5000
communities of these two graphs ranked by their size, to limit
calculation complexity. A summary of all data sets is shown
in Table III.

The major difference between the circle-type and com-
munity data is their edge type. While Google+ and Twitter
use directed edges to represent a link between its users,
LiveJournal and Orkut use undirected links. This may have
an impact on our evaluations, because a bidirectional relation
between two vertices is represented by one edge in undirected
and by two in directed graphs. Directed communities could
score higher than undirected ones, when edge counts are used
in the scoring functions. A fully connected set of vertices in
a directed graphs has twice the number of edges than a fully
connected set of vertices in an undirected graph. To test for this
impact on our evaluation, we preformed the scoring functions
on the Twitter and Google+ and on a undirected representation
of these networks with bidirectional edges combined to one.



TABLE III. COMPARISON OF THE EVALUATED DATA SETS

Graphs Google+ Twitter LiveJournal Orkut
Vertices 107,614 81,306 3,997,962 3,072,441

Edges 13,673,453 1,768,149 34,681,189 117,185,083

Type directed directed undirected undirected

Structure Circles Circles Communities Communities

# Communities 468 100 5000 5000

The results show a minimal deviation of about 2,38 % and do
not have an impact on the results of our overall evaluation.

V. EVALUATION

The goal of our evaluation is to investigate how far the
characteristics of classic network communities coincide with
circles in Google+. Here the first question was, whether
circles form pronounced structures in the social graph. The
second question asked whether these structures resemble clas-
sic communities in typical social networks. To quantify the
particularity of communities, we use scoring functions from
the field of community detection. These functions score sets
of vertices with extremal values, whenever they match the
concept of a community.

a) Internal Connectivity—Average Degree: A commu-
nity should consist of a set of highly interconnected vertices.
A scoring function that focuses on the internal connectivity is
the Average Degree [20]. In the definition provided by Yang
and Leskovec [11]

f(C) =
2mC

nC
, (1)

the mean degree of the vertices in C is calculated by twice the
number of edges within the community 2mC to obtain the link
contacts at each vertex, divided by the total number of vertices
nC in C. Values of this function depend on the density of the
underlying social graph.

b) External Connectivity—Ratio Cut: The second char-
acteristic of a community is its separation from the remaining
network. That means, the vertices in the set share just a few
links with its embedding graph. The Ratio Cut function is
based on the edges which are at the border of a community
cC , divided by the balancing product of the number of vertices
within C and the complement of C [13].

f(C) =
cC

nC(n− nC)
(2)

By counting bordering edges, only, the Ratio Cut remains
independent of the connectivity within the community—and
a measure opposed to the Average Degree.

c) Combined Internal and External Connectivity—
Conductance: While Average Degree and Ratio Cut only focus
on a single aspect of the relation between the community and
network, the Conductance metric covers both aspects. This is
achieved by measuring the number of edges pointing outside
the community in relation to the total degree of the vertices
within the community [21].

f(C) =
cC

2mC + cC
(3)

In a sense, the Conductance scoring function is able to capture
the common intuition of a community. A well pronounced

community will have a low score, due to many internal edges
and significantly fewer inter-connects to the ‘outside world’. It
is noteworthy that by evaluating edge ratios, the Conductance
corrects for the density of the underlying graph.

d) Modularity: A very popular scoring function is
Modularity introduced by Newman [22]. It uses a so called null
model to verify whether the given network has a community
structure or not [13]. The model we use was proposed by
Newman and Girvon [23] and consists of a randomized graph,
which has the same degree sequence as the original graph.
We use the algorithm proposed by Viger and Latapy [24]
to generate the random graph. Based on the null model, the
Modularity is positive, whenever the number of edges inside
the community is higher than the expectation value of edges
in the null model.

f(C) =
1

2m
(mC − E(mC)) (4)

A. The Structures of Circles within the Social Graph

We now want to answer the question, whether circles form
pronounced structures in the social graph. We apply the four
scoring functions described above to the circles available in
the Google+ data set and to randomly selected sets from the
graph with the same size as the circles. The functions scores
should clearly separate circles from random sets, whenever
community structures are present. We sample the random sets
by preforming random walks on the graph. Starting from a
randomly selected vertex, the walk continues by selecting
neighbors at random until sufficiently many vertices are found.
The walks is restarted, whenever no new neighbour is avail-
able. While generating an unbiased selection of the sub-graph
[25], the method of performing random walks produces a
widely connected, representative network.

Figure 5 comparatively displays the CDFs for the circle
data and the randomly traversed sets. All four functions clearly
differentiate circles from the random sets. Average Degree and
Conductance are separated only quantitatively for the circles
and the random sets, but attain distributions of similar shape.
While circles score higher on Average Degree, the overall
connectivity measured by the Conductance is significantly
lower. Without surprise, the selection of random paths in a
connected social graph tends to produce a more even, fairly
flat network.

The scores for Ratio Cut (Fig. 5(b)) produce two different
distributions for the circles and the random sets. While the
scores show a smooth rise, the random sets peak around 0.02.
This peak reflects the average ratio between connected vertices
and edges in between them, since Ratio Cut scores the edges
on the boundary and the included vertices. It is also worth
mentioning that the score for more than 70% of the circles
is lower than for the random sets. Circles are thus better
separated from the remaining network than an average subset.
The clearest differentiation between the random sets and the
circles is visible from the Modularity function (Fig. 5(d)).
Scores for the random sets are very low, which indicates a
good coincidence of our selection from random walks with
the random null model of Fortunato [13]. More than 50 %
of the circles show a significant deviation from the expected
results given by the null model.
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Fig. 5. Group Metrics applied to Circles in the dataset (red solid) and group metrics applied to a selection of vertices obtained from a random walk (blue
dashed).

All distributions of circles admit smooth long tails. This
shows, that there is always a small but finite probability
of the circles for significantly different graph properties. A
justification for the tails could be found in the work of Fang
et al. [10], who claimed that there are two categories of shared-
circles in Google+. Communities, which are highly connected
and celebrities, which have a low connectivity but very popular
members (i.e., star-like structures). Their first category of
circles produces dominant scores, while a few circle of, e.g.,
pop singers have a low internal connectivity and score low.

To intermediately sum up the results from applying the
scoring functions to circles and random sets, we could show
that our tests for community characteristics did produce sig-
nificantly diverging results. So we can conclude that circles
form pronounced structures which differ from the nature of
the entire graph.

B. Circles vs. Classical Communities

In the following, we want to find out how similar the
structures of circles approach the communities that are ob-
served in traditional social networks. We use the data sets from
LiveJournal and Orkut networks (Section IV-B) as community
samples and compare to circle-type structures using the data
from Google+ and also from Twitter. We chose to compare
to additional Twitter data to avoid a bias inherited from the
individual measurement on Google+.

Figure 6(a) shows the CDF of the four social network
graphs for the Average Degree function. While there is a large
difference in the maximum score in the data sets (Twitter: 40,
LiveJournal: 332), no significant difference in the shape of the
distribution of the community types can be found. Google+
admits the lowest Average Degree.

The CDF of the Ratio Cut function displayed in Figure
6(b) attains a divergent picture for external connectivity. While
LiveJournal and Orkut – the two original community networks
– have vanishing relative frequencies for linking to the out-
side,the networks with circles score visibly higher (Twitter
has a mean of 6 and Google+ 34) than for the classical
communities. Connectivity beyond the group structure is thus
omnipresent in circles, but utmost uncommon in communities.

A reason for this phenomenon lies in the perspective of the
creators, who may not be connected with the entire community,
they want to share. This is supported by the findings of
Fang et al. [10], who found that sharing a circle leads to a
densification of community circles, because missing members
of the community can create connections to user, they did not
connect yet. This phenomenon goes along with the overall
high density within an ego-network, which also lead to poor
separation between circles and the remaining network.

The Conductance function, which scores densely on the
internal and sparsely for externally connected communities
with a low value, shows the most striking difference between
the data sets. While LiveJournal almost attains a uniform
distribution, and Orkut still has 50 % of the communities
below 0.75, almost all circles (≈ 90 %) show a Conductance
close to 1 (> 0.9). These results report on a remarkably high
balance between internal and external link density in the group
formation of Google+ and Twitter, which is caused by the same
phenomenon observed for the Ratio Cut.

The CDFs for the Modulartiy scoring function, plotted
in Figure 6(d), all show a similarly high increase. While
Twitter, LiveJournal and Orkut nearly overlap, Google+ shows
a smoother curve and a higher maximum value. This implies
that the Google+ circles show a higher connectivity than the
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Fig. 6. CDFs of the results from the scoring function applied to the communities in the four data sets.

other data sets in comparison to their null model. Thus the
Google+ graph has the highest connectivity, which is also
shown by the high scores of the Ratio Cut function. It also
has to be mentioned that the overall scores for Orkut are very
low compared to the other data sets, which is also visible for
Twitter.

Summing up the results of this evaluation, we could show
that circles internally attain the same structure as classical
communities. However, the separation of circles from the
remaining network is significantly reduced. The organisation
of ego-networks in Circles thus produces much less confined
group structures than communities, which are shaped by ac-
tively joining users. While this may appear surprising at first
sight, an explicit consideration of context may open a more
appropriate view. Circles represent the context of its creator1,
while community members actively opt for its context. It may
be just more likely that users who join a community have a
shared perspective centered around its subject.

As a consequence, members of circles should regard selec-
tive sharing more thoughtful than community members. The
latter are part of much clearer determined context group.

VI. CONCLUSION AND OUTLOOK

By introducing the concept of circles, Google+ enables
users to transfer the different facets of their social live to the
management of their online contacts and share information
selectively. While in traditional communities users join on their
own will, the circles are created by a peer user from his own
ego-network. In this work, we tried to explore the effects of

1In a sense, placing a user in a Circles resembles the placement of a
hyperlink. For hyperlinks, context is well known to split into two, the context
of departure and that of arrival [26].

these different building mechanisms on the social networks
and on the processes of selective sharing therein.

Based on a Google+ data set with shared circles, we
characterized the structures of circles that are embedded in
the Google+ social graph. We started with classification of
the used data set by comparing it characteristics to other
Google+ data sets. Comparing two social networks of circular
structures with two data sets that are built from traditional
communities, we could show that i) circles form pronounced
community-like structures in Google+, and ii) circles attain
an individual structural signature. In particular, circles are
significantly less separated from the remaining network than
classical communities. Selective sharing in Google+ is thus
more diffusive and less confined.

In our future work, we will extend our research on group
structures from a global to an ego-centred view. While only
publicly shared circles were available for this evaluation,
private circles could provide a deeper insight into the user-
centric deployment of circles.
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